首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Metallothionein (MT) is a protein involved in heavy metal homeostasis and detoxification. According to several studies, MT could be involved in the antioxidant defense system, in which glutathione (GSH) is an essential component. The aim of this study was to verify the implication of MT in the antioxidant defense system in isolated rat hepatocytes. For this purpose, hepatocyte cultures were exposed to treatments known to modify MT or GSH levels. Zinc (Zn) was used as an inducer of MT while diethyl maleate (DEM) and buthionine sulfoximine (BSO) were used as GSH depletors. GSH, MT, and antioxidant enzyme activities were measured under conditions of MT induction and GSH depletion. Induction of MT synthesis through an 18-hour exposure to Zn (20 microM), did not result in any significant change in GSH levels or in activities of the antioxidant enzymes, glutathione-peroxidase (GSH-Px), catalase, and superoxide dismutase (SOD). DEM caused GSH depletion in cells, whether they were exposed to Zn or not, that lasted one h; after that time, GSH rose back to basal levels. BSO also caused GSH-depletion in cells exposed or unexposed to Zn, and no recovery in GSH levels was detectable during the entire period of exposure (12 h). However, GSH depletion induced by both DEM or BSO was attenuated in Zn-treated hepatocytes. Moreover, DEM and BSO exposures led to a depletion of MT levels in Zn-treated hepatocytes, indicating a link between GSH and MT metabolism. In cells unexposed to either Zn, DEM or BSO, there was an increase in GSH-Px and SOD activities after 6 and 12 h of incubation, respectively. Under the same conditions, catalase activity was inhibited after 6 h of incubation and returned to the activity found at t = 0 after 12 h of incubation. DEM and BSO treatments had no significant effect on GSH-Px or SOD activities although they led to inhibition of catalase activity. Taken together, our data indicate that MT induction, which creates a new pool of thiol groups in the cell cytosol, can attenuate GSH depletion induced by DEM or BSO. It appears that catalase is most sensitive to oxidative stress and that MT induction can antagonize the deleterious effects of such stress on the enzyme. This study supports the view that MT is part of the hepatocyte antioxidant-defense-system.  相似文献   

2.
The effects of culture duration on primary cultured mouse hepatocyte antioxidant levels (superoxide dismutase, catalase, glutathione peroxidase, vitamin E, and glutathione) and susceptibility to glucose oxidase (GO)- and hydrogen peroxide (H2O2)-induced cell killing and lipid peroxidation were examined. Membrane fatty acid composition was also evaluated. Adult male B6C3F1/CrlBR mouse hepatocytes were isolated by collagenase perfusion of the liver and cultured on 60-mm plastic dishes in Leibovitz's L-15 medium supplemented with glucose (1 mg/ml), dexamethasone (1 microM), fetal bovine serum (10%, v/v), and gentamicin sulfate (50 micrograms/ml) for 0 hr (freshly isolated cells) to 96 hr. Hepatocyte toxicity (determined by lactate dehydrogenase release and lipid peroxidation) after a 2-hr exposure to GO (0.8-80 micrograms/ml) or H2O2 (1-5 mM) decreased with increased time in culture. This decreased hepatocyte sensitivity to GO and H2O2 toxicity was not related to antioxidant enzyme activity since superoxide dismutase, catalase, and glutathione peroxidase declined during the 96-hr culture period. In contrast, glutathione and vitamin E levels in the cultured hepatocytes rose to 274.9 +/- 8.3% and 220.6 +/- 18.6% of the levels in freshly isolated cells (129.6 +/- 11.5 nmol and 0.10 +/- 0.01 nmol per 10(6) hepatocytes, respectively). The percentage of polyunsaturated fatty acids in hepatocyte phospholipids and triglycerides decreased with culture duration while the percentage of oleic acid increased in esterified and free fatty acid pools after 2 hr in culture. Total fatty acids were not affected by time in culture. These results suggest that the decreased hepatocyte susceptibility to the toxic effects of hydrogen peroxide may have been due to elevations in cellular GSH and vitamin E levels and decreases in membrane polyunsaturated fatty acids. The data also indicate that hepatocytes in primary culture undergo changes in antioxidant levels and fatty acid composition that may affect free radical toxicity at different times in culture.  相似文献   

3.
Three dibenzylbutyrolactone lignans, (-)-arctigenin, (-)-traxillagenin, and (-)-4'-demethyltraxillagenin, isolated from the bark of Torreya nucifera SIEB. et ZUCC. (Taxaceae) showed significant hepatoprotective activity in primary cultures of rat hepatocytes injured by carbon tetrachloride (CCl(4)). These lignans reduced the release of glutamic pyruvic transaminase into the culture medium from the CCl(4)-injured primary cultures of rat hepatocytes. Further investigation revealed that the three lignans significantly preserved the level of glutathione (GSH) and activities of superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase in the CCl(4)-injured rat hepatocytes. The lignans also ameliorated lipid peroxidation as demonstrated by a reduction in malondialdehyde-related products. Moreover, these lignans significantly attenuated the GSH reduction caused by diethylmaleate which depletes GSH through the formation of stable conjugates. However, these lignans showed no effect on the GSH synthesis inhibited by buthionine sulfoximine. From these results, it can be concluded that arctigenin, traxillagenin, and 4'-demethyltraxillagenin may protect hepatocytes from CCl(4) injury by maintaining the GSH level.  相似文献   

4.
The aim of this study was to evaluate the influence of the two-step hepatocyte isolation procedure on primary cultured trout (Oncorhynchus mykiss) hepatocytes over time. We characterised the possible changes of a variety of some cellular parameters within the first 24-48 h after seeding. We followed the time dependent changes of these parameters during subsequent culture times in order to see if the cells maintained a differentiated status. Scanning electron microscopy revealed bleb formation and 20% cell damage in freshly isolated hepatocytes. During subsequent culture times the bleb dimension appear to be reduced. Heat shock proteins 70 and 50 (HSP70, HSP50) were induced by hepatocyte isolation. During the first 4 h of culture, the hepatocytes showed a variation in mitochondrial activity, an increase in free radical species (ROS), and a decrease in both glutathione (GSH) content and catalase (CAT) activity; the generation of free radicals led to an increase in the formation of 8-hydroxydeoxyguanosine (8-OHdG) in the DNA. The cells showed detectable ethoxyresorufin-O-deethylase activity after 4 h of culture, which had rapidly increased by the 24th hour. After 24 h, mitochondrial and CAT activity, free radical production, and the content of GSH and 8-OHdG returned to their original levels. P450 activity was retained for at least 48 h after seeding. Our data show that trout hepatocytes suffer significant cell injury as a result of the isolation procedure, but primary cultured cells metabolically recover from this stress after a few hours: they are capable of repairing their damaged surfaces, recovering their antioxidant defences and retaining their ability to repair DNA. Our results also confirm that trout hepatocytes in a primary culture maintain their in vivo-like metabolic activities for 3-8 days.  相似文献   

5.
The stabilities of several drug oxidation and conjugation pathways in adult rat hepatocytes were investigated in two systems: a primary pure culture lasting 3 days and a primary mixed culture (hepatocytes co-cultured with epithelial cells) lasting 10 days. The cytochrome P450 content in hepatocytes drastically declined within 48 hr in both culture systems. Cytochrome P450-dependent mixed function oxidase was measured by the O-dealkylation of ethoxyresorufin (EROD) and of pentoxyresorufin (PROD). UPD-glucuronosyl transferase (UDP-GT) activity was measured using 1-naphthol and morphine as substrates. In both culture systems, the activities of enzymes belonging to the 3-methylcholanthrene-inducible family, namely EROD and 1-naphthol UDP-GT, were much better maintained than those of PROD and morphine UDP-GT, which belong to the phenobarbitone-inducible family: in pure cultures, EROD and 1-naphthol UDP-GT activities declined to 60% of initial values within 3 days; in mixed cultures, EROD activity was stable throughout the 10 day culture period, whereas that of 1-naphthol UDP-GT was stable until day 4 but had declined to 70% of the initial value by day 8. In contrast, PROD and morphine UDP-GT activities declined to approx. 30% of the initial values within 2 days in both culture systems, and had dropped to approx. 10% of the initial value within 8 days in mixed culture. Reduced glutathione (GSH) levels fluctuated, but remained high throughout culture. GSH conjugation declined to 40% of initial values within 3 days in pure culture, whereas it remained relatively constant in mixed culture. Comparison of these two culture systems therefore showed that although the inclusion of epithelial cells did prolong hepatocyte viability, there was a change in relative enzyme activities in both systems, suggesting a shift towards a more de-differentiated drug metabolism pattern.  相似文献   

6.
The effect of medium formulation, composition of extracellular matrix overlay, and culture dish material on liver microsomal cytochrome P-450 (CYP) 2B induction by phenobarbital (PB) was investigated in primary cultures of rat hepatocytes. When hepatocytes were maintained on Permanox dishes with an overlay of either collagen (type I) or Matrigel, Williams' E medium was superior to other medium formulations in terms of the magnitude of induction of CYP2B on a per milligram microsomal protein basis. Modified Chee's medium (MCM) and hepatocyte culture medium were intermediate in their capacity to sustain induction of CYP2B by PB, and Dulbecco's modified Eagle's medium was slightly less effective. The overall induction of CYP2B activity by PB was, on average, 50% lower in hepatocytes cultured on polystyrene dishes (LUX). Little or no difference was observed between hepatocytes overlaid with collagen and those overlaid with Matrigel. MCM was superior to Williams' E medium in terms of the yield of microsomal protein and the ultrastructural features of the hepatocyte monolayers. CYP2B induction by PB was optimal after 3 days of treatment in either medium. CYP1A, CYP3A, and CYP4A activities could be induced in vitro by prototypical inducing agents in hepatocytes cultured on Permanox dishes with MCM and a Matrigel overlay to comparable levels observed in vivo. The results of these studies show that medium formulation and culture vessel material, but not the type of extracellular matrix overlay, have significant effects on the induction of CYP enzymes in cultured rat hepatocytes maintained in a sandwich configuration.  相似文献   

7.
The freshwater, bloom-forming cyanobacterium (blue-green alga) Microcystis aeruginosa produces a peptide hepatotoxin, which causes the damage of animal liver. Recently, toxic Microcystis blooms frequently occur in the eutrophic Dianchi Lake (300 km2 and located in the South-Western of China). Microcystin-LR from Microcystis in Dianchi was isolated and purified by high performance liquid chromatography (HPLC) and its toxicity to mouse and fish liver was studied (Li et al., 2001). In this study, six biochemical parameters (reactive oxygen species, glutathione, superoxide dismutase, catalase, glutathione peroxide and glutathione S-transferase) were determined in common carp hepatocytes when the cells were exposed to 10 microg microcystin-LR per litre. The results showed that reactive oxygen species (ROS) contents increased by more than one-time compared with the control after 6 h exposure to the toxin. In contrast, glutathione (GSH) levels in the hepatocytes exposed to microcystin-LR decreased by 47% compared with the control. The activities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxide (GSH-Px) increased significantly after 6 h exposure to microcystin-LR, but glutathione S-transferase (GST) activity showed no difference from the control. These results suggested that the toxicity of microcystin-LR caused the increase of ROS contents and the depletion of GSH in hepatocytes exposed to the toxin and these changes led to oxidant shock in hepatocytes. Increases of SOD, CAT and GSH-Px activities revealed that these three kinds of antioxidant enzymes might play important roles in eliminating the excessive ROS. This paper also examined the possible toxicity mechanism of microcystin-LR on the fish hepatocytes and the results were similar to those with mouse hepatocytes.  相似文献   

8.
In vitro effect of methanol on folate-deficient rat hepatocytes   总被引:1,自引:0,他引:1  
Methanol is primarily metabolized by oxidation to formaldehyde and then to formic acid. These processes are accompanied by formation of superoxide anion and hydrogen peroxide. This paper reports the in vitro antioxidant effect of vitamin E on isolated hepatocytes of folic acid deficient rats rendered so as to emulate a human hepatocyte model. These hepatocytes were treated with 320 microM of methanol per million cells and incubated for 30 min. The microsomal fraction of these hepatocytes showed a decreased level of superoxide dismutase (SOD), with increase in lipid peroxidation (LPO) shown by increase in recorded levels of malondialdehyde (MDA). Catalase activity was shown to be increased. Levels of reduced glutathione (GSH) were decreased and the activity of glutathione peroxidase (GSH-Px) and of glutathione reductase (GSSG-R) were not altered. The hepatocytes of folate deficient rats pretreated with vitamin E, when subjected to methanol treatment, showed no significant change in SOD levels and a significant decrease in MDA levels. The catalase activity in this group of animals showed a highly significant decrease. These animals had normal levels of GSH, while a significant fall in GSH-Px and GSSG-R levels were observed. These results suggest that Vitamin E exerts a protective effect on hepatocytes by acting as a free radical scavenger, proving its usefulness in treating methanol toxicity.  相似文献   

9.
Hagar HH 《Toxicology letters》2004,151(2):335-343
Cyclosporine A (CsA) is the immunosuppressor which is most frequently used in transplant surgery and in the treatment of autoimmune diseases. Oxidative stress has been implicated as one of the possible mechanisms of CsA-induced hepatotoxicity. The present investigation examined the ability of taurine as an antioxidant to protect against CsA-induced oxidative stress and hepatotoxicity. CsA hepatotoxicity was induced by subcutaneous injection of CsA at a dose of 20mg/kg body weight daily for 21 days. Hepatotoxicity was assessed by reduced serum total protein level and increased serum levels of gamma glutamyl transferase (GGT), alanine aminotransferase (ALT), and aspartate aminotransaminase (AST). CsA treatment increased lipid peroxidation measured as thiobarbituric acid reactive substances (TBARS) concentration and decreased reduced glutathione (GSH) content and activities of catalase and glutathione peroxidase (GSH-Px) in the rat liver. Taurine administration (1% in the drinking water) for 3 days before and concurrently during CsA injections improved liver functions, as indicated by decline of serum transaminases and GGT levels and elevation of serum total protein. Moreover, taurine significantly reduced hepatic TBARS and increased GSH content and catalase and GSH-Px activities in the hepatic tissue. These results indicate that taurine has a protective action against CsA hepatotoxicity and suggest that taurine may find clinical application against a variety of toxins where cellular damage is a consequence of reactive oxygen species.  相似文献   

10.
《Toxicology letters》1988,41(2):107-114
Inhalation of cigarette smoke significantly increased glutathione (GSH) content and increased lipid peroxidation without altering the activities of Superoxide dismutase (SOD), catalase, glutathione peroxidase (GSH-Px) or glutathione reductase (GR) in the lung (six male Wistar rats). Following intratracheal administration of benzo[a]pyrene (BP), an increase in pulmonary GSH-Px activity, GSH content and lipid peroxidation was observed after 12 h. GSH-Px activity and GSH content returned to control values by 7 and 30 days, respectively, whereas lipid peroxidation in the lung remained significantly greater than the control value for up to 7 days of BP administration. Hepatic activity of SOD was increased significantly, whereas the activities of GSH-Px, catalase, GR, and GSH content were not changed by inhalation of cigarette smoke. On administration of BP, a significant increase in the activities of SOD and GSH-Px was observed at 12 h. After 7 and 30 days, the activities of these antioxidant enzymes were comparable to their respective control group values. No change in the activity of catalase or in the level of lipid peroxidation was noted throughout the entire study period.  相似文献   

11.
Syzygiumcumini, Indian black plum or Java plum, is a rich source for anthocyanins (230mg/100g DW) showing high antioxidant activity in vitro. In the following study it is further demonstrated that S. cumini peel extract rich in anthocyanins (SCA) offers considerable protection against carbon tetrachloride (CCl(4))-induced damage in rat hepatocytes. SCA itself being non-toxic to primary rat hepatocytes at concentrations ranging from 50 to 500ppm, was found to suppress CCl(4)-induced LDH leakage by 54% at 50ppm, thereby improving the cell viability by 39%. The SCA significantly reversed the CCl(4) induced changes in cellular glutathione (GSH) level, lipid peroxidation and activity of the antioxidant enzyme glutathione peroxidase. Exposure of hepatocytes to SCA after CCl(4) treatment was found to elevate GSH and GPx activities by 2-folds, whereas the activities of catalase and superoxide dismutase were not significantly affected. The fruit pulp extract (SPE) was less effective in offering protection to rat hepatocytes, particularly in terms of total GSH content and a consequent increase in lipid peroxidation although the higher GPx activity suggests the probable involvement of GSH as a substrate for GPx. These observations suggest that the fruit peel extract of S. cumini, is largely responsible for the reversal of CCl(4)-induced oxidative damage in rat hepatocytes. Both peel and pulp extract appear to offer protection to rat hepatocytes through GPx along with other biological pathways independent of catalase and superoxide dismutase.  相似文献   

12.
In order to obtain more information concerning the effects of culture and medium conditions on the glutathione dependent detoxication system in hepatocyte cultures, glutathione reductase (GR) and glutathione peroxidase (GPx) activities were studied in both pure cultures of adult rat hepatocytes and their co-cultures with rat epithelial cells. Cells were isolated either with an oxygen saturated Krebs Henseleit buffer (KHB) or with a non-gassed Hepes buffer. As medium conditions, additions of 10% fetal calf serum (FCS), 25 mM nicotinamide, 0.1 M selenium and 2% dimethylsulphoxide, respectively, to the culture medium were examined. It was found that co-cultures of rat hepatocytes can cope better with oxidative stress than pure cultures do. This conclusion was reached from the following observations. When oxygenated KHB was used as isolating buffer, GR and GPx activities increased during the first days of pure culture and then slowly decreased. This was observed for all the medium conditions studied and no significant differences between the different media could be observed. For co-cultures, however, after some initial variations GR and GPx activities reached stabilized levels which were not only significantly lower than those observed for pure cultures, but were also maintained throughout the whole culture period. Supplementation of the medium had no effect on these findings with the exception of high GPx activities when Se was added to the co-culture medium. When Hepes buffer with a low oxygen content was used in cell isolation, pure cultures showed significantly lower GR and GPx activities than those first mentioned. Both approached the values measured for cocultures. The shape of the enzymatic activity curve as a function of culture time remained essentially unchanged. In co-cultures no significant differences could be observed in GPx activities when both perfusion techniques were involved, with the exception of the measurements done during the first 2 days of co-culture. Using the non-gassed Hepes buffer instead of the oxygenated KHB had no statistical effect on the GSH content of the hepatocytes in either of the two culture systems.  相似文献   

13.
Metabolism in fresh and cryopreserved (CP) rat, dog and monkey hepatocyte suspensions and cultures was measured using midazolam (CYP3A), tolbutamide (CYP2C), dextromethorphan (CYP2D) and p-nitrophenol (glucuronosyl S-transferases (UGT), sulphotransferases (ST)). CYP3A, CYP2C9, CYP2D6, UGT and ST enzyme functions in fresh and CP rat, dog and monkey hepatocyte suspensions were retained - CP rat hepatocytes lost some CYP2C activity but this was restored by adding NADPH or by placing the cells in culture, suggesting that the enzyme was still functional. Phase 2 activities were equivalent in fresh and CP hepatocyte suspensions. In some cases, incubation conditions increased the rate of metabolism, possibly reflecting de novo cofactor synthesis. However, this effect was substrate and species dependent and was not always the same in fresh and CP cells. CYP3A, CYP2C, CYP2D, UGT and ST activities at 24 hours of culture of rat and monkey hepatocytes were not compromised by cryopreservation. CYP3A, CYP2D but not CYP2C were lower in 24-hour cultures of CP dog hepatocytes than in fresh cells. Despite being lower than fresh cells, UGT activity in dog CP hepatocytes did not decrease from 0 to 24 hours of culture. Species-specific metabolism of p-nitrophenol could be demonstrated in both CP cell suspensions and cultures. In conclusion, these data suggest that the enzyme characteristics of fresh and CP hepatocytes from each species and under specific incubation conditions should be considered when carrying out metabolism studies of new compounds.  相似文献   

14.
Zeng T  Zhang CL  Zhu ZP  Yu LH  Zhao XL  Xie KQ 《Toxicology》2008,252(1-3):86-91
The protective effects of diallyl trisulfide (DATS) on acute ethanol-induced liver injury were investigated. Mice were pretreated with DATS (30mg/kgbw) for 7d before being exposed to ethanol (4.8g/kgbw). The biochemical indices (aspartate amino transferase, AST; alanine amino transferase, ALT; triglyceride, TG) were examined to evaluate the protective effects. Mitochondria were isolated for the mitochondrial permeability transition (MPT), membrane potential (DeltaPsi(m)) and adenosine nucleotide pool assay. The lipid peroxidation (malondialdehyde, MDA), non-enzymatic antioxidant (glutathione, GSH) and enzymatic antioxidants (superoxide dismutase, SOD; catalase, CAT; glutathione reductase, GR; glutathione peroxidase, GSH-Px) were measured both in the liver homogenate and isolated mitochondria. Acute ethanol exposure resulted in the significant increase of the ALT, AST and TG levels and hepatic mitochondria dysfunction shown as MPT, and the decreases of DeltaPsi(m), ATP and energy charge (EC). However, DATS pretreatment dramatically attenuated these adverse effects. Beside this, DATS was found to significantly inhibit the increase of the hepatic and mitochondrial MDA levels, which were decreased by 33.3% (P<0.01) and 39.0% (P<0.01), respectively. In addition, DATS pretreatment markedly suppressed the ethanol-induced decrease of the hepatic GSH level and increased the mitochondrial GSH level. Moreover, the activities of the hepatic antioxidant enzymes (SOD, CAT, and GR) and the mitochondrial antioxidant enzymes (SOD, GR, and GSH-Px) were significantly boosted. Thus, we concluded that DATS dramatically attenuated acute ethanol-induced liver injury and mitochondrial dysfunction. The increase of the hepatic and mitochondrial GSH levels and the elevation of the antioxidant enzymes activities should account for the preventive effects.  相似文献   

15.
The present work describes an isozyme-related effect of collagenase perfusion on hepatocyte microsomal cytochrome (CYP)-dependent monooxygenase activities: CYP 1A1/2-, 2B1/2-, 3A1/2- and 2E1-dependent activities in microsomes from rat hepatocytes after isolation were about 60% of that of liver microsomes, and CYP 4A1-dependent activity was equivalent to liver microsomes. In contrast, the microsomal protein content of the various CYP isoforms was not affected by hepatocyte isolation. This is in accordance with the hypothesis of CYP inactivation during the process of hepatocyte isolation by collagenase digestion. L-NAME (1 mM) was found unable to protect from the decline of CYP-dependent monooxygenase activities following hepatocyte isolation. It is possible that the decrease in glutathione peroxidase activity observed in the presence of L-NAME, namely depression of defense against peroxynitrite, could counteract the beneficial effect of L-NAME on nitric oxide synthesis inhibition. The present work also shows that L-NAME could not avoid the progressive, isoform-specific, most probably turnover-related, decline of CYP proteins and related monooxygenase activities in cultured hepatocytes. Dysregulations in the mechanisms of CYP expression in rat hepatocyte cultures, presently unknown but nitric oxide independent, thus appear to occur in cultured rat hepatocytes.  相似文献   

16.
This study was conducted to determine the protective role of ascorbic acid (AA) against cytotoxicity of the phenthoate (PTA) on hepatocytes. Lipid peroxidation (LPO), nitric oxide (NO), antioxidant enzymes like superoxide dismutase, catalase, glutathione peroxidase, gamma glutamyl transferase and glutathione-S-transferase activities were measured. Non-enzymes antioxidant levels of reduced glutathione (GSH), ferric reducing antioxidant power (FRAP), AA and total proteins (TP) were determined. The results were demonstrated that the 2 hr-LC50 obtained for PTA value was 79.94 mM. LPO and NO were increased in hepatocytes-treated with PTA. PTA-induced oxidative stress in the isolated hepatocytes by decreasing the levels of some antioxidant enzymes. GSH levels were also diminished in PTA treated-hepatocytes as compared to DMSO hepatocytes. FRAP, AA and total protein were also decreased following treatment with PTA. These findings suggest that cytotoxicity of PTA is mediated by increasing free radical formation and decreasing the antioxidants. PTA hepatotoxicity increased in a time- and concentration-dependent manner. The AA can be very effective in perhaps reducing the extent of injury and in overcoming oxidant damage caused by PTA.  相似文献   

17.
In this study, we investigated the combined effects of EGF and collagen I gel on the phenotype of cultured rat hepatocytes and we focussed our investigations on the regulation of xenobiotic-mediated induction of CYP, cell cycle progression and activation of capases 8 and 3. We found that EGF, added to basal culture medium or phenobarbital (3.2 mM) containing medium, provoked a moderate decrease of CYP1A1 and CYP2B1/2 activities. However, EGF did not exert any inhibitory effect on 3-methylcholantrene (5 microM) and beta-naphtoflavone (25 microM) induction of CYP1A1 activities. In collagen gel sandwich cultures, hepatocytes remained arrested in mid-G1 phase of the cell cycle, even in the presence of EGF. In conventional primary cultures, caspases 8 and 3 were activated at 3 and 5 days after plating respectively. In collagen gel sandwich cultures, we found that neither collagen I nor EGF prevented activation of caspase 8 while collagen I gel inhibited activation of caspase 3, preventing spontaneous apoptosis of cultured rat hepatocytes. In contrast, EGF transiently increased caspase 3 activity at day 1 after plating. Altogether, our data demonstrate that collagen I gel triggers intracellular signals which strongly affect cultured hepatocyte phenotype, leading to a cell cycle arrest in G1 phase and long-term survival through the inhibition of caspase 3 activation and that EGF-free medium improves survival and liver-specific gene expression in hepatocytes maintained in collagen I gel sandwich cultures.  相似文献   

18.
The role of antioxidant defence systems in protection against oxidative damage of lipids and proteins induced by fungicide thiram during in vitro exposure was investigated in cultured Chinese hamster V79 cells with normal, depleted, and elevated glutathione (GSH) levels. We analyzed the catalytic activities of superoxide dismutases (SOD1 and SOD2), Se-dependent and Se-independent glutathione peroxidases (GSH-Px), glutathione reductase (GR), and catalase (CAT), as well as total glutathione/glutathione disulfide ratio (GSH(total)/GSSG). Thiram treatment resulted in an increase in activities of SOD1, Se-dependent GSH-Px, and GR at the highest tested dose (150 microM). On the contrary, inhibition of CAT and Se-independent GSH-Px activities, and no significant changes in the level of SOD2 activity was observed at any tested doses (100-150 microM). GSH(total)/GSSG ratio in the 100 microM thiram treated cells was not significantly changed comparing to the control, despite significant decrease of GSH total (50%). In 150 microM thiram treated cells the ratio falls to 43% of control value. Pretreatment with l-buthionine sulfoximine (L-BSO), an inhibitor of GSH synthesis, significantly enhanced decrease in CAT and Se-independent GSH-Px activities, as well as GSH(total)/GSSG ratio, and reduced Se-dependent GSH-Px activity, following exposure to thiram. Simultaneously, L-BSO pretreatment enhanced increase in SOD1 activity, and had no effect on SOD2, following thiram exposure. Pretreatment with N-acetyl cysteine (NAC), a GSH precursor, prevented enzymatic changes in CAT, Se-dependent GSH-Px, GR, SOD1 activities, and significantly decreased SOD2 activity following exposure to thiram. GSH(total)/GSSG ratio was restored to the control value. This study suggests that following the changes in antioxidant defense systems thiram can act through the production of free radicals.  相似文献   

19.
Freshly isolated rat hepatocytes were used to study the mechanism(s) of toxicity of the antimicrobial drug nitrofurantoin. This 5-nitrofuran derivative stimulated hepatocyte oxygen uptake in the presence of the mitochondrial respiration inhibitors KCN or antimycin A. This could indicate the formation of O2- and H2O2, following intracellular nitrofurantoin reduction. Addition of nitrofurantoin to suspensions of isolated rat hepatocytes produced a dose- and time-dependent decrease of cell viability. H2O2 probably plays a significant role in the cytotoxic effects of nitrofurantoin as the catalase inhibitors azide or aminotriazole markedly enhanced cytotoxicity. The loss of cell viability was preceded by glutathione (GSH) depletion and a concomitant and nearly stoichiometric formation of oxidised glutathione (GSSG) that did not occur in hepatocytes lacking glutathione peroxidase activity isolated from rats fed a low-selenium diet. This indicates that H2O2 and the seleno-enzyme glutathione peroxidase are responsible for GSH oxidation. Furthermore, addition of nitrofurantoin to isolated rat hepatocytes produced a reversible inactivation of hepatocyte glutathione reductase activity and explains the maintenance of high GSSG levels. The compromised hepatocytes were also highly susceptible to H2O2. The hepatocyte toxicity of nitrofurantoin may, therefore, be attributed to oxidative stress caused by redox-cycling mediated oxygen activation.  相似文献   

20.
In the present study, time-dependent variations of drug-metabolising enzyme activities (DMEs) in primary cultures of rabbit hepatocytes, a species of economic importance in Mediterranean countries, were investigated. Cross-bred rabbits were anesthetised and their livers perfused in situ by a two-step collagenase technique; cells suspensions were filtered, seeded in collagen-coated dishes and cultivated at 37 degrees C in a controlled atmosphere for 24 and 72 h. Cytochrome P450 and b(5) contents as well as the catalytic activity of some P450-dependent monooxygenases were measured in subcellular fractions obtained by differential ultracentrifugation; microsomal proteins were also subjected to immunoblotting, using antibodies to rat P4501A, 2B, 2E1 and 3A isoforms. The activity of some microsomal hydrolytic enzymes was also determined. As regards conjugative enzymes, glutathione content and activities of glutathione S-transferase, uridindiphosphoglucuronosyl-transferase, acetyl-transferase and 1,2-epoxibuthane glutathione transferase were assayed. An overall reduction of the catalytic activity was observed 72 h after plating, reaching in certain instances the level of statistical significance. On the whole, our data confirm those previously reported with hepatocytes obtained from other species; however, the evidence that DMEs were still measurable after 72 h supports the usefulness of this in vitro method for drug metabolism studies in the rabbit as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号