首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Monozygotic twin sisters, with nonhematologic symptoms of Fanconi anemia (FA), were discovered to be somatic mosaics for mutations in the FANCA gene. Skin fibroblasts, but not lymphocytes or committed hematopoietic progenitors, were sensitive to DNA cross-linking agents. Molecular analysis revealed, in skin cells of both twins, a frameshift causing deletion in exon 27 (2555deltaT) and an exon 28 missense mutation (2670G>A/R880Q). The latter resulted in primarily cytoplasmic expression and reduced function of the mutant FANCA (R880Q) protein. Surprisingly, the same acquired exon 30 missense change (2927G>A/E966K) was detected in the hematopoietic cells of both sisters, but not in their fibroblasts, nor in either parent. This compensatory mutation existed in cis with the maternal exon 28 mutation, and it restored function and nuclear localization of the resulting protein. Both sisters have been free of hematologic symptoms for more than 2 decades, suggesting that this de novo mutation occurred prenatally in a single hematopoietic stem cell (HSC) in one twin and that descendants of this functionally corrected HSC, via intra-uterine circulation, repopulated the blood lineages of both sisters. This finding suggests that treating FA patients with gene therapy might require transduction of only a few hematopoietic stem cells.  相似文献   

2.
OBJECTIVE: The pathophysiology of bone marrow failure in Fanconi anemia (FA) patients is thought to involve excessive apoptosis involving signaling triggered by fas ligation and tumor necrosis factor (TNF)-alpha, or interferon (IFN)-gamma exposure. We investigated whether a new member of the TNF family, TRAIL (TNF-related apoptosis-inducing ligand), would similarly trigger preferential apoptotic cell death in FA phenotype cells. MATERIAL AND METHODS: Hematopoietic cells from FANCC(-/-) transgenic mice and human FA-C lymphoblasts (HSC536N) as well as their phenotypically corrected counterparts (FANCC(+/+), HSC536/FA-Cneo) were compared for their response to apoptosis induction by TRAIL and fas ligation in the presence or absence of IFN-gamma. Cells were also studied for the protein and gene expression of TRAIL-receptors, caspase-8 and its inhibitory protein, FLIP. RESULTS: TRAIL exposure by itself or in combination with IFN-gamma did not lead to preferential apoptosis induction in human and murine FA-C phenotype hematopoietic cells. This resistance was unrelated to the expression of TRAIL receptors or FLIP isoforms, but correlated with absent cleavage of pro-caspase-8. Results were validated by those from gene expression profiling of relevant genes in the two lymphoblast cell lines. CONCLUSION: TRAIL, in contrast to fas ligation, does not induce preferential apoptosis in FA-C phenotype cells despite shared downstream signaling described in non-FA models. These data provide further insight into the complexity of FA-C-regulated apoptotic signaling.  相似文献   

3.
Kupfer  GM; D'Andrea  AD 《Blood》1996,88(3):1019-1025
Fanconi anemia (FA) is an autosomal recessive disease marked by developmental defects, bone marrow failure, and cancer susceptibility. FA cells are hypersensitive to DNA cross-linking and alkylating agents and accumulate in the G2 phase of the cell cycle in response to these agents. FA cells also display genomic instability, suggesting a possible defect in the p53 pathway. To test the effect of heterologous expression of FAC cDNA on drug-induced cytotoxicity, G2 accumulation, and p53 induction in FA cells, we compared two isogenic FA cell lines: HSC536N (mock), a FA type C cell line sensitive to mitomycin C (MMC), and the same cell line transfected (corrected) with wild-type FAC cDNA (HSC536N [+FAC]). HSC536N (+FAC) cells showed a 30-fold increase in resistance to MMC concentration. Similarly, increases in resistance were observed following exposure to cisplatin, carboplatin, and cyclophosphamide. In addition, HSC536N (+FAC) cells showed a twofold lower G2 accumulation following MMC treatment. To analyze the possible interaction of FAC with the p53 pathway, we analyzed p53 induction in mock and corrected cell lines following exposure to MMC. HSC536N (mock) cells induced p53 at lower MMC concentrations than HSC536N (corrected). Caffeine, a known G2 checkpoint inhibitor, not only inhibited G2 accumulation seen in both cell lines but also caused the resistant HSC536N (+FAC) to become as sensitive to MMC as HSC536N (mock) cell line. We conclude that the FAC protein has a specific cytoprotective effect and may function as a cell cycle regulator of the G2 phase of the cell cycle.  相似文献   

4.
Fanconi anemia (FA) is a rare autosomal recessive disease, characterized by bone marrow failure and cancer predisposition. So far, 8 complementation groups have been identified, although mutations in FANCA account for the disease in the majority of FA patients. In this study we characterized the hematopoietic phenotype of a Fanca knockout mouse model and corrected the main phenotypic characteristics of the bone marrow (BM) progenitors using retroviral vectors. The hematopoiesis of these animals was characterized by a modest though significant thrombocytopenia, consistent with reduced numbers of BM megakaryocyte progenitors. As observed in other FA models, the hematopoietic progenitors from Fanca(-/-) mice were highly sensitive to mitomycin C (MMC). In addition, we observed for the first time in a FA mouse model a marked in vitro growth defect of Fanca(-/-) progenitors, either when total BM or when purified Lin(-)Sca-1(+) cells were subjected to in vitro stimulation. Liquid cultures of Fanca(-/-) BM that were stimulated with stem cell factor plus interleukin-11 produced low numbers of granulocyte macrophage colony-forming units, contained a high proportion of apoptotic cells, and generated a decreased proportion of granulocyte versus macrophage cells, compared to normal BM cultures. Aiming to correct the phenotype of Fanca(-/-) progenitors, purified Lin(-)Sca-1(+) cells were transduced with retroviral vectors encoding the enhanced green fluorescent protein (EGFP) gene and human FANCA genes. Lin(-)Sca-1(+) cells from Fanca(-/-) mice were transduced with an efficiency similar to that of samples from wild-type mice. More significantly, transductions with FANCA vectors corrected both the MMC hypersensitivity as well as the impaired ex vivo expansion ability that characterized the BM progenitors of Fanca(-/-) mice.  相似文献   

5.
Fanconi anemia (FA) is an autosomal recessive disease with congenital anomalies, bone marrow failure, and susceptibility to leukemia. Patient cells show chromosome instability and hypersensitivity to DNA cross-linking agents. At least 8 complementation groups (A-G) have been identified and 6 FA genes (for subtypes A, C, D2, E, F, and G) have been cloned. Increasing evidence indicates that a protein complex assembly of multiple FA proteins, including FANCA and FANCG, plays a crucial role in the FA pathway. Previously, it was reported that FANCA was phosphorylated in lymphoblasts from normal controls, whereas the phosphorylation was defective in those derived from patients with FA of multiple complementation groups. The present study examined phosphorylation of FANCA ectopically expressed in FANCA(-) cells. Several patient-derived mutations abrogated in vivo phosphorylation of FANCA in this system, suggesting that FANCA phosphorylation is associated with its function. In vitro phosphorylation studies indicated that a physiologic protein kinase for FANCA (FANCA-PK) forms a complex with the substrate. Furthermore, at least a part of FANCA-PK as well as phosphorylated FANCA were included in the FANCA/FANCG complex. Thus, FANCA-PK appears to be another component of the FA protein complex and may regulate function of FANCA. FANCA-PK was characterized as a cytoplasmic serine kinase sensitive to wortmannin. Identification of the protein kinase is expected to elucidate regulatory mechanisms that control the FA pathway.  相似文献   

6.
Fanconi anemia (FA) is an autosomal recessive cancer susceptibility syndrome with 8 complementation groups. Four of the FA genes have been cloned, and at least 3 of the encoded proteins, FANCA, FANCC, and FANCG/XRCC9, interact in a multisubunit protein complex. The FANCG protein binds directly to the amino terminal nuclear localization sequence (NLS) of FANCA, suggesting that FANCG plays a role in regulating FANCA nuclear accumulation. In the current study the functional consequences of FANCG/FANCA binding were examined. Correction of an FA-G cell line with the FANCG complementary DNA (cDNA) resulted in FANCA/FANCG binding, prolongation of the cellular half-life of FANCA, and an increase in the nuclear accumulation of the FA protein complex. Similar results were obtained upon correction of an FA-A cell line, with a reciprocal increase in the half-life of FANCG. Patient-derived mutant forms of FANCA, containing an intact NLS sequence but point mutations in the carboxy-terminal leucine zipper region, bound FANCG in the cytoplasm. The mutant forms failed to translocate to the nucleus of transduced cells, thereby suggesting a model of coordinated binding and nuclear translocation. These results demonstrate that the FANCA/FANCG interaction is required to maintain the cellular levels of both proteins. Moreover, at least one function of FANCG and FANCA is to regulate the nuclear accumulation of the FA protein complex. Failure to accumulate the nuclear FA protein complex results in the characteristic spectrum of clinical and cellular abnormalities observed in FA.  相似文献   

7.
A physical complex of the Fanconi anemia proteins FANCG/XRCC9 and FANCA   总被引:2,自引:0,他引:2  
Fanconi anemia (FA) is a recessively inherited disease characterized at the cellular level by spontaneous chromosomal instability and specific hypersensitivity to cross-linking agents. FA is genetically heterogeneous, comprising at least eight complementation groups (A-H). We report that the protein encoded by the gene mutated in complementation group G (FANCG) localizes to the cytoplasm and nucleus of the cell and assembles in a molecular complex with the FANCA protein, both in vivo and in vitro. Endogenous FANCA/FANCG complex was detected in both non-FA cells and in FA cells from groups D and E. By contrast, no complex was detected in specific cell lines belonging to groups A and G, whereas reduced levels were found in cells from groups B, C, F, and H. Wild-type levels of FANCA/FANCG complex were restored upon correction of the cellular phenotype by transfection or cell fusion experiments, suggesting that this complex is of functional significance in the FA pathway. These results indicate that the cellular FA phenotype can be connected to three biochemical subtypes based on the levels of FANCA/FANCG complex. Disruption of the complex may provide an experimental strategy for chemosensitization of neoplastic cells.  相似文献   

8.
Fanconi anemia (FA) is an autosomal recessive cancer susceptibility syndrome with at least eight complementation groups (A-H). Three FA genes, corresponding to complementation groups A, C, and G, have been cloned, but the function of the encoded FA proteins remains unknown. We recently demonstrated that the FANCA and FANCC proteins bind and form a nuclear complex. In the current study, we identified a homozygous mutation in the FANCA gene (3329A>C) in an Egyptian FA patient from a consanguineous family. This mutant FANCA allele is predicted to encode a mutant FANCA protein, FANCA(H1110P), in which histidine 1110 is changed to proline. Initially, we characterized the FANCA(H1110P) protein, expressed in an Epstein Barr virus (EBV)-immortalized lymphoblast line derived from the patient. Unlike wild-type FANCA protein expressed in normal lymphoblasts, FANCA(H1110P) was not phosphorylated and failed to bind to FANCC. To test directly the effect of this mutation on FANCA function, we used retroviral-mediated transduction to express either wild-type FANCA or FANCA(H1110P) protein in the FA-A fibroblast line, GM6914. Unlike wild-type FANCA, the mutant protein failed to complement the mitomycin C sensitivity of these cells. In addition, the FANCA(H1110P) protein was defective in nuclear accumulation in the transduced cells. The characteristics of this mutant protein underscore the importance of FANCA phosphorylation, FANCA/FANCC binding, and nuclear accumulation in the function of the FA pathway.  相似文献   

9.
10.
Somatic mosaicism has been observed previously in the lymphocyte population of patients with Fanconi anemia (FA). To identify the cellular origin of the genotypic reversion, we examined each lymphohematopoietic and stromal cell lineage in an FA patient with a 2815-2816ins19 mutation in FANCA and known lymphocyte somatic mosaicism. DNA extracted from individually plucked peripheral blood T cell colonies and marrow colony-forming unit granulocyte-macrophage and burst-forming unit erythroid cells revealed absence of the maternal FANCA exon 29 mutation in 74.0%, 80.3%, and 86.2% of colonies, respectively. These data, together with the absence of the FANCA exon 29 mutation in Epstein-Barr virus-transformed B cells and its presence in fibroblasts, indicate that genotypic reversion, most likely because of back mutation, originated in a lymphohematopoietic stem cell and not solely in a lymphocyte population. Contrary to a predicted increase in marrow cellularity resulting from reversion in a hematopoietic stem cell, pancytopenia was progressive. Additional evaluations revealed a partial deletion of 11q in 3 of 20 bone marrow metaphase cells. By using interphase fluorescence in situ hybridization with an MLL gene probe mapped to band 11q23 to identify colony-forming unit granulocyte-macrophage and burst-forming unit erythroid cells with the 11q deletion, the abnormal clone was exclusive to colonies with the FANCA exon 29 mutation. Thus, we demonstrate the spontaneous genotypic reversion in a lymphohematopoietic stem cell. The subsequent development of a clonal cytogenetic abnormality in nonrevertant cells suggests that ex vivo correction of hematopoietic stem cells by gene transfer may not be sufficient for providing life-long stable hematopoiesis in patients with FA.  相似文献   

11.
Oda T  Hayano T  Miyaso H  Takahashi N  Yamashita T 《Blood》2007,109(11):5016-5026
Heat shock protein 90 (Hsp90) regulates diverse signaling pathways. Emerging evidence suggests that Hsp90 inhibitors, such as 17-allylamino-17-demethoxygeldanamycin (17-AAG), enhance DNA damage-induced cell death, suggesting that Hsp90 may regulate cellular responses to genotoxic stress. However, the underlying mechanisms are poorly understood. Here, we show that the Fanconi anemia (FA) pathway is involved in the Hsp90-mediated regulation of genotoxic stress response. In the FA pathway, assembly of 8 FA proteins including FANCA into a nuclear multiprotein complex, and the complex-dependent activation of FANCD2 are critical events for cellular tolerance against DNA cross-linkers. Hsp90 associates with FANCA, in vivo and in vitro, in a 17-AAG-sensitive manner. Disruption of the FANCA/Hsp90 association by cellular treatment with 17-AAG induces rapid proteasomal degradation and cytoplasmic relocalization of FANCA, leading to impaired activation of FANCD2. Furthermore, 17-AAG promotes DNA cross-linker-induced cytotoxicity, but this effect is much less pronounced in FA pathway-defective cells. Notably, 17-AAG enhances DNA cross-linker-induced chromosome aberrations. In conclusion, our results identify FANCA as a novel client of Hsp90, suggesting that Hsp90 promotes activation of the FA pathway through regulation of intracellular turnover and trafficking of FANCA, which is critical for cellular tolerance against genotoxic stress.  相似文献   

12.
The scarcity of donors for allogeneic bone marrow transplantation, the limited number of haematopoietic stem cell (HSC)/progenitors in cord blood samples and the sometimes insufficient number of mobilized peripheral blood cells collected from heavily treated cancer patients may benefit from ex vivo expansion of these cells for clinical transplantation. Depending on the clinical application, expansion of different haematopoietic cell subsets is required. HSC transplantation requires expansion of all cellular subsets including precursors, progenitors and HSCs for the short and long-term engraftment of patients. Quiescent HSCs may also be required for gene therapy by retrovirus. Finally, amplification of cells such as dendritic cells (DC) and different subsets of T and natural killer (NK) cells is required for immunotherapy. The different haematopoietic lineages are produced under different experimental conditions and the starting population is a critical parameter for the proposed clinical application. So it is essential to define the aims of haematopoietic cell expansion and to adapt the experimental conditions to obtain the required cell population. Mobilized peripheral blood cells are increasingly used as a source of haematopoietic cells. We review the biological characteristics of mobilized peripheral blood and the expansion of the different components according to the aims of their clinical use in the context of the progress currently achieved.  相似文献   

13.
Fanconi anemia (FA) is a genetic disease characterized by bone marrow failure and cancer predisposition. Here we have identified Spanish Gypsies as the ethnic group with the world's highest prevalence of FA (carrier frequency of 1/64-1/70). DNA sequencing of the FANCA gene in 8 unrelated Spanish Gypsy FA families after retroviral subtyping revealed a homozygous FANCA mutation (295C>T) leading to FANCA truncation and FA pathway disruption. This mutation appeared specific for Spanish Gypsies as it is not found in other Gypsy patients with FA from Hungary, Germany, Slovakia, and Ireland. Haplotype analysis showed that Spanish Gypsy patients all share the same haplotype. Our data thus suggest that the high incidence of FA among Spanish Gypsies is due to an ancestral founder mutation in FANCA that originated in Spain less than 600 years ago. The high carrier frequency makes the Spanish Gypsies a population model to study FA heterozygote mutations in cancer.  相似文献   

14.
In vivo haematopoietic potential of human neural stem cells   总被引:1,自引:0,他引:1  
The fetal sheep model was used to compare the in vivo haematopoietic potential of human neural stem cells (NSC) versus bone marrow (BM)-derived haematopoietic stem cells (HSC). To this end, sheep were transplanted with either 8 x 10(5) NSC (n = 11) or HSC, CD34(+)Lin(-) (n = 5), and subsequently analysed for haematopoietic chimaerism. While HSC-transplanted sheep displayed robust donor-derived haematopoiesis starting at less than 2 months post-transplant, NSC recipients exhibited haematopoietic engraftment at much later time points. Nevertheless, chimaerism persisted in both groups throughout the course of this study. Transplantation of secondary recipients with human CD45(+)/HLA-DR(+) cells from the BM of NSC primary recipients at 14 and 16 months post-transplant demonstrated that long-term engrafting HSC were present in these animals. At 6 months post-transplant, both NSC- and HSC-transplanted sheep were mobilised with granulocyte colony-stimulating factor. In contrast to HSC-transplanted animals, levels of human blood cells in peripheral blood of NSC-transplanted sheep remained low throughout mobilisation. Our results show that, although human NSC were able to give rise to multilineage haematopoiesis in our model, the levels, timing of blood cell production and the ability to respond to cytokine mobilisation were different, suggesting that human NSCs latent haematopoietic potential is inherently different from that of true HSC.  相似文献   

15.
Fanconi anaemia (FA) is a genetically heterogeneous chromosome instability syndrome characterised by bone marrow failure and congenital anomalies. Although an increasing number of reports suggest that reversion mosaicism noted in peripheral blood lymphocytes (PBLs) is associated with mild haematopoietic failure in FA, myeloid cells are rarely directly examined. We here report a patient with prolonged mild pancytopenia in whom proliferation of revertant cells was detected in mature myeloid cells but not in PBLs. While this patient had inherited heterozygous mutations, 2546delC and 3720-3724del, in the major FA gene FANCA, Epstein-Barr virus-immortalised lymphoblastoid cells from the patient had 2546C > T instead of 2546delC, resulting in expression of a functional missense protein. As the identical reversion was detected in polymorphonuclear granulocytes and mononuclear phagocytes, sustained haematopoiesis in the patient can be attributed to a selective growth advantage of revertant myeloid cells. It is noteworthy that such a myeloid lineage-selective mosaicism is overlooked in routine examination of PBLs. Recognition of this status will expand the role of reversion mosaicism in the pathophysiology of FA.  相似文献   

16.
OBJECTIVE: The aim of this study was to develop a rapid laboratory procedure that is capable of subtyping Fanconi anemia (FA) complementation groups FA-A, FA-C, FA-G, and FA-nonACG patients from a small amount of peripheral blood. MATERIALS AND METHODS: For this test, primary peripheral blood-derived FA T cells were transduced with oncoretroviral vectors that expressed FANCA, FANCC, or FANCG cDNA. We achieved a high efficiency of gene transfer into primary FA T cells by using the fibronectin fragment CH296 during transduction. Transduced cells were analyzed for correction of the characteristic DNA cross-linker hypersensitivity by cell survival or by metaphase analyses. RESULTS: Retroviral vectors containing the cDNA for FA-A, FA-C, and FA-G, the most frequent complementation groups in North America, allowed rapid identification of the defective gene by complementation of primary T cells from 12 FA patients. CONCLUSION: Phenotypic correction of FA T cells using retroviral vectors can be used successfully to determine the FA complementation group immediately after diagnosis of the disease.  相似文献   

17.
Fanconi anaemia (FA) is a rare genetic disease characterized by chromosomal instability, somatic abnormalities, marrow failure and cancer proness. The main cause of morbidity and mortality is bone marrow failure, which typically arises in the first decade of life and progresses to full-blown transfusion dependence and severe neutropenia in a variable number of years. Myelodysplastic syndrome (MDS) and AML may arise on the background of marrow failure, although cases of patients diagnosed with MDS or overt leukaemia before the full appearance of marrow aplasia are reported. This article reviews the current options for treatment of bone marrow failure in FA and provides an algorithm for supporting decisions on treatment. The use of androgens, corticosteroids and growth factors is reviewed, as well as the results in recent cohorts of matched sibling donor haematopoietic stem cell (HSC) transplants and unrelated donor HSC transplants, including cord blood graft. The conditioning regimens used are analysed and commented. Up-to-date information on second tumours after HSC transplant and on experimental treatments such as gene therapy, prenatal and preimplantation diagnosis and inhibition of pro-inflammatory cytokines is provided.  相似文献   

18.
Galimi F  Noll M  Kanazawa Y  Lax T  Chen C  Grompe M  Verma IM 《Blood》2002,100(8):2732-2736
Fanconi anemia (FA) is an inherited cancer susceptibility syndrome caused by mutations in a DNA repair pathway including at least 6 genes (FANCA, FANCC, FANCD2, FANCE, FANCF, and FANCG). The clinical course of the disease is dominated by progressive, life-threatening bone marrow failure and high incidence of acute myelogenous leukemia and solid tumors. Allogeneic bone marrow transplantation (BMT) is a therapeutic option but requires HLA-matched donors. Gene therapy holds great promise for FA, but previous attempts to use retroviral vectors in humans have proven ineffective given the impaired proliferation potential of human FA hematopoietic progenitors (HPCs). In this work, we show that using lentiviral vectors efficient genetic correction can be achieved in quiescent hematopoietic progenitors from Fanca(-/-) and Fancc(-/-) mice. Long-term repopulating HPCs were transduced by a single exposure of unfractionated bone marrow mononuclear cells to lentivectors carrying the normal gene. Notably, no cell purification or cytokine prestimulation was necessary. Resistance to DNA- damaging agents was fully restored by lentiviral transduction, allowing for in vivo selection of the corrected cells with nonablative doses of cyclophosphamide. This study strongly supports the use of lentiviral vectors for FA gene therapy in humans.  相似文献   

19.
Fanconi anemia (FA) is a rare, genetically heterogeneous autosomal recessive disorder associated with progressive aplastic anemia, congenital abnormalities, and cancer. FA has a very high incidence in the Afrikaner population of South Africa, possibly due to a founder effect. Previously we observed allelic association between polymorphic markers flanking the FA group A gene (FANCA) and disease chromosomes in Afrikaners. We genotyped 26 FA families with microsatellite and single nucleotide polymorphic markers and detected five FANCA haplotypes. Mutation scanning of the FANCA gene revealed association of these haplotypes with four different mutations. The most common was an intragenic deletion of exons 12-31, accounting for 60% of FA chromosomes in 46 unrelated Afrikaner FA patients, while two other mutations accounted for an additional 20%. Screening for these mutations in the European populations ancestral to the Afrikaners detected one patient from the Western Ruhr region of Germany who was heterozygous for the major deletion. The mutation was associated with the same unique FANCA haplotype as in Afrikaner patients. Genealogical investigation of 12 Afrikaner families with FA revealed that all were descended from a French Huguenot couple who arrived at the Cape on June 5, 1688, whereas mutation analysis showed that the carriers of the major mutation were descendants of this same couple. The molecular and genealogical evidence is consistent with transmission of the major mutation to Western Germany and the Cape near the end of the 17th century, confirming the existence of a founder effect for FA in South Africa.  相似文献   

20.
A human/sheep xenograft model was used to evaluate whether long-term engrafting haematopoietic stem cells (HSC) are susceptible to human cytomegalovirus (HCMV) infection. CD34+ Lin- HSC were isolated by fluorescence-activated cell sorting (FACS) from the bone marrow (BM) of HCMV-positive and HCMV-negative normal donors. Cells from the latter group were infected in vitro with HCMV. HCMV DNA was detected in both cell populations by nested-polymerase chain reaction (PCR) and fluorescence in situ hybridization. Cells were transplanted into separate groups of fetal sheep at concentrations of 1.3-5.0 x 105 cells per fetus. Multilineage human haematopoietic cell engraftment, including CD34+ cells, was detected in the BM and peripheral blood of recipients up to 16 months post-transplant as assessed by FACS analysis and PCR for HLA-DQalpha. Levels of engraftment varied (1.2-24.3%) but no sheep exhibited HCMV-positive cells. To ensure that our inability to detect HCMV-positive cells was not due to immune-elimination of HCMV-infected cells, 3.8-10 x 105 HCMV-positive uncharacterized BM stromal cells were transplanted into fetal sheep. At 5 weeks post-transplant several organs were HLA-DQalpha- and HCMV-positive, confirming that HCMV was detectable. These results provide evidence that the long-term engrafting HSC is not a primary target of HCMV and suggest that HCMV infection of human haematopoietic cells is exercised at the level of committed progenitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号