首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Charcot‐Marie‐Tooth disease type 4D (CMT4D), also known as hereditary motor and sensory neuropathy Lom type (HMSNL), is an autosomal recessive, early onset, severe demyelinating neuropathy with hearing loss, caused by N‐Myc downstream‐regulated gene 1 (NDRG1) mutations. CMT4D is rare with only three known mutations, one of which (p.Arg148Ter) is found in patients of Romani ancestry and accounts for the vast majority of cases. We report a 38‐year‐old Italian female with motor development delay, progressive neuropathy, and sensorineural deafness. Magnetic resonance imaging showed slight atrophy of cerebellum, medulla oblongata, and upper cervical spinal cord. She had a novel homozygous NDRG1 frameshift mutation (c.739delC; p.His247ThrfsTer74). The identification of this NDRG1 mutation confirms that CMT4D is not a private Romani disease and should be considered in the differential diagnosis of recessive demyelinating CMT.  相似文献   

2.
The prevalence of Charcot‐Marie‐Tooth (CMT) disease or hereditary motor and sensory neuropathy (HMSN) varies in different populations. While in some countries of Western Europe, the United States and Japan the dominant form of HMSN is the most frequent, in other countries such as those of the Mediterranean Basin, the autosomal recessive form (AR‐CMT) is more common. Autosomal recessive CMT cases are generally characterized by earlier onset, usually before the age of 2 or 3 years, and rapid clinical progression that results in severe polyneuropathy and more marked distal limb deformities such as pes equino‐varus, claw‐like hands, and often major spinal deformities. Recent clinical, morphological and molecular investigations of CMT families with autosomal recessive inheritance allowed the identification of many genes such as GDAP1, MTMR2, SBF2, NDRG1, EGR2, SH3TC2, PRX, FGD4, and FIG4, implicated in demyelinating forms (ARCMT1 or CMT4), and LMNA, MED25, HINT1, GDAP1, LRSAM1, NEFL, HSPB1 and MFN2 in axonal forms (ARCMT2). However, many patients remain without genetic diagnosis to date, prompting investigations into ARCMT families in order to help discover new genes and common pathways. This review summarizes recent advances regarding the genotypes and corresponding phenotypes of AR‐CMT.  相似文献   

3.
Introduction: Distal hereditary motor neuropathy (dHMN) is characterized by isolated distal muscle atrophy without sensory deficit. Nevertheless, clinical sensory loss has been reported despite preserved sensory nerve conduction in a few patients, thus differentiating these cases from the classical type 2 Charcot‐Marie‐Tooth disease (CMT2). Methods: We report 4 patients who presented with clinical sensory and motor neuropathy and normal peripheral sensory nerve conduction studies and were investigated with complete electrophysiological studies, including somatosensory evoked potentials (SEP). Results: These patients had a clinical presentation of classical CMT with isolated axonal motor neuropathy suggestive of dHMN. Interestingly, tibial nerve SEPs showed abnormalities suggestive of proximal involvement of dorsal roots that may explain the clinical somatosensory disturbances. Conclusions: These cases support the concept of spinal CMT that should be recognized as an intermediate form between dHMN and CMT2. SEP recording was helpful in defining a more precise phenotype of spinal CMT. Muscle Nerve 46: 603–607, 2012  相似文献   

4.
Introduction: We analyzed the utility of tendon reflex (T‐reflex) testing in Charcot‐Marie‐Tooth disease type 1A (CMT1A). Methods: A total of 82 subjects from 27 unrelated CMT1A pedigrees were evaluated prospectively. The series also comprised 28 adult healthy controls. Electrophysiology included evaluation of biceps T‐reflex and soleus T‐reflex. Results: Seventy‐one individuals (62 adults and 9 children) had clinical and electrophysiological features of CMT1A. The remaining 11 (8 adults and 3 children) were unaffected. On electrophysiological testing, the biceps T‐reflex was elicited in 58 of 62 (93%) adult CMT1A patients and in all 9 affected children. Latencies of the biceps T‐reflex were always markedly prolonged, and a cut‐off limit of 16.25 ms clearly separated adult patients and controls or unaffected kin adult individuals. In affected children, the soleus T‐reflex latency was also prolonged when compared with age and height normative data. Conclusion: T‐reflex testing is an accurate diagnostic technique for CMT1A patients. Muscle Nerve 52 : 39–44, 2015  相似文献   

5.
Our patient is a 65‐year‐old woman presenting with bilateral pes cavus, pronounced distal muscle wasting, weakness and areflexia. Electrophysiological findings included diffuse unrecordable motor and sensory responses. While the CMT phenotype was evident, the lack of family history and the severe, but unspecific electrophysiological impairment, was a challenge for genetic diagnosis. A sural nerve biopsy was performed, showing a severe loss of myelinated fibers with residual axons surrounded by myelin outfoldings. Whereas myelin outfoldings are a pathological hallmark of autosomal recessive CMT4B1 and CMT4B2, due to mutations in myotubularin‐related 2 (MTMR2) and 13 (MTMR13) genes respectively, they may also occur in nerve biopsies from CMT1B patients. By direct sequencing, a novel heterozygous transversion c.410G>T in MPZ gene was demonstrated, producing an amino acid change from glycine to valine in position 108 (p.G108V). In HeLa cells the fusion P0G108V‐EGFP was normally trafficked to the cell membrane, but with decreased P0 adhesion function, compared with wild‐type P0, thus supporting a pathogenic role of the new variant. In conclusion this case highlights the relevance, in selected cases, of sural nerve biopsy to orient the genetic/molecular tests, while in vitro analyses may strengthen the pathogenic role of novel mutations.  相似文献   

6.
7.
8.
Charcot‐Marie‐Tooth (CMT) disease is the most common hereditary neuromuscular disorder. This study involves the entire known CMT patient registry in Gran Canaria, represented by 256 patients belonging to 79 unrelated families, who were clinically and genetically characterized, along with physical and neurophysiological evaluation on 181 and 165 patients, respectively. Complete genotyping showed an estimated prevalence of CMT disease of 30.08/100 000 (95% confidence interval [CI] = 26.5;33.9), corresponding mainly (78.5%) to CMT1A (23.6/100 000) and hereditary neuropathy with liability to pressure palsies [HNPP] 17.5%; 5.29/100 000). Most patients (198) with CMT1A carried the 17p11.2 duplication including the PMP22 gene, 45 patients with HNPP were all affected by deletion of the 17p11.2 locus, and 10 patients presented with axonal phenotypes: CMT2A (MFN2), CMT2N (AARS), and CMT1X (GJB1). Despite showing a classical CMT1A phenotype, we found a much earlier age of onset in our CMT1A patients, along with increased frequency of appearance of postural hand tremor. Bilateral tongue atrophy was an additional phenotype observed. Being this CMT1A group, one of the largest cohorts known to date, this study provided a unique opportunity to further define the clinical phenotype of CMT1A patients carrying the 17p11.2 duplication in a homogeneous ethnic group.  相似文献   

9.
Charcot‐Marie‐Tooth disease (CMT) is the most common inherited peripheral neuropathy. Mutations in the pyruvate dehydrogenase kinase isoenzyme 3 (PDK3) gene have been found to cause X‐linked dominant CMT type 6 (CMTX6). This study identified the p.R158H PDK3 mutation after screening 67 probable X‐linked CMT families. The mutation fully segregated with the phenotype, and genotyping the family indicated the mutation arose on a different haplotype compared with the original Australian CMTX6 family. Results of bisulphite sequencing suggest that methylated deamination of a CpG dinucleotide may cause the recurrent p.R158H mutation. The frequency of the p.R158H PDK3 mutation in Koreans is very rare. Magnetic resonance imaging revealed fatty infiltration involving distal muscles in the lower extremities. In addition, fatty infiltrations were predominantly observed in the soleus muscles, with a lesser extent in tibialis anterior muscles. This differs from demyelinating CMT1A patients and is similar to axonal CMT2A patients. The clinical, neuroimaging, and electrophysiological findings from a second CMTX6 family with the p.R158H PDK3 mutation were similar to the axonal neuropathy reported in the Australian family.  相似文献   

10.
The objective of this study is to assess the genetic distribution of Charcot‐Marie‐Tooth (CMT) disease in Campania, a region of Southern Italy. We analyzed a cohort of 197 index cases and reported the type and frequency of mutations for the whole CMT population and for each electrophysiological group (CMT1, CMT2, and hereditary neuropathy with susceptibility to pressure palsies [HNPP]) and for familial and isolated CMT cases. Genetic diagnosis was achieved in 148 patients (75.1%) with a higher success rate in HNPP and CMT1 than CMT2. Only four genes (PMP22, GJB1, MPZ, and GDAP1) accounted for 92% of all genetically confirmed CMT cases. In CMT1, PMP22 duplication was the most common mutation while the second gene in order of frequency was MPZ in familial and SH3TC2 in isolated cases. In CMT2, GJB1 was the most frequent mutated gene and GJB1 with GDAP1 accounted for almost 3/4 of genetically defined CMT2 patients. The first gene in order of frequency was GJB1 in familial and GDAP1 in isolated cases. In HNPP, the majority of patients harbored the PMP22 gene deletion. The novelty of our data is the relatively high frequency of SH3TC2 and GDAP1 mutations in demyelinating and axonal forms, respectively. These epidemiological data can help in panel design for our patients' population.  相似文献   

11.
Charcot‐Marie‐Tooth disease (CMT) is a common hereditary motor and sensory neuropathy. Epidemiological data for Chinese CMT patients are few. This study aimed to analyze the electrophysiological and genetic characteristics of Chinese Han patients. A total of 106 unrelated patients with the clinical diagnosis of CMT were included. Clinical examination, nerve conduction studies (NCS), next‐generation sequencing (NGS), and bioinformatic analyses were performed. Genetic testing was performed for 82 patients; 27 (33%) patients carried known CMT‐associated gene mutations. PMP22 duplication was detected in 10 (12%) patients and GJB1 mutations in 9 (11%) patients. The mutation rate was higher in patients with a positive family history than in the sporadic cases (50% vs. 27%, p < 0.05). Six novel CMT‐associated gene mutations including BSCL2 (c.461C>T), LITAF (c.32C>G), MFN2 (c.497C>T), GARS (c.794C>T), NEFL (c.280C>T), and MPZ (c.440T>C) were discovered. All except the LITAF (c.32C>G) mutation were identified as “disease causing” via bioinformatic analyses. In this Chinese Han population, the frequency of PMP22 gene duplication in those with CMT1 was slightly (50% vs. 70%–80%) less than in Western/Caucasian populations. The novel CMT‐associated gene mutations broaden the mutation diversity of CMT1. NGS should be considered for genetic analyses in CMT patients.  相似文献   

12.
Heterozygous mutations in the Berardinelli‐Seip congenital lipodystrophy 2 (BSCL2) gene have been reported with different clinical phenotypes including Silver syndrome (SS)/spastic paraplegia 17 (SPG17), distal hereditary motor neuropathy type V (dHMN‐V), and Charcot‐Marie‐Tooth (CMT) disease type 2. We screened 407 Japanese patients who were clinically suspected of having CMT by exome sequencing and searched mutations in BSCL2. As a result, we identified five patients with heterozygous mutations in BSCL2. We confirmed three cases of known mutations (p.N88S and p.S90L) and two cases of novel mutations (p.N88T and p.S141A). The clinical features of the cases with known mutations in Japan were similar to those previously reported in other countries. In particular, there were many cases with sensory disturbance. The case with p.N88T mutation showed severe phenotype such as early onset age and prominent vocal cord paresis. The case with p.S141A mutation showed characteristics of demyelinating neuropathy such as CMT disease type 1 by electrophysiological examination. In this article, we report the clinical features and spread of cases with BSCL2 mutation in a Japanese cohort.  相似文献   

13.
Charcot‐Marie‐Tooth (CMT) disease is the most common inherited peripheral neuropathy characterized by progressive distal muscle weakness and atrophy with decreased or absent tendon reflexes. Mutations in LRSAM1 have been identified to cause CMT disease type 2P. We report a novel LRSAM1 mutation c.2021‐2024del (p.E674VfsX11) in a Chinese autosomal dominant CMT disease type 2 family. The phenotype was characterized by late onset and mild sensory impairment. Electrophysiological findings showed normal or mildly to moderately reduced motor and sensory nerve conduction velocities in lower and upper limb nerves.  相似文献   

14.
Charcot‐Marie‐Tooth (CMT) syndromes are a group of clinically heterogeneous disorders of the peripheral nervous system. Mutations of mitofusin 2 (MFN2) have been recognized to be associated with CMT type 2A (CMT2A). CMT2A is primarily an axonal disorder resulting in motor and sensory neuropathy. We report a male child with psychomotor delay, dysmorphic features, and weakness of lower limbs associated with electrophysiological features of severe, sensory‐motor, axonal neuropathy. The patient was diagnosed with early onset CMT2A and severe psychomotor retardation associated with c.310C>T mutation (p.R104W) in MFN2 gene. CMT2A should be considered in patients with both axonal sensory‐motor neuropathy and developmental delay.  相似文献   

15.
Charcot‐Marie‐Tooth disease (CMT) constitutes a heterogeneous group affecting motor and sensory neurons in the peripheral nervous system. MFN2 mutations are the most common cause of axonal CMT. We describe the clinical and mutational spectra of CMT patients harboring MFN2 mutations in Japan. We analyzed 1,334 unrelated patients with clinically suspected CMT referred by neurological and neuropediatric departments throughout Japan. We conducted mutation screening using a DNA microarray, targeted resequencing, and whole‐exome sequencing. We identified pathogenic or likely pathogenic MFN2 variants from 79 CMT patients, comprising 44 heterozygous and 1 compound heterozygous variants. A total of 15 novel variants were detected. An autosomal dominant family history was determined in 43 cases, and the remaining 36 cases were reported as sporadic with no family history. The mean onset age of CMT in these patients was 12 ± 14 (range 0–59) years. We observed neuropathic symptoms in all patients. Some had optic atrophy, vocal cord paralysis, or spasticity. We detected a compound heterozygous MFN2 mutation in a patient with a severe phenotype and the co‐occurrence of MFN2 and PMP22 mutations in a patient with an uncommon phenotype. MFN2 is the most frequent causative gene of CMT2 in Japan. We present 15 novel variants and broad clinical and mutational spectra of Japanese MFN2‐related CMT patients. Regardless of the onset age and inheritance pattern, MFN2 gene analysis should be performed. Combinations of causative genes should be considered to explain the phenotypic diversity.  相似文献   

16.
Mutations in SH3TC2 trigger autosomal recessive demyelinating Charcot‐Marie‐Tooth type 4C (CMT4C) neuropathy. Sh3tc2 is specifically expressed in Schwann cells and is necessary for proper myelination of peripheral axons. In line with the early onset of neuropathy observed in patients with CMT4C, our analyses of the murine model of CMT4C revealed that the myelinating properties of Sh3tc2‐deficient Schwann cells are affected at an early stage. This early phenotype is associated with changes in the canonical Nrg1/ErbB pathway involved in control of myelination. We demonstrated that Sh3tc2 interacts with ErbB2 and plays a role in the regulation of ErbB2 intracellular trafficking from the plasma membrane upon Nrg1 activation. Interestingly, both the loss of Sh3tc2 function in mice and the pathological mutations present in CMT4C patients affect ErbB2 internalization, potentially altering its downstream intracellular signaling pathways. Altogether, our results indicate that the molecular mechanism for the axonal size sensing is disturbed in Sh3tc2‐deficient myelinating Schwann cells, thus providing a novel insight into the pathophysiology of CMT4C neuropathy.  相似文献   

17.
Mitofusin 2 (MFN2) mutations are the most common cause of axonal Charcot‐Marie‐Tooth disease (CMT2). The majority are inherited in an autosomal dominant manner but recessive and semi‐dominant kindreds have also been described. We previously reported a deletion of exons 7 and 8 resulting in nonsense‐mediated decay, segregating with disease when present in trans with another pathogenic MFN2 mutation. Detailed clinical and electrophysiological data on a series of five affected patients from four kindreds and, when available, their parents and relatives were collected. MFN2 Sanger sequencing, multiplex ligation probe amplification, and haplotype analysis were performed. A severe early‐onset CMT phenotype was seen in all cases: progressive distal weakness, wasting, and sensory loss from infancy or early childhood. Optic atrophy (four of five) and wheelchair dependency in childhood were common (four of five). All were compound heterozygous for a deletion of exons 7 and 8 in MFN2 with another previously reported pathogenic mutation (Phe216Ser, Thr362Met, and Arg707Trp). Carrier parents and relatives were unaffected (age range: 24–82 years). Haplotype analysis confirmed that the deletion had a common founder in all families.  相似文献   

18.
Charcot‐Marie‐Tooth disease type 1A (CMT1A) is the most common type of hereditary neuropathy worldwide and diabetes mellitus (DM) is the most frequent cause of peripheral neuropathy in the Western world. CMT1A typically manifest as a predominant motor neuropathy, while, DM‐related neuropathy often manifests as a predominant sensory disorder. There are some evidences that CMT1A patients that also had DM had a more severe neuropathy. Although the real frequency and the underlying mechanisms related to this association has not yet been addressed in the literature. We sought to characterize the phenotypic variability of CMT1A patients with persistent high glucose levels (DM or impaired glucose tolerance [IGT]). Nineteen patients with CMT1A and DM (CMTdiab), seven with CMT1A and IGT (CMTintol) and 27 with CMT1A without comorbidities were analyzed. They were evaluated through clinical assessment, application of the following scales: visual analogue scale, McGill, CMTNS, SF‐36 and COMPASS 31 and electrophysiological studies. Patients CMTdiab had a more severe motor and sensory neuropathy, more intense autonomic symptoms and worse quality of life. Surprisingly, proximal weakness and temporal dispersion on nerve conduction studies are frequently observed in this group. Patients CMTintol also had a more severe neuropathy. Curiously, we observed that the association of CMT1A and glucose metabolism disorders (CMTglic) clustered in some families. Patients CMTglic develop a more severe neuropathy. As there is yet no cure to CMT1A, a strict blood sugar control may be a useful measure.  相似文献   

19.
Heterozygous mutations in the inverted formin‐2 (INF2) gene provoke focal segmental glomerulosclerosis (FSGS) and intermediate Charcot‐Marie‐Tooth (CMT) disease with FSGS. Here, we report four patients from a three‐generation family with a new cryptic splicing INF2 mutation causing autosomal dominant intermediate CMT with minimal glomerular dysfunction. Three males and one female with a mean age of 51 years (26‐87) presented with a slowly progressive sensorimotor polyneuropathy, pes cavus, and kyphoscoliosis. Mean age at CMT disease onset was 11.5 years (3‐17), and electrophysiological studies showed demyelinating and axonal features consistent with intermediate CMT. Plasma albumin and creatinine were normal in all four cases, and urine protein was normal in one case and mildly raised in three patients (mean: 0.32 g/L [0.18‐0.44], N < 0.14). Genetic analysis found a c.271C > G (p. Arg91Gly) variation in INF2 exon 2, and in vitro splicing assays showed the deletion of the last 120 nucleotides of INF2 exon 2 leading to a 40 amino acids in‐frame deletion (p. Arg91_p. Gln130del). This report expands the genetic spectrum of INF2‐associated disorders and demonstrates that INF2 mutations may provoke isolated CMT with no clinically relevant kidney involvement. Consequently, INF2 mutation analysis should not be restricted to individuals with coincident neuropathy and renal disease.  相似文献   

20.
Neurofilaments are neuron‐specific intermediate filaments essential for the radial growth of axons during development and the maintenance of axonal diameter. Pathogenic variants of Neurofilament Light (NEFL) are associated with CMT1F, CMT2E, and CMTDIG and have been observed in less than 1% of Charcot‐Marie‐Tooth (CMT) cases, resulting in the reporting of 35 variants in 173 CMT patients to date. However, only six variants have been reported in 17 patients with impaired hearing. No genotype‐phenotype correlations have yet been established. Here, we report an additional case: a 69‐year‐old female, who originally presented with axonal sensory and motor neuropathy at the age of 45, associated with moderate sensorineural hearing loss, with a slight slope at high frequencies. Next‐generation sequencing identified a novel pathogenic variant: c.269A > G, p.(Glu90Gly). Hearing impairment is often linked to CMT due to pathogenic variants of NEFL, especially p.(Glu90Lys) and p.(Asn98Ser), and in our case p.(Glu90Gly). These pathogenic variants are all located at hot spots, in the head domain and the two ends of the rod domain of the protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号