首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Early-life stress induces endocrine and metabolic alterations that increase food intake and overweight in adulthood. The stress response activates the corticotropin-releasing hormone (CRH) and urocortins' (Ucns) system in the hypothalamic paraventricular nucleus (PVN). These peptides induce anorexic effects through CRH-R2 receptor activation; however, chronic stressed animals develop hyperphagia despite of high PVN CRH expression.We analyzed this paradoxical behavior in adult rats subjected to maternal separation (MS) for 180 min/daily during post-natal days 2–14, evaluating their body weight gain, food intake, serum corticosterone and vasopressin concentrations, PVN mRNA expression of CRH-R1, CRH-R2, CRH, Ucn2, Ucn3, vasopressin and CRH-R2 protein levels.MS adults increased their feeding, weight gain as well as circulating corticosterone and vasopressin levels, evincing chronic hyperactivity of the stress system. MS induced higher PVN CRH, Ucn2 and CRH-R2 mRNA expression and protein levels of CRH-R2 showed a tendency to decrease in the cellular membrane fraction. An intra-PVN injection of the CRH-R2 antagonist antisauvagine-30 in control adults increased receptor's mRNA expression, mimicking the observed PVN receptor's up-regulation of early-life MS adults.An injection of Ucn-2 directly into the PVN reduced food intake and increased PVN pCREB/CREB ratio in control animals; in contrast, Ucn-2 was unable to reduce food intake and enhance phosphorylated-CREB levels in PVN of MS rats.In conclusion, the chronic hyperactivity of the stress axis and PVN CRH-R2 resistance to Ucn2 effects, supported impaired receptor functionality in MS animals, probably due to its chronic stimulation by CRH or Ucn2, induced by early-life stress.  相似文献   

2.
3.
4.
The present study examined the effect of prenatal stress in rats from days 13-20 of gestation on anxiogenic behaviour in the elevated plus maze (EPM) together with changes in the gene expression of corticotrophin-releasing hormone (CRH), its receptors, CRHR1 and CRHR2, as well as CRH binding protein (CRH-BP) in the paraventricular nucleus (PVN) and amygdala of their male and female offspring. Both prenatally-stressed (PS) males and females showed heightened anxiety in the EPM. Prenatal stress did not alter the gene expression of CRH or its receptors in the male PVN, although it decreased CRH-BP mRNA, which could augment the activity of free CRH. In the PVN of PS females, there was an increase in the expression of CRH, coupled with a decrease in that of CRHR2 and CRH-BP. These changes are compatible with the greater activation of the hypothalamic pituitary adrenal axis to stress in females. Anxiogenic behaviour of PS rats was associated with a reduction of CRHR2 mRNA and of CRH-BP mRNA in the amygdala of males and an increase in CRH mRNA and decrease in CRHR2 mRNA in females. Two hours after acute stress of exposure to the elevated plus maze in which heightened anxiety was manifested, increases were seen only in the amygdala of females in CRH and CRHR1 signalling, whereas CRHR2 mRNA was reduced in both sexes. The data show that both prenatal stress and acute stress in adulthood have a differential sex-dependent effect on the expression of CRH its receptors and binding protein in the PVN and amygdala of rats.  相似文献   

5.
Central administration of corticotropin-releasing factor (CRF), a 41-amino acid peptide, is associated with potent anorexigenic effects in rodents and chickens. However, the mechanism underlying this effect remains unclear. Hence, the objective of the current study was to elucidate the hypothalamic mechanisms that mediate CRF-induced anorexia in 4 day-old Cobb-500 chicks. After intracerebroventricular (ICV) injection of 0.02 nmol of CRF, CRF-injected chicks ate less than vehicle chicks while no effect on water intake was observed at 30 min post-injection. In subsequent experiments, the hypothalamus samples were processed at 60 min post-injection. The CRF-injected chicks had more c-Fos immunoreactive cells in the arcuate nucleus (ARC), dorsomedial nucleus (DMN), ventromedial hypothalamus (VMH), and paraventricular nucleus (PVN) of the hypothalamus than vehicle-treated chicks. CRF injection was associated with decreased whole hypothalamic mRNA abundance of neuropeptide Y receptor sub-type 1 (NPYR1). In the ARC, CRF-injected chicks expressed more CRF and CRF receptor sub-type 2 (CRFR2) mRNA but less agouti-related peptide (AgRP), NPY, and NPYR1 mRNA than vehicle-injected chicks. CRF-treated chicks expressed greater amounts of CRFR2 and mesotocin mRNA than vehicle chicks in the PVN and VMH, respectively. In the DMN, CRF injection was associated with reduced NPYR1 mRNA. In conclusion, the results provide insights into understanding CRF-induced hypothalamic actions and suggest that the anorexigenic effect of CRF involves increased CRFR2-mediated signaling in the ARC and PVN that overrides the effects of NPY and other orexigenic factors.  相似文献   

6.
The product of the ob gene, leptin, is thought to act in the hypothalamus to reduce food intake and body weight (b.w.) in rats and mice; however, the mechanisms of leptin action in the brain have not been fully elucidated. Corticotropin-releasing hormone (CRH) is a potent anorectic neuropeptide, and its type-2 receptor (CRHR-2) in the ventromedial hypothalamus (VMH) appears to play an important role in the expression of this anorectic effect. We explored here the impact of systemic leptin administration on CRH mRNA expression in the hypothalamic paraventricular nucleus (PVN) and CRHR-2 mRNA expression in the VMH in male rats, using in-situ hybridization histochemistry. The expression of CRH mRNA in the PVN and CRHR-2 mRNA in the VMH were increased at 2 h and 6 h, respectively, after a single intraperitoneal injection of leptin (1.0 mg/kg). Continuous subcutaneous infusion of leptin (1.2 mg/kg/day) via an osmotic minipump for 5 days increased the expression of CRHR-2 mRNA in the VMH, but not the expression of CRH mRNA in the PVN, compared with vehicle treatment. The rats that received the single or continuous administration of leptin showed reductions of food intake and b.w. compared with vehicle-treated rats. These results are consistent with our previous findings that the expression of CRHR-2 mRNA in the VMH is positively correlated with plasma leptin concentrations under various conditions, and highlight the importance of circulating leptin for the regulation of VMH CRHR-2 mRNA. The present results also raise the possibility that leptin reduces food intake and b.w. at least partially due to the enhancement of the anorectic effect of CRH via increased PVN CRH expression and/or VMH CRHR-2 expression.  相似文献   

7.
Effects of obesity on gene expression for opioid peptides and neuropeptide-Y (NPY) in the arcuate nucleus (ARC), and on opioid peptides and α-melanocyte stimulating hormone (α-MSH) in the paraventricular nucleus (PVN) were examined in obese Zucker rats (18 weeks old). Obese Zucker rats are insulin-resistant, diabetic and hyperleptinemic as indicated by high serum glucose, insulin and leptin levels. ARC proOpiomelanocortin (POMC) mRNA levels were significantly lower in the obese relative to lean Zucker rats and ARC proNeuropeptide Y (proNPY) mRNA levels were higher (P<0.05). There were no differences in proDynorphin and proEnkephalin mRNA levels in the ARC (P>0.05). Obese Zucker rats had lower α-MSH and dynorphin A1–17 peptide levels in the paraventricular nucleus (PVN) (P<0.05), but did not have lower PVN β-endorphin peptide levels (P>0.05). The decrease in POMC in the ARC and decrease in α-MSH in the PVN seen in the obese Zucker rat in the present study suggest that reduced activity of the melanocortin system in the ARC to PVN pathway may contribute to the related hyperphagia. Reduced activity of the melanocortin system in the ARC to PVN pathway may be due to a disturbance of leptin signaling coupling to POMC.  相似文献   

8.
严重创伤早期大鼠下丘脑G蛋白偶联受体激酶的变化   总被引:1,自引:1,他引:0  
目的研究G蛋白偶联受体激酶(GRK)在大鼠下丘脑的分布和严重创伤后时相变化及其与应激早期下丘脑促肾上腺皮质激素释放激素(CRH)分泌的关系。方法采用胸部撞击和单侧股骨中段骨折进行致伤。50只成年Wistar大鼠随机分为正常对照组和创伤组,通过免疫组化实验研究GRK在下丘脑的分布,Westernblot实验研究室旁核GRK的蛋白表达,RT-PCR技术研究室旁核CRH的转录活性。结果在下丘脑室旁核有GRK2/3的分布,但未发现GRK6的阳性染色;GRK2/3的总蛋白在创伤后30min显著下降(P<0.05),90min恢复近正常水平;CRHmRNA表达在伤后30min显著升高(P<0.05),60min、90min的升高非常显著(P<0.01)。结论在创伤应激过程早期GRK2/3的蛋白表达受到了抑制,推测下丘脑室旁核促肾上腺皮质激素释放激素1型受体(CRHR1)的同源性脱敏受到了抑制,间接促进了下丘脑室旁核CRH的分泌。  相似文献   

9.
Brain‐derived neurotrophic factor (BDNF) has been implicated in learning, depression and energy metabolism. However, the neuronal mechanisms underlying the effects of BDNF on energy metabolism remain unclear. The present study aimed to elucidate the neuronal pathways by which BDNF controls feeding behaviour and energy balance. Using an osmotic mini‐pump, BDNF or control artificial cerebrospinal fluid was infused i.c.v. at the lateral ventricle or into the paraventricular nucleus of the hypothalamus (PVN) for 12 days. Intracerebroventricular BDNF up‐regulated mRNA expression of corticotrophin‐releasing hormone (CRH) and urocortin in the PVN. TrkB, the receptor for BDNF, was expressed in the PVN neurones, including those containing CRH. Both i.c.v. and intra‐PVN‐administered BDNF decreased food intake and body weight. These effects of BDNF on food intake and body weight were counteracted by the co‐administration of α‐helical‐CRH, an antagonist for the CRH and urocortin receptors CRH‐R1/R2, and partly attenuated by a selective antagonist for CRH‐R2 but not CRH‐R1. Intracerebroventricular BDNF also decreased the subcutaneous and visceral fat mass, adipocyte size and serum triglyceride levels, which were all attenuated by α‐helical‐CRH. Furthermore, BDNF decreased the respiratory quotient and raised rectal temperature, which were counteracted by α‐helical‐CRH. These results indicate that the CRH‐urocortin‐CRH‐R2 pathway in the PVN and connected areas mediates the long‐term effects of BDNF to depress feeding and promote lipolysis.  相似文献   

10.
Using in situ hybridization histochemistry, we report differential expression of corticotropin-releasing hormone (CRH) mRNA in the central nucleus of the amygdala (CEA) and the parvocellular region of the paraventricular nucleus of the hypothalamus (PVN) following systemic treatment with corticosterone (CORT) in adrenally-intact rats. Both injection of low (1 mg/kg/day) and high (5 mg/day) CORT reduced CRH mRNA expression in the PVN in a dose-dependent manner, although it returned to normal at the low dose by 14 days. By contrast, the high dose of CORT increased CRH mRNA transiently in the CEA at 4 days, although the low dose of CORT decreased it at 14 days. In a second experiment, we implanted a slowly-releasing CORT pellet for 2 weeks (200 mg, 60 day release) subcutaneously. This treatment produced an elevation of CRH mRNA in the CEA both at 1 and 2 weeks, whereas CRH mRNA in the PVN was decreased to a large extent as seen in the high CORT group of the first experiment. These results suggest that glucocorticoids can facilitate CRH mRNA expression in the CEA, a site implicated in anxiety and fear, while restraining the hypothalamic-pituitary-adrenal axis as indicated by the reduction in CRH mRNA in the PVN.  相似文献   

11.
Electrolytic lesions placed in the ventromedial hypothalamus (VMH) of rats induce instant hyperphagia and excessive weight gain. Since neuropeptide Y (NPY) is a potent hypothalamic orexigenic signal, and leptin secreted by adipocytes regulates NPY output, we tested the hypothesis that altered NPYergic-leptin signaling may underlie hyperphagia in VMH-lesioned rats. VMH-lesioned rats exhibiting hyperphagia and excessive weight gain in a time-related fashion were sacrificed on days 2, 7, and 21 post-surgery. Quite unexpectedly, NPY concentrations in the hypothalamic paraventricular nucleus (PVN), a major site of NPY release for stimulation of feeding, and in other sites, such as the dorsomedial nucleus, lateral hypothalamic area and median eminence-arcuate nucleus decreased, with the earliest diminution occurring on day 2 in the PVN only. In vitro basal and K+-evoked NPY release from the PVN of VMH-lesioned rats was significantly lower than that of controls. Analysis of hypothalamic NPY gene expression showed that although the daily decrease in NPY mRNA from 0800 to 2200 h occurred as in control rats, NPY mRNA concentrations were markedly reduced at these times in the hypothalami of VMH-lesioned rats. Leptin synthesis in adipocytes as indicated by leptin mRNA levels was also profoundly altered in VMH-lesioned rats. The daily pattern of increase in adipocyte leptin mRNA at 2200 h from 0800 h seen in controls was abolished, higher levels of leptin gene expression at 2200 h were maintained at 0800 h. The pattern of increase in serum leptin and insulin levels diverged in VMH-lesioned rats. Serum insulin concentration increased to maximal on day 2 and remained at that level on day 21-post-lesion; serum leptin levels on the other hand, increased slowly in a time-related fashion during this period. These results demonstrate that hyperphagia and excessive weight gain in VMH-lesioned rats are associated with an overall decrease in hypothalamic NPY and augmented leptin signaling to the hypothalamus. The divergent time course of increases in serum leptin and insulin levels suggest independent mechanisms responsible for their augmented secretion, and neither these hormones nor VMH lesions altered the daily rhythm in NPY gene expression. These observations underscore the existence of an independent mechanism controlling the daily rhythm in hypothalamic NPY gene expression and suggest that leptin feedback action requires an intact VMH.  相似文献   

12.
Adrenocorticotropic hormone (ACTH), consisting of 39 amino acids, is most well-known for its involvement in an organism's response to stress. It also participates in satiety, as exogenous ACTH causes decreased food intake in rats. However, its anorexigenic mechanism is not well understood in any species and its effect on appetite is not reported in the avian class. Thus, the present study was designed to evaluate central ACTH's effect on food intake and to elucidate the mechanism mediating this response using broiler chicks. Chicks that received intracerebroventricular (ICV) injection of 1, 2, or 4 nmol of ACTH reduced food intake, under both ad libitum and 180 min fasted conditions. Water intake was also reduced in ACTH-injected chicks under both feeding conditions, but when measured without access to feed it was not affected. Blood glucose was not affected in either feeding condition. Following ACTH injection, c-Fos immunoreactivity was quantified in key appetite-associated hypothalamic nuclei including the ventromedial hypothalamus (VMH), dorsomedial hypothalamus, lateral hypothalamus (LH), arcuate nucleus (ARC) and the parvo- and magno-cellular portions of the paraventricular nucleus. ACTH-injected chicks had increased c-Fos immunoreactivity in the VMH, LH, and ARC. Hypothalamus was collected at 1 h post-injection, and real-time PCR performed to measure mRNA abundance of some appetite-associated factors. Neuropeptide Y, pro-opiomelanocortin, glutamate decarboxylase 1, melanocortin receptors 2–5, and urocortin 3 mRNA abundance was not affected by ACTH treatment. However, expression of corticotropin releasing factor (CRF), urotensin 2 (UT), agouti-related peptide (AgRP), and orexin (ORX), and melanocortin receptor 1 (MC1R) mRNA decreased in the hypothalamus of ACTH-injected chicks. In conclusion, ICV ACTH causes decreased food intake in chicks, and is associated with VMH, LH, and ARC activation, and a decrease in hypothalamic mRNA abundance of CRF, UT, AgRP, ORX and MC1R.  相似文献   

13.
Wistar rats subjected to dehydration-induced anorexia (DIA), with 2.5% NaCl solution as drinking water for 7 days, decrease by 80% their food intake and present some changes common to pair-fed food restricted rats (FFR) such as: weight loss, decreased serum leptin and expression of orexigenic arcuate peptides, increasing the anorexigenic ones and serum corticosterone levels. In contrast, the response of the HPT axis differs: DIA animals have increased TRH expression in PVN and present primary as opposed to the tertiary hypothyroidism of the FFR. Exclusive to DIA is the activation of CRHergic neurons in the lateral hypothalamus (LH) that project to PVN. Since TRH neurons of the PVN contain CRH receptors, we hypothesized that the differences in the response of the HPT axis to DIA could be due to CRH regulating TRHergic neurons. CRH effect was first evaluated on TRH expression of cultured hypothalamic cells where TRH mRNA levels increased after 1h with 0.1nM of CRH. We then measured the mRNA levels of CRH receptors in the PVN of male and female rats subjected to DIA; only those of CRH-R2 were modulated (down-regulated). The CRH-R2 antagonist antisauvagine-30 was therefore injected into the PVN of male rats, during the 7 days of DIA. Antisauvagine-30 induced a higher food intake than controls, and impeded the changes produced by DIA on the HPT axis: PVN TRH mRNA, and serum TH and TSH levels were decreased to similar values of FFR animals. Results corroborate the anorexigenic effect of CRH and show its role, acting through CRH-R2 receptors, in the activation of TRHergic PVN neurons caused by DIA. These new data further supports clinical trials with CRH-R2 antagonists in anorexia nervosa patients.  相似文献   

14.
Adult female Zucker lean and obese rats were treated for 14 days with 3.5 nm/kg oleoyl-estrone (OE) in liposomes (Merlin-2) through continuous i.v. injection with osmotic minipumps. Rat wt. and food intake were measured daily. On days 0, 3, 6, 10, and 14, groups of rats were killed and their hypothalamic nuclei [lateral preoptic (LPO), median preoptic (MPO), paraventricular (PVN), ventromedial (VMH), and arcuate (ARC)] were dissected, homogenized, and used for the measurement of corticosterone-releasing hormone (CRH) by radioimmunoassay. The OE treatment decreased food intake by 67.4% in lean and 62.6% in obese rats (means for 14 days). Body wt. decreased steadily in lean and obese rats, the gap between controls and treated rats becoming 11.5% of initial body wt. in the lean and 12.4% in the obese. The levels of CRH in the ARC nucleus were at least 10-fold higher than in the other nuclei. No changes in CRH were observed in any of the nuclei of obese rats, with levels up to day 6 similar to those of lean rats. In the lean rats, the LPO and ARC nuclei showed peaks on day 10, while the MPO showed no changes and the PVN and VMH nuclei showed a progressive increase, to a maximum at the end of the study (day 14). This contrasted with the peak of plasma adrenocorticotropic hormone (ACTH) and corticosterone (day 6 in lean and day 14 in obese rats). There was a definite lack of correlation between the plasma levels of these two hormones and the levels of CRH in the hypothalamic nuclei, and between the latter and the decreases in appetite in the rats. The loss of appetite induced by OE is not necessarily mediated by CRH, because the obese rats show an intense decrease in voluntary food intake but their hypothalamic nuclei CRH levels do not change at all. Hypothalamic nuclei CRH does not, necessarily, mediate the rise in glucocorticoids induced by OE treatment, because this is observed in lean and obese rats, lean rats increases being mismatched with those of hypothalamic CRH. The OE induced changes in hypothalamic CRH require a fully functional leptinergic pathway, because it is not observed in Zucker fa/fa rats lacking a working leptin receptor. This–indirectly–shows that leptin is needed for its synthesis or modulation.  相似文献   

15.
Previously, we showed that corticotrophin‐releasing hormone immunoreactive (CRH‐IR) neurones in a septal structure are associated with stress and the hypothalamic‐pituitary‐adrenal axis in birds. In the present study, we focused upon CRH‐IR neurones located within the septal structure called the nucleus of the hippocampal commissure (NHpC). Immunocytochemical and gene expression analyses were used to identify the anatomical and functional characteristics of cells within the NHpC. A comparative morphometry analysis showed that CRH‐IR neurones in the NHpC were significantly larger than CRH‐IR parvocellular neurones in the paraventricular nucleus of the hypothalamus (PVN) and lateral bed nucleus of the stria terminalis. Furthermore, these large neurones in the NHpC usually have more than two processes, showing characteristics of multipolar neurones. Utilisation of an organotypic slice culture method enabled testing of how CRH‐IR neurones could be regulated within the NHpC. Similar to the PVN, CRH mRNA levels in the NHpC were increased following forskolin treatment. However, dexamethasone decreased forskolin‐induced CRH gene expression only in the PVN and not in the NHpC, indicating differential inhibitory mechanisms in the PVN and the NHpC of the avian brain. Moreover, immunocytochemical evidence also showed that CRH‐IR neurones reside in the NHpC along with the vasotocinergic system, comprising arginine vasotocin (AVT) nerve terminals and immunoreactive vasotocin V1a receptors (V1aR) in glia. Hence, we hypothesised that AVT acts as a neuromodulator within the NHpC to modulate activity of CRH neurones via glial V1aR. Gene expression analysis of cultured slices revealed that AVT treatment increased CRH mRNA levels, whereas a combination of AVT and a V1aR antagonist treatment decreased CRH mRNA expression. Furthermore, an attempt to identify an intercellular mechanism in glial‐neuronal communication in the NHpC revealed that brain‐derived neurotrophic factor (BDNF) and its receptor (TrkB) could be involved in the signalling mechanism. Immunocytochemical results further showed that both BDNF and TrkB receptors were found in glia of the NHpC. Interestingly, in cultured brain slices containing the NHpC, the use of a selective TrkB antagonist decreased the AVT‐induced increase in CRH gene expression levels. The results from the present study collectively suggest that CRH neuronal activity is modulated by AVT via V1aR involving BDNF and TrkB glia in the NHpC.  相似文献   

16.
Central administration of corticotropin-releasing hormone (CRH) induces immediate-early gene (IEG) expression (c-fos and NGFI-B) in forebrain structures in a pattern similar to that observed following restraint stress. Lactating rats display modified neuroendocrine and behavioural responses to stress which have been hypothesized to be at least partially mediated through changes within the circuitry converging on the PVN, including CRH activated pathways. Quantitative measures of regional expression of c-fos and NGFI-B mRNA representative of two classical intracellular pathways, were used to define modification of the circuitry involved in the altered response to central CRH in the lactating female. Compared to saline controls, virgin female rats injected with 5 μg CRH i.c.v. displayed significantly increased immediate-early gene expression in the hypothalamic paraventricular nucleus (PVN), arcuate nucleus, lateral septum, bed nucleus of the stria terminalis, central, medial and cortical nuclei of the amygdala, and all subfields of the hippocampal formation. In lactating rats treated with CRH there was a significant increase in c-fos gene expression in the CeA and in the hippocampal subfields CA1, CA4 and dentate gyrus but not in the other areas examined. The i.c.v. administration of CRH significantly increased NGFI-B expression in the PVN, arcuate nucleus, medial amygdala and all hippocampal subfields of virgin rats. Lactating rats treated with CRH failed to show a significant increase in NGFI-B expression in the PVN, median eminence, arcuate nucleus, medial amygdala, CA2 and CA3 subfields of the hippocampus. These results further suggest that changes in specific neural circuits might at least partially underlie the modified responses to CRH and perhaps to stress in the lactating female.  相似文献   

17.
This study investigated the expression of corticotropin releasing hormone (CRH) and its receptor CRHR-1, and arginine vasopressin (AVP) mRNAs during the stress hyporesponsive periods of late pregnancy and lactation (day-3) and in virgin stress-responsive females. In situ hybridization histochemistry showed that basal CRH mRNA in the paraventricular nucleus (PVN) decreased in pregnant and increased in lactating rats (compared with virgin controls), whereas it increased after restraint stress only in virgin rats. Basal PVN CRHR-1 mRNA increased markedly in all groups but reached lower levels in pregnant rats. Basal AVP mRNA in the parvocellular PVN was higher in lactating rats, and in contrast to CRH mRNA, it increased after stress in all groups. In medial preoptic area (MPOA) CRH mRNA levels were higher in lactating females compared with virgin and pregnant rats, and unexpectedly they decreased markedly after stress only in virgin rats. CRH mRNA levels in the central and medial nuclei of the amygdala were higher in lactating rats than in virgin or pregnant ones, and stress had no effect in either group. These data suggest that these stress hyporesponsive periods: (1) do not depend on basal CRH mRNA expression in the PVN; (2) appear to have intact stress-activated afferent pathways to the PVN, as shown by preservation of CRHR-1 and AVP responses to stress, but the information may be differently processed; (3) are associated with an alteration in a CRH mediated pathway from the MPOA.  相似文献   

18.
The hypothalamus is integral to the regulation of body homeostasis, including food intake, energy balance, and blood pressure. Dysfunction of the hypothalamus has been associated with a broad range of disorders; many of which are sex-dependent in prevalence. Small nucleolar (sno) RNAs are a group of small RNAs located in nucleoli that modulate chemical modifications and maturation of ribosomal or other RNAs. Recent data suggest that snoRNA Snord116 is important for the pathogenesis of Prader-Willi syndrome (PWS) characterized by hyperphagia and obesity. The current study was conducted to assess a potential cellular link between Snord116 and phenotypes of PWS. Data from mice revealed Snord116 expression in the medial hypothalamus, particularly within nuclei that are part of feeding circuitry. High expression of Snord116 was evident in the paraventricular (PVN) and ventromedial (VMH) nuclei, but particularly prevalent in the arcuate nucleus (ARC) according to in situ hybridization. Snord116 expression level in ventral hypothalamic dissections including ARC was significantly greater (by 2-fold) than that in cortex; and its expression level in dorsal hypothalamic dissections including PVN was double that in cortex. The enhanced expression pattern of Snord116 in hypothalamic nuclei was observed at weaning and young adult stages, but less obvious neonatally when expression was significantly more widespread. Therefore the expression of Snord116 likely is regulated developmentally. These results provide a new lead for understanding the mechanism(s) related to hyperphagia and obesity symptoms in PWS patients.  相似文献   

19.
It is well documented that oestrogen suppresses food intake by an action at the hypothalamic level. Using in situ hybridisation, we studied the effect of castration (CX) and short-term administration of oestradiol (E2) in CX female mice for three neuropeptides involved in feeding behaviour: two anorexigenic peptides, (i) the pro-opiomelanocortin (POMC)-derived peptide alpha-melanocyte-stimulating hormone and (ii) corticotrophin-releasing hormone (CRH), and the orexigenic peptide, (iii) neuropeptide Y (NPY). POMC-expressing neurones were mostly laterally located in the arcuate nucleus. POMC mRNA expression was decreased following CX and a single injection of E2 induced an increase in mRNA levels at 12- and 24-h time intervals. In the parvocellular area of the paraventricular nucleus, CRH mRNA levels were similarly decreased after CX and completely restored to normal levels at 12 and 24 h following E2 injection. On the other hand, the levels of NPY mRNA expressed in neurones located in the inner zone of the arcuate nucleus were increased by CX and decreased to the levels observed in intact animals by E2 injection (3-24 h). The present data suggest that oestrogen might exert an anorexigenic action by stimulating POMC and CRH mRNA expression and decreasing NPY mRNA expression in the hypothalamus.  相似文献   

20.
Corticotropin-releasing hormone (CRH) neurons in the paraventricular nucleus (PVN) of the hypothalamus and in the central nucleus of the amygdala (ACE) participate in neurohumoral and behavioral responses to stress. To understand better the central regulation of CRH, the present study assessed the effects of ipsilateral surgical hemisection of the brainstem on expression of CRH mRNA in the PVN and the ACE. In situ hybridization was used to demonstrate PVN CRH mRNA expression in hemisected, sham-operated or intact rats before and after 3  h of immobilization (IMMO). In addition, hypothalamic-pituitary-adrenocortical (HPA) axis activity at baseline and during IMMO was assessed by measurements of plasma concentrations of ACTH and corticosterone. IMMO markedly increased CRH mRNA expression in the PVN in all experimental groups. Rats with brainstem hemisections had lower PVN CRH mRNA expression ipsilateral to the lesion and markedly blunted responses after IMMO, compared to values in sham-operated rats. In contrast, neither hemisection nor IMMO affected CRH mRNA expression in the ACE. Lesioned and SHAM-operated groups did not differ in baseline or IMMO-induced increases in plasma ACTH or corticosterone levels. The present results indicate that baseline levels and IMMO-induced increments in CRH mRNA expression in the PVN, but not in the ACE, depend on ipsilaterally ascending medullary tracts and that IMMO-induced HPA activation does not depend on these pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号