首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
The oral bacterium Streptococcus mutans is the principal agent in the development of dental caries. Biofilm formation by S. mutans requires bacterial attachment, aggregation, and glucan formation on the tooth surface under sucrose supplementation conditions. Our previous microarray analysis of clinical strains identified 74 genes in S. mutans that were related to biofilm morphology; however, the roles of almost all of these genes in biofilm formation are poorly understood. We investigated the effects of 21 genes randomly selected from our previous study regarding S. mutans biofilm formation, regulation by the complement pathway, and responses to competence‐stimulating peptide. Eight competence‐stimulating peptide‐dependent genes were identified, and their roles in biofilm formation and aggregation were examined by mutational analyses of the S. mutansUA159 strain. Of these eight genes, the inactivation of the putative hemolysin III family SMU.940 gene of S. mutansUA159 promoted rapid dextran‐dependent aggregation and biofilm formation in tryptic soy broth without dextrose (TSB) with 0.25% glucose and slightly reduced biofilm formation in TSB with 0.25% sucrose. The SMU.940 mutant showed higher expression of GbpC and gbpC gene than wild‐type. GbpC is known to be involved in the dextran‐dependent aggregation of S. mutans. An SMU.940gbpC double mutant strain was constructed in the SMU.940 mutant background. The gbpC mutation completely abolished the dextran‐dependent aggregation of the SMU.940 mutant. In addition, the aggregation of the mutant was abrogated by dextranase. These findings suggest that SMU.940 controls GbpC expression, and contributes to the regulation of dextran‐dependent aggregation and biofilm formation.  相似文献   

8.
Candida albicans and streptococci of the mitis group form communities in multiple oral sites, where moisture and nutrient availability can change spatially or temporally. This study evaluated structural and virulence characteristics of Candida–streptococcal biofilms formed on moist or semidry mucosal surfaces, and tested the effects of nutrient availability and hyphal morphotype on dual‐species biofilms. Three‐dimensional models of the oral mucosa formed by immortalized keratinocytes on a fibroblast‐embedded collagenous matrix were used. Infections were carried out using Streptococcus oralis strain 34, in combination with a C. albicans wild‐type strain, or pseudohyphal‐forming mutant strains. Increased moisture promoted a homogeneous surface biofilm by C. albicans. Dual biofilms had a stratified structure, with streptococci growing in close contact with the mucosa and fungi growing on the bacterial surface. Under semidry conditions, Candida formed localized foci of dense growth, which promoted focal growth of streptococci in mixed biofilms. Candida biofilm biovolume was greater under moist conditions, albeit with minimal tissue invasion, compared with semidry conditions. Supplementing the infection medium with nutrients under semidry conditions intensified growth, biofilm biovolume and tissue invasion/damage, without changing biofilm structure. Under these conditions, the pseudohyphal mutants and S. oralis formed defective superficial biofilms, with most bacteria in contact with the epithelial surface, below a pseudohyphal mass, resembling biofilms growing in a moist environment. The presence of S. oralis promoted fungal invasion and tissue damage under all conditions. We conclude that moisture, nutrient availability, hyphal morphotype and the presence of commensal bacteria influence the architecture and virulence characteristics of mucosal fungal biofilms.  相似文献   

9.
10.
11.
Enterococcus faecalis is the species of bacterium most frequently isolated from the root canals of teeth that exhibit chronic apical periodontitis refractory to endodontic treatment. In this study, we evaluated the effect of the S‐ribosylhomocysteine lyase (luxS) quorum‐sensing gene on E. faecalis biofilm formation by constructing a knockout mutant. The biofilms formed by both E. faecalis and its luxS mutant strain were evaluated using the MTT method. Important parameters that influence biofilm formation, including cell‐surface hydrophobicity and the nutrient content of the growth medium, were also studied. Biofilm structures were observed using confocal laser scanning microscopy (CLSM), and expression of biofilm‐related genes was investigated using RT‐PCR. The results showed that the luxS gene can affect biofilm formation, whereas it does not affect the bacterial growth rate. Deletion of the luxS gene also increased cell‐surface hydrophobicity. Biofilm formation was accelerated by the addition of increasing concentrations of glucose. The CLSM images revealed that the luxS mutant strain tends to aggregate into distinct clusters and relatively dense structures, whereas the wild‐type strain appears confluent and more evenly distributed. All genes examined were up‐regulated in the biofilms formed by the luxS mutant strain. The quorum‐sensing luxS gene can affect E. faecalis biofilm formation.  相似文献   

12.
13.
14.
Actinomyces naeslundii is an early colonizer and has important roles in the development of the oral biofilm. Short‐chain fatty acids (SCFA) are secreted extracellularly as a product of metabolism by gram‐negative anaerobes, e.g. Porphyromonas gingivalis and Fusobacterium nucleatum; and the SCFA may affect biofilm development with interaction between A. naeslundii and gram‐negative bacteria. Our aim was to investigate the effects of SCFA on biofilm formation by A. naeslundii and to determine the mechanism. We used the biofilm formation assay in 96‐well microtiter plates in tryptic soy broth without dextrose and with 0.25% sucrose using safranin stain of the biofilm monitoring 492 nm absorbance. To determine the mechanism by SCFA, the production of chaperones and stress‐response proteins (GrpE and GroEL) in biofilm formation was examined using Western blot fluorescence activity with GrpE and GroEL antibodies. Adding butyric acid (6.25 mm ) 0, 6 and 10 h after beginning culture significantly increased biofilm formation by A. naeslundii, and upregulation was observed at 16 h. Upregulation was also observed using appropriate concentrations of other SCFA. In the upregulated biofilm, production of GrpE and GroEL was higher where membrane‐damaged or dead cells were also observed. The upregulated biofilm was significantly reduced by addition of anti‐GroEL antibody. The data suggest biofilm formation by A. naeslundii was upregulated dependent on the production of stress proteins, and addition of SCFA increased membrane‐damaged or dead cells. Production of GroEL may physically play an important role in biofilm development.  相似文献   

15.
16.
17.
18.
19.
Porphyromonas gingivalis is a bacterium associated with chronic periodontitis that possesses a family of genes encoding hemagglutinins required for heme acquisition. In this study we generated ΔhagB and ΔhagC mutants in strain W83 and demonstrate that both hagB and hagC are required for adherence to oral epithelial cells. Unexpectedly, a double ΔhagBhagC mutant had less severe adherence defects than either of the single mutants, but was found to exhibit increased expression of the gingipain‐encoding genes rgpA and kgp, suggesting that a ΔhagBhagC mutant is only viable in populations of cells that exhibit increased expression of genes involved in heme acquisition. Disruption of hagB in the fimbriated strain ATCC33277 demonstrated that HagB is also required for stable attachment of fimbriated bacteria to oral epithelial cells. Mutants of hagC were also found to form defective single and multi‐species biofilms that had reduced biomass relative to biofilms formed by the wild‐type strain. This study highlights the hitherto unappreciated importance of these genes in oral colonization and biofilm formation.  相似文献   

20.
In healthy individuals, Candida species are considered commensal yeasts of the oral cavity. However, these microorganisms can also act as opportunist pathogens, particularly the so‐called non‐albicans Candida species that are increasingly recognized as important agents of human infection. Several surveys have documented increased rates of C. glabrata, C. tropicalis, C. guilliermondii, C. dubliniensis, C. parapsilosis, and C. krusei in local and systemic fungal infections. Some of these species are resistant to antifungal agents. Consequently, rapid and correct identification of species can play an important role in the management of candidiasis. Conventional methods for identification of Candida species are based on morphological and physiological attributes. However, accurate identification of all isolates from clinical samples is often complex and time‐consuming. Hence, several manual and automated rapid commercial systems for identifying these organisms have been developed, some of which may have significant sensitivity issues. To overcome these limitations, newer molecular typing techniques have been developed that allow accurate and rapid identification of Candida species. This study reviewed the current state of identification methods for yeasts, particularly Candida species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号