首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Here, we report the structural evidence of cerebral white matter abnormalities in Charcot‐Marie‐Tooth (CMT) patients and the relationship between these abnormalities and clinical disability. Brain diffusion tensor imaging (DTI) was performed in CMT patients with demyelinating (CMT1A/CMT1E), axonal (CMT2A/CMT2E), or intermediate (CMTX1/DI‐CMT) peripheral neuropathy. Although all patients had normal brain magnetic resonance imaging, all genetic subgroups except CMT1A had abnormal DTI findings indicative of significant cerebral white matter abnormalities: decreased fractional anisotropy and axial diffusivity, and increased radial diffusivity. DTI abnormalities were correlated with clinical disability, suggesting that there is comorbidity of central nervous system damage with peripheral neuropathy in CMT patients. ANN NEUROL 2017;81:147–151  相似文献   

2.
Mitofusin 2, a large transmembrane GTPase located in the outer mitochondrial membrane, promotes membrane fusion and is involved in the maintenance of the morphology of axonal mitochondria. Mutations of the gene encoding mitofusin 2 (MFN2) have recently been identified as the cause of approximately one‐third of dominantly inherited cases of the axonal degenerative forms of Charcot–Marie–Tooth disease (CMT type 2A) and of rarer variants. The latter include a severe, early‐onset axonal neuropathy, which may occur in autosomal dominant or recessive forms, as well as some instances associated with pyramidal tract involvement (CMT type 5), with optic atrophy (CMT type 6), and, occasionally, with alterations of cerebral white matter. All individuals with a dominantly or recessively inherited or otherwise unexplained, chronic progressive axonal degenerative polyneuropathy should be tested for mutations of MFN2.  相似文献   

3.
Mitofusin‐2 (MFN2) mutations are the most common cause of autosomal dominant axonal Charcot‐Marie‐Tooth disease (CMT, type 2A), sometimes complicated by additional features such as optic atrophy (CMT6) and upper motor neuron involvement (CMT5). Several pathogenic mutations are reported, mainly acting in a dominant fashion, although few sequence variants behaved as recessive or semidominant in rare homozygous or compound heterozygous patients. We describe a 49‐year‐old woman with CMT5 associated with compound heterozygosity for two MFN2 variants, one already reported missense mutation (c.748C>T, p.R250W) and a novel nonsense sequence change (c.1426C>T, p.R476*). Her mother, carrying the p.R250W variant, had very late‐onset minimal axonal neuropathy, whilst the father harboring the nonsense sequence change had neither clinical nor electrophysiological neuropathy. The missense mutation is likely pathogenic according to in silico analyses and a previous report, while the nonsense variant is predicted to behave as a null allele. The p.R250W variant behaves as semidominant by causing only a mild, almost subclinical, neuropathy when heterozygous; the nonsense mutation in the father was phenotypically silent, suggesting that haploinsufficiency for MFN2 is not disease causative, but was deleterious in the daughter who had only one active mutated MFN2 allele.  相似文献   

4.
In contrast to Charcot-Marie-Tooth type 1 disease (CMT1), which is most commonly caused by 17p11.2-p12 duplication (in 70% of CMT1 cases), the axonal form of hereditary motor and sensory neuropathy (CMT2) seemed to be a genetically heterogeneous disease group, with no single gene playing a major pathogenetic role. In 2004, 10 mutations were identified in CMT2A families in the MFN2 gene coding for the mitochondrial protein mitofusin-2, previously mapped to the 1p35-36 locus. In the last two years, MFN2 gene mutations were shown to be the most common cause of autosomal dominant hereditary axonopathy. In addition, MFN2 gene mutations were also identified in CMT type 6 (axonal neuropathy with optic nerve atrophy). Recent reports indicate that some MFN2 gene mutations may by inherited as autosomal recessive traits. As MFN2 gene mutations are the most common cause of autosomal dominant CMT2 disease (33% of cases), MFN2 gene testing may be considered a diagnostic test for CMT2.  相似文献   

5.
Either dominantly inherited mutations in MFN2 encoding mitofusin 2 or GDAP1 encoding ganglioside-induced differentiation associated protein 1 may be associated with mild neuropathy. The proband, a 41-year-old woman, and her daughter present a severe axonal form of Charcot-Marie-Tooth (CMT) disease. Both are heterozygous for the well-described mild variant p.R120W in GDAP1, which was transmitted by the pauci symptomatic proband's mother. Given that they had an early onset in the first decade and delayed walking acquisition, the other genes implicated in axonal forms of CMT disease were analyzed. A second mutation truncating MFN2 (p.Val160fsX26) was found in the proband and her daughter. This mutation was transmitted by the proband's father who has normal neurological examination. The proband underwent two nerve biopsies which showed an axonal degeneration, myelin modifications, and intra-axonal mitochondria with distorted cristae. Such abnormal mitochondria have been reported in cases with autosomal dominant MFN2 mutations and in one patient with an autosomal recessive GDAP1 mutation. Our two cases show that heterozygous truncation of MFN2, which is silent at least until the sixth decade, when combined with the mild p.R120W GDAP1 variant, leads to a severe neuropathy. This supports the emerging hypothesis of cumulative effects of MFN2 and GDAP1 mutation.  相似文献   

6.
We describe a founder mutation in the gene encoding ganglioside-induced differentiation associated-protein 1 (GDAP1), leading to amino acid change p.H123R, as a common cause of autosomal dominant axonal Charcot-Marie-Tooth (CMT2) neuropathy in Finland. The mutation explains up to 14 % of CMT2 in Finland, where most patients with axonal neuropathy have remained without molecular diagnosis. Only three families out of 28 were found to carry putative disease mutations in the MFN2 gene encoding mitofusin 2. In addition, the MFN2 variant p.V705I was commonly found in our patients, but we provide evidence that this previously described mutation is a common polymorphism and not pathogenic. GDAP1-associated polyneuropathy caused predominantly a mild and slowly progressive phenotype. Besides distal leg muscle weakness, most patients showed mild proximal weakness, often with asymmetry and pes cavus. Our findings broaden the understanding of GDAP1 mutations in CMT2 phenotypes and provide support for the use of whole-exome sequencing in CMT gene diagnostics.  相似文献   

7.
Charcot‐Marie‐Tooth type 2A disease (CMT2A) is an inherited peripheral neuropathy mainly caused by mutations in the MFN2 gene coding for the mitochondrial fusion protein mitofusin 2. Although the disease is mainly inherited in a dominant fashion, few cases of early‐onset autosomal recessive CMT2A (AR‐CMT2A) have been reported in recent years. In this study, we characterized the structure of the mitochondrial network in cultured primary fibroblasts obtained from AR‐CMT2A family members. The patient‐derived cells showed an increase of the mitochondrial fusion with large connected networks and an increase of the mitochondrial volume. Interestingly, fibroblasts derived from the two asymptomatic parents showed similar changes to a lesser extent. These results support the hypothesis that AR‐CMT2A‐related MFN2 mutations acts through a semi‐dominant negative mechanism and suggest that other biological parameters might show mild alterations in asymptomatic heterozygote AR‐CMT2A patients. Such alterations could be useful biomarkers helping to distinguish MFN2 mutations from variants, a growing challenge with the advent of next generation sequencing into routine clinical practice.  相似文献   

8.
BACKGROUND: Giant axonal neuropathy (GAN) is a severe recessive disorder characterised by variable combination of progressive sensory motor neuropathy, central nervous system (CNS) involvement, and "frizzly" hair. The disease is caused by GAN gene mutations on chromosome 16q24.1. AIMS: To search for GAN gene mutations in Turkish patients with GAN and characterise the phenotype associated with them. METHODS: Linkage and mutation analyses were performed in six affected patients from three consanguineous families. These patients were also investigated by cranial magnetic resonance imaging (MRI) and electroencephalography (EEG). Electromyography (EMG) was performed in heterozygous carriers from family 1 and family 3. RESULTS: Linkage to 16q24.1 was confirmed by haplotype analysis. GAN mutations were identified in all families. Family 1 had the R293X mutation, previously reported in another Turkish family. Families 2 and 3, originating from close geographical areas, shared a novel mutation, 1502+1G>T, at the donor splice site of exon 9. All patients displayed a common phenotype, including peripheral neuropathy, cerebellar ataxia, and frizzly hair. Cranial MRI showed diffuse white matter abnormalities in two patients from family 1 and the patient from family 3, and minimal white matter involvement in the patient from family 2. EMG of a heterozygous R293X mutation carrier showed signs of mild axonal neuropathy, whereas a 1502+1G>T mutation carrier had normal EMG. EEG abnormalities were found in three patients. CONCLUSION: These findings highlight the association of CNS involvement, in particular white matter abnormalities, with peripheral neuropathy in GAN. The phenotypical consequences of both mutations (when homozygous) were similar.  相似文献   

9.
Mitochondrial coupling defect in Charcot-Marie-Tooth type 2A disease   总被引:3,自引:0,他引:3  
OBJECTIVE: Mutations of the mitofusin 2 gene (MFN2) may account for at least a third of the cases of Charcot-Marie-Tooth disease type 2 (CMT2). This study investigates mitochondrial cellular bioenergetics in MFN2-related CMT2A. METHODS: Mitochondrial network morphology and metabolism were studied in cultures of skin fibroblasts obtained from four CMT2A patients harboring novel missense mutations of the MFN2 gene. RESULTS: Although the mitochondrial network appeared morphologically unaltered, there was a significant defect of mitochondrial coupling associated with a reduction of the mitochondrial membrane potential. INTERPRETATION: Our results suggest that the sharply reduced efficacy of oxidative phosphorylation in MFN2-related CMT2A may contribute to the pathophysiology of the axonal neuropathy.  相似文献   

10.
MELAS型线粒体脑肌病的MRI诊断   总被引:5,自引:0,他引:5  
目的探讨合并乳酸血症和卒中样发作的线粒体脑肌病(MELAS)的磁共振成像(MRI)影像学特点。方法收集经临床病理证实的MELAS型线粒体脑肌病共6例,回顾性分析其MRI和磁共振波谱(MRS)资料。结果脑MRI检查,MELAS表现为大脑半球各叶大小不等片状病灶;病变位于脑皮质区,病灶的分布与脑血供分布不一致;自旋回波T1加权像呈低信号、T2加权像呈高信号;扩散加权成像(DWI)呈高信号。MRS分析显示病灶区见典型的乳酸盐峰,N-乙酰天门冬氨酸盐,肌酸值正常或略降低。扩散张量成像(DTI)显示病灶区脑皮质下白质纤维束破坏、中断、稀少。结论MELAS型线粒体脑肌病的病变形态、分布具有特征性,常规MRI与DWI、DTI及MRS等磁共振技术,对MELAS的定性诊断具有很高的价值。  相似文献   

11.
Charcot‐Marie‐Tooth (CMT) syndromes are a group of clinically heterogeneous disorders of the peripheral nervous system. Mutations of mitofusin 2 (MFN2) have been recognized to be associated with CMT type 2A (CMT2A). CMT2A is primarily an axonal disorder resulting in motor and sensory neuropathy. We report a male child with psychomotor delay, dysmorphic features, and weakness of lower limbs associated with electrophysiological features of severe, sensory‐motor, axonal neuropathy. The patient was diagnosed with early onset CMT2A and severe psychomotor retardation associated with c.310C>T mutation (p.R104W) in MFN2 gene. CMT2A should be considered in patients with both axonal sensory‐motor neuropathy and developmental delay.  相似文献   

12.
Different diffusivity measurements in diffusion-tensor imaging (DTI) could be helpful for detecting the distinct mechanisms of white matter degeneration in Alzheimer's disease (AD). However, few studies have explored the changes of white matter in amnestic mild cognitive impairment (aMCI) and AD by whole-brain voxel-wise analyses of all diffusivity indices. The association between grey matter atrophy and white matter damage measured by distinct diffusivities is still uncertain. Structural magnetic resonance imaging and DTI with four diffusivity indices, comprising fractional anisotropy, mean diffusivity, axial diffusivity, and radial diffusivity, were performed in 30 normal controls, 26 mild AD patients, and 40 aMCI patients with isolated memory impairment. T1 voxel-based morphometry and DTI tract-based spatial statistics were applied to compare the grey and white matter changes in the 3 groups. In contrast to the lack of significant white matter change presenting in aMCI patients, extended white matter degeneration over entire cerebral networks was exhibited in mild AD patients. Both axonal degradation and demyelination contributed to the white matter degeneration in AD; nevertheless, demyelination essentially involved the frontal portion of cerebral networks. Axonal degradation and demyelination over the temporal region were associated with the contiguous grey matter atrophy. However, only the severity of demyelination over the frontal region was correlated with the degree of atrophy over adjacent frontal grey matter. Our results suggest that different mechanisms of white matter damage demonstrate discrete regional distribution in AD. Demyelination may independently correlate with contiguous grey matter over the frontal region.  相似文献   

13.
The formalin-fixed brain of a patient with clinically diagnosed frontotemporal dementia (FTD) was examined post-mortem using magnetic resonance imaging (MRI) with diffusion tensor imaging (DTI) at 3.0 T. Frontotemporal atrophy as well as bilateral frontal white matter abnormalities were seen. The white matter changes were slightly more extensive on DTI than on conventional MRI. Correlation with histopathology of the corresponding regions revealed typical frontal lobe degeneration of non-Alzheimer type, with mild frontotemporal degeneration in the outer cortical layers and a moderate frontal white matter gliosis with demyelination. Post-mortem MRI/DTI with histopathologic correlation will enhance our understanding of the basis of white matter changes observed in dementia patients and may improve the in vivo MRI/DTI diagnostic assessment in FTD.  相似文献   

14.

Background

Evidence suggests that white matter integrity may play an underlying pathophysiological role in schizophrenia. N-acetylaspartate (NAA), as measured by Magnetic Resonance Spectroscopy (MRS), is a neuronal marker and is decreased in white matter lesions and regions of axonal loss. It has also been found to be reduced in the prefrontal and temporal regions in patients with schizophrenia. Diffusion Tensor Imaging (DTI) allows one to measure the orientations of axonal tracts as well as the coherence of axonal bundles. DTI is thus sensitive to demyelination and other structural abnormalities. DTI has also shown abnormalities in these regions.

Methods

MRS and DTI were obtained on 42 healthy subjects and 40 subjects with schizophrenia. The data was analyzed using regions of interests in the Dorso-Lateral Prefrontal white matter, Medial Temporal white matter and Occipital white matter using both imaging modalities.

Results

NAA was significantly reduced in the patient population in the Medial Temporal regions. DTI anisotropy indices were also reduced in the same Medial Temporal regions. NAA and DTI-anisotropy indices were also correlated in the left medial temporal region.

Conclusion

Our results implicate defects in the medial temporal white matter in patients with schizophrenia. Moreover, MRS and DTI are complementary modalities for the study of white matter disruptions in patients with schizophrenia.  相似文献   

15.
Mutations in the Mitofusin 2 (MFN2) gene have been related to the axonal type of Charcot-Marie-Tooth type 2 (CMT 2A). We report the first two Spanish families with CMT 2 and mutations in MFN2 gene. Molecular studies of one family with late onset revealed the novel mutation Arg364Gln. The affected family members presented mild clinical and electrophysiological worsening after 14 years of follow-up. The other family presented an early onset and optic atrophy. Molecular studies revealed the Arg94Gln mutation. This is the first report of a family in which this mutation is related to optic atrophy. Molecular analysis aimed at detecting mutations of MFN2 could be extremely useful in mild axonal neuropathies with slow evolution and indispensable in cases of dominant inheritance or optic atrophy. Population studies of mutations in MFN2 should be undertaken to discover the real frequencies in the Mediterranean area.  相似文献   

16.
Relatively new developments in MRI, such as functional MRI (fMRI), magnetic resonance spectroscopy (MRS) and diffusion tensor imaging (DTI) are rapidly developing into imaging modalities that will become clinically available in the near future. They have in common that their signal is somewhat easier to interpret than structural MRI: fMRI mirrors excess cerebral blood flow, in many cases representing brain activity, MRS gives the average volume concentrations of specific chemical compounds, and DTI reflects "directedness" of micro-anatomical structures, of particular use in white matter where fiber bundle disruption can be detected with great sensitivity. While structural changes in MRI have been disappointing in giving a diagnosis of sufficient sensitivity and specificity, these newer methods hold out hope for elucidating pathological changes and differentiating patient groups more rigorously. This paper summarizes promising research results that will yet have to be translated into real life clinical studies in larger groups of patients (e.g. memory clinic patients). Where available, we have tried to summarize results comparing different types of dementia.  相似文献   

17.
The antidepressant fluoxetine stimulates astrocytic glycogenolysis, which serves as an energy source for axons. In multiple sclerosis patients fluoxetine administration may improve energy supply in neuron cells and thus inhibit axonal degeneration. In a preliminary pilot study, 15 patients with multiple sclerosis (MS) were examined by diffusion tensor imaging (DTI) and 1H magnetic resonance spectroscopy (MRS) in order to quantify the brain tissue diffusion properties (fractional anisotropy, apparent diffusion coefficient) and metabolite levels (choline, creatine and N-acetylaspartate) in cortical gray matter brain tissue, in normal appearing white matter and in white matter lesions. After oral administration of fluoxetine (20 mg/day) for 1 week, the DTI and MRS measurements were repeated and after treatment with a higher dose (40 mg/day) during the next week, a third series of DTI/MRS examinations was performed in order to assess any changes in diffusion properties and metabolism. One trend was observed in gray matter tissue, a decrease of choline measured at weeks 1 and 2 (significant in a subgroup of 11 relapsing remitting/secondary progressive MS patients). In white matter lesions, the apparent diffusion coefficient was increased at week 1 and N-acetylaspartate was increased at week 2 (both significant). These preliminary results provide evidence of a neuroprotective effect of fluoxetine in MS by the observed partial normalization of the structure-related MRS parameter N-acetylaspartate in white matter lesions.  相似文献   

18.
Proton magnetic resonance spectroscopy (MRS) allows accurate and noninvasive biochemical assay of living tissues. In vivo measurements provided by MRS have greatly enhanced our understanding of the pathophysiology of dementia. Increases in choline and myo-inositol (markers of membrane turnover) have been demonstrated in several studies on patients with Alzheimer's disease (AD), suggesting the presence of a significant cellular membrane (and glial) pathology in this disorder. Large decreases in brain N-acetylaspartate (NAA) (a marker of neuroaxonal integrity) are commonly seen in AD as well as in other forms of dementia in cerebral gray and white matter, indicating the presence of significant axonal damage. Since greater NAA decreases have been demonstrated in brains of patients with clinically more severe disease, NAA could provide an index relevant to patients' clinical status. Brain metabolic changes can be independent of abnormalities detected by conventional magnetic resonance imaging (MRI), since proton MRS may show a normal metabolic pattern in patients with mild neurological impairment and severe MRI abnormalities. However, quantitative measurements of regional brain volumes can be useful in the diagnosis of dementia. Thus, proton MRS, alone or combined with new quantitative magnetic resonance techniques, can provide sensitive indices able to monitor disease progresson or effects of drug therapy.  相似文献   

19.
BACKGROUND: Cerebral small vessel disease is a common cause of vascular dementia. Both discrete lacunar infarcts and more diffuse ischaemic changes, seen as confluent high signal (leukoaraiosis) on T2 weighted magnetic resonance imaging (MRI), occur. However, there is a weak correlation between T2 lesion load and cognitive impairment. Diffusion tensor MRI (DTI) is a new technique that may provide a better index of white matter damage. OBJECTIVES: To determine whether DTI measures are correlated more strongly with cognitive performance than lesion load on T2 weighted images, and whether these correlations are independent of conventional MRI parameters. METHODS: 36 patients with ischaemic leukoaraiosis (leukoaraiosis plus a previous lacunar stroke) and 19 healthy volunteers underwent DTI, conventional MRI, and neuropsychological assessment. RESULTS: On DTI, diffusivity was increased both within lesions and in normal appearing white matter. Mean diffusivity of normal appearing white matter correlated with full scale IQ (r = -0.46, p = 0.009) and tests of executive function. These correlations remained significant after controlling for age, sex, brain volume, and T1/T2 lesion volumes. No significant correlation was identified between T2 lesion load and IQ or neuropsychological scores. Of conventional measures, brain volume correlated best with cognitive function. CONCLUSIONS: Diffusion tensor measurements correlate better with cognition than conventional MRI measures. They may be useful in monitoring disease progression and as a surrogate marker for treatment trials. The findings support the role of white matter damage and disruption of white matter connections in the pathogenesis of cognitive impairment in cerebral small vessel disease.  相似文献   

20.
Diffuse axonal injury (DAI) is a common aftermath of brain trauma. The diagnosis of DAI is often difficult using conventional magnetic resonance imaging (MRI). We report a diffusion tensor imaging (DTI) study of a patient who sustained DAI presenting with language impairment. Fractional anisotropy (FA) and DTI tractography revealed a reduction of white matter integrity in the left frontal and medial temporal areas. White matter damage identified by DTI was correlated with the patient's language impairment as assessed by functional MRI (fMRI) and a neuropsychological exam. The findings demonstrate the utility of DTI for identifying white matter changes secondary to traumatic brain injury (TBI).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号