首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Germ tubes of Candida albicans produced an additional fibrillar surface layer responsible for enhanced adherence to plastic. The correlation between germination of C. albicans and adherence of germ tubes to a plastic matrix led us to consider the existence of germ tube-specific adhesive components involved in the attachment process. Using concanavalin A-sensitized latex microspheres, we first detected extracellular molecules on the plastic surface after removal of the adherent germ tubes. Electron microscopy confirmed that fibrils of the germ tube involved in cell-substratum interconnections were retained on the plastic surface. Cytochemistry with concanavalin A-gold labeling demonstrated that these fibrillar structures contained mannoproteins. Dithiothreitol and iodoacetamide treatment of washed plastic allowed us to further characterize these fibrillar adhesins. Through analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, two components with molecular weights (MWs) of 68,000 and 60,000 were detected on the plastic surface. The 68,000-MW component appeared to be one of the major constituents of the germ tube surface layers. Biosynthetic labeling experiments performed with L-[35S]methionine revealed two additional proteins: a high-MW component (greater than 200,000), and a 200,000-MW component. These four proteins, strongly labeled on the plastic surface and on the germ tube cell wall layers, were in contrast slightly labeled or even nonidentified in the culture supernatant, suggesting their involvement in germ tube adherence.  相似文献   

2.
Mannoproteins of approximately 50 kDa from blastoconidia and 60 kDa from hyphae of Candida albicans reacted in Western blots (immunoblots) with either a polyclonal rabbit antiserum (CA-7) or a monoclonal antibody (CA-A) to the C. albicans C3d-binding protein (complement receptor type 2). The glycosylated nature of these proteins was demonstrated by their reactivity with concanavalin A and by selective labeling with the biotin-hydrazide reagent following periodate oxidation. Differences in the oligosaccharides of these proteins were observed in regard to their reactivity with lectin-peroxidase reagents and sensitivity to glycosidases such as N-glycanase or endoglycosidase F (but not endoglycosidase H). The 60-kDa mannoprotein reacted with wheat germ agglutinin, while the 50-kDa mannoprotein did not. Treatment of the 60-kDa mannoprotein with the glycosidases mentioned above resulted in its conversion into a species of 40 to 45 kDa. Enzyme treatment had no obvious effect on the electrophoretic mobility of the 50-kDa species from blastoconidia. Both the 50- and 60-kDa glycoproteins remained immunoreactive after treatment with the glycosidases. Reactivities of the two mannoproteins to neuraminidase also differed. Finally, the 50-kDa (blastoconidia) and the 60-kDa (hyphae) mannoproteins were purified by using ion-exchange chromatography and electroelution. The purified proteins differed in net charge, the 60-kDa species having a more acidic pI. Functional activity of the purified mannoproteins was demonstrated, as each inhibited the rosetting of antibody-sensitized sheep erythrocytes conjugated with iC3b or C3d by hyphae. Thus, an epitope(s) common to both a mycelial and blastoconidial mannoprotein is associated with a structurally different oligosaccharide for each growth form.  相似文献   

3.
Walls of the two cellular forms (blastoconidia and mycelia) of Candida albicans ATCC 26555 were obtained from cells metabolically labeled (6-h pulse) with 14C-protein hydrolysate and [3H]threonine. Walls were purified by thorough washings with buffered and sodium dodecyl sulfate solutions and digested with Zymolyase 20T. The enzymatic treatment released four major high-molecular-weight mannoproteins (HMWM), with apparent molecular masses of 650, 500, 340, and 200 kilodaltons (HMWM-650, HMWM-500, HMWM-340, and HMWM-200, respectively), from yeast cells, whereas two high-molecular-mass mannoproteins (HMWM-260 and HMWM-180) were solubilized from mycelial cells. Some additional minor low-molecular-weight species were also detected in the enzymatic digests of walls from both types of cell. Single and dual pulse-chase experiments indicated that the HMWM-260 and HMWM-180 species reflect de novo synthesis of new proteins specific for the mycelia and do not represent a topological rearrangement of blastoconidium wall components. Monoclonal antibodies were raised against the HMWM-260 species (quantitatively the predominant component in the mycelial walls), and polyclonal rabbit antibodies were obtained against yeast or mycelial cell walls. Anti-mycelial cell wall polyclonal antibodies were adsorbed to whole killed blastoconidia to remove antibodies against common blastoconidium and mycelial wall antigens. Titration by enzyme-linked immunosorbent assay revealed that the monoclonal antibodies could recognize an epitope of the protein moiety of the HMWM-260 mannoprotein. Immunoblotting and immunofluorescence techniques using these monoclonal and polyclonal antibodies confirmed that the HMWM-260 and HMWM-180 species are specific components of the envelope of the mycelial cell walls.  相似文献   

4.
Hydrophobic interactions, based on cell surface hydrophobicity (CSH), are among the many and varied mechanisms of adherence deployed by the pathogenic yeast Candida albicans. Recently it was shown that, unlike C. albicans, C. dubliniensis is a species that exhibits an outer fibrillar layer consistent with constant CSH. Previously, C. dubliniensis grown at 25 or 37 degrees C was shown to coaggregate with the oral anaerobic bacterium Fusobacterium nucleatum. C. albicans, however, demonstrated similar coaggregation only when hydrophobic or grown at 25 degrees C. This observation implied that coaggregation of Candida cells with F. nucleatum is associated with a hydrophobic yeast cell surface. To test this hypothesis, 42 C. albicans and 40 C. dubliniensis clinical isolates, including a C. albicans hydrophobic variant, were grown at 25 and 37 degrees C and tested with the established hydrophobicity microsphere assay, which determines CSH levels based on the number of microspheres attached to the yeast cells. The coaggregation assay was performed in parallel experiments. All C. dubliniensis isolates grown at either temperature, hydrophobic 25 degrees C-grown C. albicans isolates, and the C. albicans hydrophobic variant, unlike the 37 degrees C-hydrophilic C. albicans isolates, exhibited hydrophobic CSH levels with the microsphere assay and simultaneously showed maximum, 4+, coaggregation with F. nucleatum. The parallel results obtained for C. dubliniensis using both assays support the use of the CoAg assay both as a rapid assay to determine CSH and to differentiate between C. dubliniensis and C. albicans.  相似文献   

5.
Treatment of both yeast (blastoconidia) and hyphal (blastoconidia with germ tubes) cells of Candida albicans with beta-mercaptoethanol (beta ME) releases a complex array of cell wall-bound proteins and glycoproteins. Analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western immunoblotting with fibrinogen-anti-fibrinogen antibody allowed the identification of a 58-kDa mannoprotein (mp58) in both extracts which specifically interacts with human fibrinogen. Treatment of intact cells with low concentrations of beta-glucanase (Zymolyase 20T) for short periods or with beta ME abolished or significantly reduced binding of fibrinogen. A rabbit polyclonal antiserum was raised against the purified mp58 species released by beta ME from germinated blastoconidia (PAb anti-mp58). By Western blotting, the antiserum cross-reacted with the homologous 58-kDa fibrinogen-binding mannoprotein present in beta ME extracts from blastoconidia, and by indirect immunofluorescence, the antiserum labelled both yeast cells and hyphae, yet reactivity was found primarily on the cell surface of filamentous forms. Immunostaining of human infected tissue sections with PAb anti-mp58 showed that the mp58 species is also expressed in vivo; in this case, the species is in the forms of both yeast and hyphal elements similarly labelled by the antiserum. Purified immunoglobulin G fraction from the antiserum did not alter the binding of fibrinogen as determined by a modified enzyme-linked immunosorbent assay and Western blotting. The N- and O-glycosidically linked carbohydrates represent 18 to 20% and 3 to 4%, respectively, of the molecular mass of the mp58. O-linked sugar residues may be involved in the interaction of the molecule with fibrinogen.  相似文献   

6.
Although Candida dubliniensis is a close genetic relative of Candida albicans, it colonizes and infects fewer sites. Nearly all instances of candidiasis caused by C. dubliniensis are restricted to the oral cavity. As cell surface hydrophobicity (CSH) influences virulence of C. albicans, CSH properties of C. dubliniensis were investigated and compared to C. albicans. Growth temperature is one factor which affects the CSH status of stationary-phase C. albicans. However, C. dubliniensis, similar to other pathogenic non-albicans species of Candida, was hydrophobic regardless of growth temperature. For all Candida species tested in this study (C. albicans, C. dubliniensis, C. glabrata, C. krusei, C. parapsilosis, and C. tropicalis), CSH status correlated with coaggregation with the anaerobic oral bacterium Fusobacterium nucleatum. Previous studies have shown that CSH status of C. albicans involves multiple surface proteins and surface protein N-glycans. The hydrophobic surface glycoprotein CAgp38 appears to be expressed by C. albicans constitutively regardless of growth temperature and medium. C. dubliniensis expresses a 38-kDa protein that cross-reacts with the anti-CAgp38 monoclonal antibody; however, expression of the protein was growth medium and growth temperature dependent. The anti-CAgp38 monoclonal antibody has been shown to inhibit adhesion of C. albicans to extracellular matrix proteins and to vascular endothelial cells. Since protein glycosylation influences the CSH status of C. albicans, we compared the cell wall mannoprotein content and composition between C. albicans and C. dubliniensis. Similar bulk compositional levels of hexose, phosphate, and protein in their N-glycans were determined. However, a component of the C. albicans N-glycan, acid-labile phosphooligomannoside, is expressed much less or negligibly by C. dubliniensis, and when present, the oligomannosides are predominantly less than five mannose residues in length. In addition, the acid-labile phosphooligomannoside profiles varied among the three strains of C. dubliniensis we tested, indicating the N-glycan of C. dubliniensis differs from C. albicans. For C. albicans, the acid-labile phosphooligomannoside influences virulence and surface fibrillar conformation, which affects exposure of hydrophobic surface proteins. Given the combined role in C. albicans of expression of specific surface hydrophobic proteins in pathogenesis and of surface protein glycosylation on exposure of the proteins, the lack of these virulence-associated CSH entities in C. dubliniensis could contribute to its limited ability to cause disseminated infections.  相似文献   

7.
Expression of cell surface hydrophobicity (CSH) during initial growth of Candida albicans was monitored. CSH of hydrophobic and hydrophilic yeast cells changed within 30 min upon subculture into fresh medium. Morphologic evidence of germination was preceded by expression of CSH. These results indicate that CSH expression is important in C. albicans growth.  相似文献   

8.
Candida albicans ATCC 26555 blastoconidia and blastoconidia bearing germ tubes were metabolically labelled by incubating the cells with 14C-labelled protein hydrolysate and were subsequently tagged with biotin. Double-labelled (radioactive and biotinylated) cell wall proteins and glycoproteins were extracted from intact cells of both growth forms by treatment with 2-mercaptoethanol (beta ME) and with beta-glucanases (Zymolyase) after treatment with beta ME. The beta ME- and Zymolyase-extracts were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and western blotted (immunoblotted) to nitrocellulose paper. Polyacrylamide gels were stained with Coomassie blue and processed for fluorography. Western blot analysis was performed either with peroxidase conjugated-concanavalin A (ConA) or Extravidin. Blotted proteins were also reacted with polyclonal antibodies and monoclonal antibodies against mannoprotein components from mycelial cell walls of the ATCC 26555 strain. Labelling with biotin allowed identification of a complex array of cell wall protein and glycoprotein components within a very wide molecular mass range (from 650 to 13 kDa). These appeared to be genuine cell wall components. Biotinylated high-molecular-mass glycoproteins that were not stained with Coomassie blue or that appeared as poorly resolved polydisperse bands by indirect ConA-peroxidase staining of Western blots were detected as sharply defined bands following reaction with the Extravidin-peroxidase conjugate. Biotinylated molecules retained unaltered reactivities against ConA, polyclonal antibodies, and monoclonal antibodies.  相似文献   

9.
New monoclonal antibody specific for Candida albicans germ tube   总被引:15,自引:0,他引:15       下载免费PDF全文
Hydrophobic components of the germ tube of the dimorphic pathogenic fungus Candida albicans were used as immunogens to prepare monoclonal antibodies (MAbs). Among the resulting MAbs, one (MAb 16B1-F10) was shown by indirect immunofluorescence to be specific to the surface of the mycelium phase of the C. albicans and C. stellatoidea species. No labeling of any other genera and Candida species tested was observed, including C. dubliniensis, a newly described species which has many phenotypic similarities to C. albicans. This phase-specific epitope resides on a protein moiety. The molecular mass of the antigen released by Zymolyase digestion was determined by gel filtration and ranges from 25 to 166 kDa. The antigen was also shown to be highly hydrophobic. This anti-C. albicans cell wall surface-specific MAb may be a good candidate for use in tests for the rapid differentiation of the two closely related species C. albicans and C. dubliniensis.  相似文献   

10.
Cell surface hydrophobicity contributes to the pathogenesis of the opportunistic fungal pathogen Candida albicans. Previous work demonstrated a correlation between hydrophobicity status and changes in the acid-labile, phosphodiester-linked beta-1,2-oligomannoside components of the N-linked glycans of cell wall mannoprotein. Glycan composition also defines the two major serotypes, A and B, of C. albicans strains. Here, we show that the cell surface hydrophobicity of the two serotypes is qualitatively different, suggesting that the serotypes may differ in how they modulate cell surface hydrophobicity status. The cell wall mannoproteins from hydrophilic and hydrophobic cells of both serotypes were compared to determine whether the glycan differences due to serotype affect the glycan differences due to hydrophobicity status. Composition analysis showed that the protein, hexose, and phosphate contents of the mannoprotein fraction did not differ significantly among the strains tested. Electrophoretic profiles of the acid-labile mannan differed only with hydrophobicity status, not serotype, though some strain-specific differences were observed. Furthermore, a newly available beta-1,2-oligomannoside ladder allowed unambiguous identification of acid-labile mannan components. Finally, to assess whether the acid-stable mannan also affects cell surface hydrophobicity status, this fraction was fragmented into its component branches by acetolysis. The electrophoretic profiles of the acid-stable branches were very similar regardless of hydrophobicity status. However, differences were observed between serotypes. These results support and extend our current model that modification of the acid-labile beta-1,2-oligomannoside chain length but not modification of the acid-stable region is one common mechanism by which switching of cell surface hydrophobicity status of C. albicans strains occurs.  相似文献   

11.
The antigenic composition of Candida albicans is very complex. In order to study the antigenic relationship between blastoconidia and germ tubes of C. albicans, we produced several monoclonal antibodies and analyzed their reactivity against cell wall antigens either in intact cells or in cells treated with dithiothreitol. Overall, four types of reactivity were found. Monoclonal antibodies 3D9 and 15C9 stained the germ tubes only when tested by indirect immunofluorescence. However, they showed a different reactivity by immunoblotting. Monoclonal antibody 3D9 reacted with antigens with molecular masses of > 200 and 180 kDa specifically expressed in the germ tube. Monoclonal antibody 15C9 reacted with antigens of 87, 50, and 34 kDa present in the germ tube extract and with antigens of 92, 50, 34, and 32 kDa present in the blastoconidium extract. The reactivity of blastoconidia treated for different times with dithiothreitol with these monoclonal antibodies was also studied by enzyme-linked immunosorbent assay. The reactivity of monoclonal antibody 3D9 did not significantly change during the cell wall extraction. However, the reactivity of monoclonal antibody 15C9 was increased for blastoconidia extracted for 60 min and decreased markedly for blastocondia extracted for 120 min. Monoclonal antibody G3B was nonreactive by indirect immunofluoresence but reacted with antigens of 47 and 38 kDa present in the germ tube extract and with an antigen of 47 kDa present in the blastoconidium extract. Monoclonal antibody B9E stained both morphological phases by indirect immunofluorescence. By immunoblotting, it reacted with antigens of > 70 kDa present in the germ tube extract and with antigens of > 63, 56, 47, and 38 kDa present in the blastoconidium extract. Based on the results presented in this study, four types of antigens are described. Type I antigens are expressed on the outermost layers of the germ tube cell wall only. Type II antigens are expressed both on the germ tube cell wall surface and within the blastoconidium cell wall. Type III antigens are found within the cell wall of both blastoconidia and germ tubes. Type IV antigens are expressed on both the blastoconidium and germ tube surface. Two types more can be hypothesized for antigens expressed on the blastoconidium cell surface and within the germ tube cell wall (type V) and for those expressed on the blastoconidium surface only (type VI).  相似文献   

12.
Hydrophobic yeast cells of Candida albicans are more virulent than hydrophilic yeast cells in mice. Results of experiments performed in vitro suggest that surface hydrophobicity contributes to virulence in multiple ways. Before definitive studies in vivo concerning the contribution of fungal surface hydrophobicity to pathogenesis can be performed, biochemical, physiological, and immunochemical characterization of the macromolecules responsible for surface hydrophobicity must be accomplished. This report describes our initial progress toward this goal. When hydrophobic and hydrophilic yeast cells of C. albicans were exposed to various enzymes, only proteases caused any change in surface hydrophobicity. Hydrophobic cell surfaces were sensitive to trypsin, chymotrypsin, pronase E, and pepsin. This indicates that surface hydrophobicity is due to protein. Papain, however, had no significant effect. The hydrophobicity of hydrophilic cells was altered only by papain. The proteins responsible for surface hydrophobicity could be removed by exposure to lyticase, a beta 1-3 glucanase, for 30 to 60 min. When 60-min lyticase digests of hydrophobic and hydrophilic cell walls were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) with a 12.5% resolving gel, each protein population contained a single unique protein that was not evident in the other protein population. However, when the cell wall surface proteins of hydrophobic and hydrophilic cells were first labeled with 125I and then removed by lyticase and analyzed by SDS-PAGE, at least four low-molecular-mass (less than 65 kilodaltons) proteins associated with hydrophobic cells were either absent or much less abundant in the hydrophilic cell digests. This result was seen for both C. albicans strains that we tested. When late-exponential-phase hydrophilic cells were treated with tunicamycin, high levels of surface hydrophobicity were obtained by stationary phase. These results indicate that the surface hydrophobicity of C. albicans reflects changes in external surface protein exposure and that protein mannosylation may influence exposure of hydrophobic surface proteins.  相似文献   

13.
Monoclonal antibodies to Candida albicans were prepared with blastoconidia bearing germ tubes used as the immunogen. Four antibodies reacted by immunofluorescence with surfaces of C. albicans as well as Candida stellatoidea, Candida tropicalis, and several strains of C. albicans, but not with Torulopsis glabrata. One antibody reacted with Saccharomyces cerevisiae. In addition, the monoclonal antibodies precipitated material of approximately 200 kilodaltons when tested against metabolically labeled blastoconidia digests. The monoclonal antibodies exhibited heterogeneous staining of C. albicans surfaces, as shown by immunofluorescence. None of the monoclonal antibodies were specific to germ tubes. More importantly, however, two of the monoclonal antibodies reacted with the mannoprotein precipitin arc of C. albicans that was produced by reference rabbit polyclonal antisera by crossed immunoelectrophoresis, thus linking the heterogeneity seen by immunofluorescence to the heterogeneity in mannoproteins. Finally, three of the monoclonal antibodies reacted with a glycan fraction of cell digests, indicating their reactivity with the carbohydrate portion of the mannoprotein.  相似文献   

14.
Recent studies have revealed that hydrophobic cells of the opportunistic pathogenic fungus Candida albicans are more virulent than hydrophilic cells. One critical step in the pathogenic process is adherence to host tissues. Adherence of C. albicans to epithelial tissues is mediated primarily by specific adhesin-receptor interactions, but whether cell surface hydrophobicity (CSH) of the yeast cells may also contribute has not been definitively demonstrated. Nineteen isolates of C. albicans were grown in Sabouraud dextrose broth at either 23 or 37 degrees C and tested for CSH by a polystyrene microsphere assay and for the ability to adhere to HeLa cells, a human cervical epithelioid carcinoma cell line. For 13 isolates, growth at 23 degrees C resulted in significantly higher levels of CSH than did growth at 37 degrees C. Three isolates were hydrophobic and two were hydrophilic regardless of growth temperature. One isolate was more hydrophobic after growth at 37 degrees C. Of the isolates that were more hydrophobic after growth at 23 degrees C, 86.5% (11 of 13) were also more adherent to HeLa cells. Growth temperature did not appear to determine adherence ability, as all isolates that did not differ in CSH after growth at either temperature also did not differ in ability to adhere. No correlation (r = 0.44) was obtained between CSH and adherence when the isolates grown at 23 degrees C were evaluated as a group. Higher correlation (r = 0.65) was obtained when the isolates were grown at 37 degrees C. Interestingly, a significantly positive correlation between CSH and adherence was obtained when individual isolates were analyzed. To accomplish this analysis, the isolates were allowed to vary in CSH over time in tissue culture medium without serum, and the corresponding adherence values determined. Only isolates that varied in CSH by greater than 10% were used. Correlation statistical analysis in which the coefficient of determination (r2) was calculated indicated that poor correlation between CSH and adherence for the isolates evaluated as a group was likely due to the fact that CSH had little effect on adherence once a moderately high level of CSH was attained. These results indicate that CSH is involved in adherence but is not the predominant mechanism and that the effect of CSH on adherence is isolate dependent.  相似文献   

15.
Adhesion interactions during hematogenous dissemination of Candida albicans likely involve a complex array of host and fungal factors. Possible C. albicans factors include changes in cell surface hydrophobicity and exposed antigens that have been shown in static adhesion assays to influence attachment events. We used a novel in vitro shear analysis system to investigate host-pathogen interactions and the role of fungal cell surface hydrophobicity in adhesion events with human endothelial cells under simulated physiologic shear. Endothelial monolayers were grown in capillary tubes and tested with and without interleukin-1 beta activation in buffered medium containing human serum. Hydrophobic and hydrophilic stationary-phase C. albicans yeast cells were infused into the system under shear flow and found to adhere with widely varying efficiencies. The average number of adherent foci was determined from multiple fields, sampled via video microscopy, between 8 and 12 min after infusion. Hydrophobic C. albicans cells demonstrated significantly more heterotypic binding events (Candida-endothelial cell) and greater homotypic binding events (Candida-Candida) than hydrophilic yeast cells. Cytokine activation of the endothelium significantly increased binding by hydrophobic C. albicans compared to unactivated host cells. Preincubation of hydrophobic yeast cells with a monoclonal antibody against hydrophobic cell wall proteins significantly blocked adhesion interactions with the endothelial monolayers. Because the antibody also blocks C. albicans binding to laminin and fibronectin, results suggest that vascular adhesion events with endothelial cells and exposed extracellular matrix may be blocked during C. albicans dissemination. Future studies will address the protective efficacy of blocking or redirecting blood-borne fungal cells to favor host defense mechanisms.  相似文献   

16.
Candida albicans modulates cell surface hydrophobicity during growth and morphogenesis in vitro. To determine if surface hydrophobicity is expressed during pathogenesis, we generated a polyclonal antiserum against yeast hydrophobic proteins. The antiserum was then used for indirect immunofluorescence analysis of tissues from mice colonized and chronically infected with C. albicans. Results demonstrated that yeast hydrophobic proteins are exposed on fungal cells present in host tissues. The polyclonal antiserum distinguished between hydrophobic and hydrophilic cell surfaces in vitro and gave similar staining patterns and intensities for C. albicans cells in vivo. Of the yeast forms present within tissue lesions, approximately half exhibited moderate to intense immunofluorescence with the antiserum. Immunoblot analysis indicated that antigens recognized by the antiserum are predominantly low-molecular-mass hydrophobic proteins that are expressed by different C. albicans isolates and are expressed regardless of growth temperature. Taken together, the immunofluorescence and immunoblot analyses of antigens indicate that C. albicans displays surface hydrophobic proteins during pathogenesis and these proteins are available for hydrophobic interactions with host tissues. The effect of hydrophobic protein exposure on the virulence of C. albicans is discussed.  相似文献   

17.
Increased intracellular incorporation of [3H]corticosterone in Candida albicans was dependent on cell surface hydrophobicity. C. albicans strains were grown in culture conditions that induced surface hydrophobicity, and cell wall conditions were evaluated with a polystyrene microsphere assay. Germ tubes, which exhibited the greatest cell surface hydrophobicity, incorporated seven times more radiolabel than the hydrophilic yeast forms. Hydrophobic yeasts contained four times more [3H]corticosterone than their polar counterparts. Hydrophobic yeasts incubated for 48 h on nutrient agar containing corticosterone showed reduced colony size compared with controls. These results demonstrate that environmental factors which augment cell wall hydrophobicity in C. albicans can increase the incorporation of corticosterone, which may influence the metabolic activities in this organism.  相似文献   

18.
Rabbit polyclonal antibodies (PAbs) directed towards the amino-terminal cysteine-rich 7S domain (PAb anti-7S), the major internal collagenous domain (PAb anti-type IV), and the C-terminal noncollagenous region (PAb anti-NC1) of the type IV collagen molecule were probed by indirect immunofluorescence against Candida albicans blastoconidia and germinated blastoconidia. Most nongerminating cells and mother blastoconidia from which germ tubes originated showed strong fluorescence when PAb anti-7S was used, whereas with PAb anti-type IV, fluorescence was found almost exclusively on the surface of filamentous forms. A patched fluorescent pattern rather than a homogenous confluent fluorescence was observed in all cases. No fluorescent cells were observed with PAb anti-NC1. By Western immunoblotting, PAb anti-type IV cross-reacted primarily with a polypeptide of 37 kDa present in wall extracts obtained from intact cells of both growth forms by treatment with beta-mercaptoethanol, whereas PAb anti-7S recognized a major 58-kDa antigen also present in both extracts, along with some other high-molecular-mass (> 106-kDa) polydisperse species present only in the material released from blastoconidia with beta-mercaptoethanol. No reactive bands were observed when PAb anti-NC1 was used as a probe in Western immunoblotting experiments. The sensitivities or resistances to collagenase digestion of the different polypeptides that cross-reacted with PAbs anti-type IV and anti-7S suggest the existence of cell wall components in C. albicans that contain epitopes that mimic the collagenous domains of the type IV collagen molecule.  相似文献   

19.
Ultrastructural and biochemical analyses of hydrophobic and hydrophilic yeast cell surface proteins of Candida albicans were performed. Hydrophobic and hydrophilic yeast cells were obtained by growth at 23 and 37 degrees C, respectively. In addition, hydrophilic yeast cells were converted to surface hydrophobicity by treatment with tunicamycin and dithiothreitol. When freeze-etched cells were examined, the temperature-induced hydrophilic cells had long (0.198 micron), compact, evenly distributed fibrils while temperature-induced hydrophobic cells had short (0.085 micron), blunt fibrils. Hydrophobic microsphere attachment to the hydrophobic cells occurred at the basement of and within the short fibril layer. Dithiothreitol-induced hydrophobic cells had the long fibrils removed; tunicamycin-induced hydrophobic cells retained some of the long fibrils, but the fibrils were less compact and more aggregated than the untreated controls. These results suggest that the long fibrils prevent hydrophobic microsphere attachment to the hydrophobic area of the cell surface. This was confirmed by assessing the hydrophobic avidity of hydrophobic yeast cell populations differing in fibril density and arrangement. 125I-labelled surface proteins from hydrophobic and hydrophilic cells were compared after separation by hydrophobic interaction chromatography-high-performance liquid chromatography and analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography. The yeast cell populations had hydrophilic proteins of similar molecular masses (greater than 200 kDa), but the hydrophilic cells possessed at least two additional proteins (ca. 63 and 69 to 71 kDa). Hydrophobic surface proteins appeared to be similar. However, the amount of total radiolabelled hydrophobic proteins was approximately 10-fold higher for the hydrophobic cells than for the hydrophilic cells. This result agrees with the ultrastructural observations which showed that yeast cell surface hydrophobic proteins are masked by hydrophilic high-molecular-mass surface fibrils. Taken together, the data indicate that yeast cell hydrophobicity is not determined by differences in surface hydrophobic proteins but by the presence of hydrophilic, surface fibrils.  相似文献   

20.
A combinatorial phage display library expressing human immunoglobulin heavy and light chain variable regions was used to identify phage clones capable of binding to the surface of Candida albicans blastoconidia. Single chain antibody variable fragments (scFv) derived from three clones detected C. albicans antigens by indirect immunofluorescence assay (IFA), enzyme-linked immunosorbent assay (ELISA), and Western blotting. The antigens detected were conserved among different strains of C. albicans and several other Candida species. Two scFv clones detected antigens specifically expressed by C. albicans blastoconidia; the third detected antigens in both blastoconidia and filamentous forms of C. albicans. The antigens containing the epitopes recognized by all three scFv could be extracted from blastoconidia by dithiothreitol, suggesting attachment to the cell wall via sulfhydryl bonds. Epitope detection by the scFv was sensitive to treatment of C. albicans blastoconidia with sodium periodate, but not proteinase K, indicating the cognate epitopes were composed of carbohydrate. Antigenic determinants for each of the three scFv were detected by immunohistochemical staining of skin sections from a model of cutaneous candidiasis, demonstrating expression in vivo. Through selection for the ability to bind intact organisms, the phage display system provides a means to rapidly identify monoclonal binding ligands to Candida surface antigens. Being entirely human, mature antibodies generated from the scFv have potential utility in the treatment of candidiasis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号