首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to gain insights into the renal and hepatic glucuronidation of frusemide (FSM), this study: (i) characterised the kinetics of FSM glucuronidation by human liver microsomes (HLM) and human kidney cortical- (HKCM) and medullary- (HKMM) microsomes, and (ii) identified the human UDP-glucuronosyltransferase enzyme(s) involved in this pathway. HLM, HKCM and HLMM efficiently glucuronidated FSM. FSM glucuronide (FSMG) formation followed Michaelis-Menten kinetics in all tissues. While the mean K(m) for FSMG formation by HKMM (386 +/- 68 microM) was lower than the K(m) values for HLM (988 +/- 271 microM) and HKCM (704 +/- 278 microM), mean V(max)/K(m) values were comparable for the three tissues. A panel of recombinant UGT enzymes was screened for the capacity to glucuronidate FSM. UGT 1A1, 1A3, 1A6, 1A7, 1A9, 1A10 and 2B7 metabolised FSM. Of the renally and hepatically expressed enzymes, comparison of kinetic parameters suggests a predominant role of UGT1A9 in FSM glucuronidation, although UGT1A1 may also contribute to FSMG formation by HLM. Consistent with these observations, the UGT1A selective inhibitors phenylbutazone and sulfinpyrazone decreased FSMG formation by HLM, HKCM and HKMM by 60-80%, whereas the UGT2B7 selective inhibitor fluconazole reduced FSM glucuronidation by < or =20%. The ability of HKCM and HKMM to form FSMG supports the proposition that the kidney is the main organ involved in FSM glucuronidation in vivo, although a role for hepatic metabolism remains a possibility in renal dysfunction. The data further demonstrate the potential importance of both the medulla and cortex in renal drug metabolism and detoxification.  相似文献   

2.
AIMS: To characterize the kinetics of S-naproxen ('naproxen') acyl glucuronidation and desmethylnaproxen acyl and phenolic glucuronidation by human liver microsomes and identify the human UGT isoform(s) catalysing these reactions. METHODS: Naproxen and desmethylnaproxen glucuronidation were investigated using microsomes from six and five livers, respectively. Human recombinant UGTs were screened for activity towards naproxen and desmethylnaproxen. Where significant activity was observed, kinetic parameters were determined. Naproxen and desmethylnaproxen glucuronides were measured by separate high-performance liquid chromatography methods. RESULTS: Naproxen acyl glucuronidation by human liver microsomes followed biphasic kinetics. Mean apparent K(m) values (+/-SD, with 95% confidence interval in parentheses) for the high- and low-affinity components were 29 +/- 13 microm (16, 43) and 473 +/- 108 microm (359, 587), respectively. UGT 1A1, 1A3, 1A6, 1A7, 1A8, 1A9, 1A10 and 2B7 glucuronidated naproxen. UGT2B7 exhibited an apparent K(m) (72 microm) of the same order as the high-affinity human liver microsomal activity, which was inhibited by the UGT2B7 selective 'probe' fluconazole. Although data for desmethylnaproxen phenolic glucuronidation by human liver microsomes were generally adequately fitted to either the single- or two-enzyme Michaelis-Menten equation, model fitting was inconclusive for desmethylnaproxen acyl glucuronidation. UGT 1A1, 1A7, 1A9 and 1A10 catalysed both the phenolic and acyl glucuronidation of desmethylnaproxen, while UGT 1A3, 1A6 and 2B7 formed only the acyl glucuronide. Atypical glucuronidation kinetics were variably observed for naproxen and desmethylnaproxen glucuronidation by the recombinant UGTs. CONCLUSION: UGT2B7 is responsible for human hepatic naproxen acyl glucuronidation, which is the primary elimination pathway for this drug.  相似文献   

3.
Studies were performed to investigate the UDP-glucuronosyltransferase enzyme(s) responsible for the human liver microsomal N2-glucuronidation of the anticonvulsant drug lamotrigine (LTG) and the mechanistic basis for the LTG-valproic acid (VPA) interaction in vivo. LTG N2-glucuronidation by microsomes from five livers exhibited atypical kinetics, best described by a model comprising the expressions for the Hill (1869 +/- 1286 microM, n = 0.65 +/- 0.16) and Michaelis-Menten (Km 2234 +/- 774 microM) equations. The UGT1A4 inhibitor hecogenin abolished the Michaelis-Menten component, without affecting the Hill component. LTG N2-glucuronidation by recombinant UGT1A4 exhibited Michaelis-Menten kinetics, with a Km of 1558 microM. Although recombinant UGT2B7 exhibited only low activity toward LTG, inhibition by zidovudine and fluconazole and activation by bovine serum albumin (BSA) (2%) strongly suggested that this enzyme was responsible for the Hill component of microsomal LTG N2-glucuronidation. VPA (10 mM) abolished the Hill component of microsomal LTG N2-glucuronidation, without affecting the Michaelis-Menten component or UGT1A4-catalyzed LTG metabolism. Ki values for inhibition of the Hill component of LTG N2-glucuronidation by VPA were 2465 +/- 370 microM and 387 +/- 12 microM in the absence and presence, respectively, of BSA (2%). Consistent with published data for the effect of fluconazole on zidovudine glucuronidation by human liver microsomal UGT2B7, the Ki value generated in the presence of BSA predicted the magnitude of the LTG-VPA interaction reported in vivo. These data indicate that UGT2B7 and UGT1A4 are responsible for the Hill and Michaelis-Menten components, respectively, of microsomal LTG N2-glucuronidation, and the LTG-VPA interaction in vivo arises from inhibition of UGT2B7.  相似文献   

4.
Human liver microsomes are a reagent commonly used to predict human hepatic clearance of new chemical entities via phase 1 metabolism. Another common metabolic pathway, glucuronidation, can also be observed in human liver microsomes, although the scalability of this process has not been validated. In fact, several groups have demonstrated that clearance estimated from liver microsomes with UDP-glucuronic acid typically underpredicts the actual in vivo clearance more than 10-fold for compounds that are predominantly glucuronidated. In contrast, clearance predicted using human hepatocytes, for these same compounds, provides a more accurate assessment of in vivo clearance. We sought to characterize the kinetics of glucuronidation of the selective UGT2B7 substrate AZT (3'-azido-3'-deoxythymidine), a selective UGT2B7 substrate, in human liver microsomes (HLMs), recombinant UGT2B7, and human hepatocytes. Apparent Km values in these three preparations were 760, 490, and 87 microM with apparent Vmax values highest in hepatocytes. The IC50 for ibuprofen against AZT glucuronidation, when run at its Km concentration in HLMs and hepatocytes, was 975 and 170 microM respectively. Since incubation conditions have been shown to modulate glucuronidation rates, AZT glucuronidation was performed in various physiological and nonphysiological buffer systems, namely Tris, phosphate, sulfate, carbonate, acetate, human plasma, deproteinized human liver cytosol, and Williams E medium. The data showed that carbonate and Williams E medium, more physiologically relevant buffers, yielded the highest rates of AZT glucuronidation. Km observed in HLM/carbonate was 240 microM closer to that found in hepatocytes, suggesting that matrix differences might cause the kinetic differences observed between liver preparations. Caution should be exercised when extrapolating metabolic lability via glucuronidation or inhibition of UGT enzymes from human liver microsomes, since this system appears to underpredict the degree of lability or inhibition, respectively, due in part to an apparent decrease in substrate affinity.  相似文献   

5.
Valproic acid glucuronidation kinetics were carried our with three human UGT isoforms: UGT1A6, UGT1A9, and UGT2B7 as well as human liver and kidney microsomes. The glucuronidation of valproic acid was typified by high K(m) values with microsomes and expressed UGTs (2.3-5.2mM). The ability of valproic acid to interact with the glucuronidation of drugs, steroids and xenobiotics in vitro was investigated using the three UGT isoforms known to glucuronidate valproic acid. In addition to this the effect of valproic acid was investigated using two other UGT isoforms: UGT1A1 and UGT2B15 which do not glucuronidate valproic acid. Valproic acid inhibited UGT1A9 catalyzed propofol glucuronidation in an uncompetitive manner and UGT2B7 catalyzed AZT glucuronidation competitively (K(i)=1.6+/-0.06mM). Valproate significantly inhibited UGT2B15 catalyzed steroid and xenobiotic glucuronidation although valproate was not a substrate for this UGT isoform. No significant inhibition of UGT1A1 or UGT1A6 by valproic acid was observed. These data indicate that valproic acid inhibition of glucuronidation reactions is not always due to simple competitive inhibition of substrates.  相似文献   

6.
The predominant metabolic pathway of gemcabene in humans is glucuronidation. The principal human UDP-glucuronosyltransferases (UGTs) involved in the glucuronidation of gemcabene were determined in this study. Glucuronidation of gemcabene was catalyzed by recombinant UGT1A3, recombinant UGT2B7, and recombinant UGT2B17, as well as by human liver microsomes (HLM). Gemcabene glucuronidation in recombinant UGTs and HLM followed non-Michaelis-Menten kinetics consistent with homotropic activation, but pharmacokinetics in humans were linear over the dose range tested (total plasma C(max), 0.06-0.88 mM). Gemcabene showed similar affinity (S(50)) for recombinant UGTs (0.92-1.45 mM) and HLM (1.37 mM). S-Flurbiprofen was identified as a more selective inhibitor of recombinant UGT2B7-catalyzed gemcabene glucuronidation (>23-fold lower IC(50)) when compared with recombinant UGT1A3- or recombinant UGT2B17-catalyzed gemcabene glucuronidation. The IC(50) for S-flurbiprofen inhibition of gemcabene glucuronidation was similar in HLM (60.6 microM) compared with recombinant UGT2B7 (27.4 microM), consistent with a major role for UGT2B7 in gemcabene glucuronidation in HLM. In addition, 5,6,7,3',4',5'-hexamethoxyflavone inhibited recombinant UGT1A3 and recombinant UGT2B17-catalyzed gemcabene glucuronidation (with 4-fold greater potency for recombinant UGT1A3) but did not inhibit gemcabene glucuronidation in HLM, suggesting that UGT1A3 and UGT2B17 do not contribute significantly to gemcabene glucuronidation. Reaction rates for gemcabene glucuronidation from a human liver bank correlated well (r(2)=0.722, P<0.0001; n=24) with rates of glucuronidation of the UGT2B7 probe substrate 3'-azido-3'-deoxythymidine. In conclusion, using the three independent experimental approaches typically used for cytochrome P450 reaction phenotyping, UGT2B7 is the major enzyme contributing to gemcabene glucuronidation in human liver microsomes.  相似文献   

7.
Long-chain unsaturated fatty acids inhibit several cytochrome P450 and UDP-glucuronosyltransferase (UGT) enzymes involved in drug metabolism, including CYP2C8, CYP2C9, UGT1A9, UGT2B4, and UGT2B7. Bovine serum albumin (BSA) enhances these cytochrome P450 and UGT activities by sequestering fatty acids that are released from membranes, especially with human liver microsomes (HLM) as the enzyme source. Here, we report the effects of BSA on CYP1A2-catalyzed phenacetin (PHEN) O-deethylation and lidocaine (LID) N-deethylation using HLM and Escherichia coli-expressed recombinant human CYP1A2 (rCYP1A2) as the enzyme sources. BSA (2% w/v) reduced (p < 0.05) the K(m) values of the high-affinity components of human liver microsomal PHEN and LID deethylation by approximately 70%, without affecting V(max). The K(m) (or S(50)) values for PHEN and LID deethylation by rCYP1A2 were reduced to a similar extent. A fatty acid mixture, comprising 3 μM concentrations each of oleic acid and linoleic acid plus 1.5 μM arachidonic acid, doubled the K(m) value for PHEN O-deethylation by rCYP1A2. Inhibition was reversed by the addition of BSA. K(i) values for the individual fatty acids ranged from 4.7 to 16.7 μM. Single-point in vitro-in vivo extrapolation (IV-IVE) based on the human liver microsomal kinetic parameters obtained in the presence, but not absence, of BSA predicted in vivo hepatic clearances of PHEN O-deethylation and LID N-deethylation that were comparable to values reported in humans, although in vivo intrinsic clearances were underpredicted. Prediction of the in vivo clearances of the CYP1A2 substrates observed here represents an improvement on other experimental systems used for IV-IVE.  相似文献   

8.
Glucuronidation of SN‐38 serves as an important metabolic pathway in determining the toxic effects of irinotecan. The role of UDP‐glucuronosyltransferases (UGT) 1A9 in SN‐38 glucuronidation pathway is very confusing. This study re‐investigates the pathway through testing effects of bovine serum albumin (BSA) and the selective inhibitor on SN‐38 glucuronidation in pooled human liver microsomes (HLM) and recombinant UGT1A1/UGT1A9. For UGT1A1, SN‐38 glucuronidation was little affected by BSA. Whether in the presence of BSA or not, the reactions both obey Michaelis–Menten kinetics with closed Vmax/Km values. For UGT1A9 and HLM, BSA can significantly accelerate SN‐38 glucuronidation activities and similar effects are further observed on kinetic patterns. In the absence of BSA, reactions by HLM and UGT1A9 both display substrate inhibition kinetics. When BSA is included in the incubations, the reactions exhibit Michaelis–Menten kinetics. To get the true contribution of UGT1A9 in SN‐38 glucuronidation, a relative activity factor (RAF) approach was additionally used. It is suggested that UGT1A9 and 1A1 contribute equally to SN‐38 glucuronidation in HLM. Furthermore, in the presence of BSA, magnolol, a selective UGT1A9 inhibitor, displays moderate inhibition against HLM. Results together conclude that UGT1A9 serves as an additional important contributor to hepatic SN‐38 glucuronidation.  相似文献   

9.
Renal ischaemia is associated with accumulation of fatty acids (FA) and mobilisation of arachidonic acid (AA). Given the capacity of UDP-glucuronosyltransferase (UGT) isoforms to metabolise both drugs and FA, we hypothesised that FA would inhibit renal drug glucuronidation. The effect of FA (C2:0-C20:5) on 4-methylumbelliferone (4-MU) glucuronidation was investigated using human kidney cortical microsomes (HKCM) and recombinant UGT1A9 and UGT2B7 as the enzyme sources. 4-MU glucuronidation exhibited Michaelis-Menten kinetics with HKCM (apparent K(m) (K(m)(app)) 20.3 microM), weak substrate inhibition with UGT1A9 (K(m)(app) 10.2 microM, K(si) 289.6 microM), and sigmoid kinetics with UGT2B7 (S(50)(app)440.6 microM) Similarly, biphasic UDP-glucuronic acid (UDPGA) kinetics were observed with HKCM (S(50) 354.3 microM) and UGT1A9 (S(50) 88.2 microM). In contrast, the Michaelis-Menten kinetics for UDPGA observed with UGT2B7 (K(m)(app) 493.2 microM) suggested that kinetic interactions with UGTs were specific to the xenobiotic substrate and the co-substrate (UDPGA). FA (C16:1-C20:5) significantly inhibited (25-93%) HKCM, UGT1A9 or UGT2B7 catalysed 4-MU glucuronidation. Although linoleic acid (LA) and AA were both competitive inhibitors of 4-MU glucuronidation by HKCM (K(i)(app) 6.34 and 0.15 microM, respectively), only LA was a competitive inhibitor of UGT1A9 (K(i)(app) 4.06 microM). In contrast, inhibition of UGT1A9 by AA exhibited atypical kinetics. These data indicate that LA and AA are potent inhibitors of 4-MU glucuronidation catalysed by human kidney UGTs and recombinant UGT1A9 and UGT2B7. It is conceivable therefore that during periods of renal ischaemia FA may impair renal drug glucuronidation thus compromising the protective capacity of the kidney against drug-induced nephrotoxicity.  相似文献   

10.
Magnolol is a food additive that is often found in mints and gums. Human exposure to this compound can reach a high dose; thus, characterization of magnolol disposition in humans is very important. Previous studies indicated that magnolol can undergo extensive glucuronidation in humans in vivo. In this study, in vitro assays were used to characterize the glucuronidation pathway in human liver and intestine. Assays with recombinant human UDP-glucuronosyltransferase enzymes (UGTs) revealed that multiple UGT isoforms were involved in magnolol glucuronidation, including UGT1A1, -1A3, -1A7, -1A8, -1A9, -1A10, and -2B7. Magnolol glucuronidation by human liver microsomes (HLM), human intestine microsomes (HIM), and most recombinant UGTs exhibited strong substrate inhibition kinetics. The degree of substrate inhibition was relatively low in the case of UGT1A10, whereas the reaction catalyzed by UGT1A9 followed biphasic kinetics. Chemical inhibition studies and the relative activity factor (RAF) approach were used to identify the individual UGTs that played important roles in magnolol glucuronidation in HLM and HIM. The results indicate that UGT2B7 is mainly responsible for the reaction in HLM, whereas UGT2B7 and UGT1A10 are significant contributors in HIM. In summary, the current study clarifies the glucuronidation pathway of magnolol and demonstrates that the RAF approach can be used as an efficient method for deciphering the roles of individual UGTs in a given glucuronidation pathway in the native tissue that is catalyzed by multiple isoforms with variable and atypical kinetics.  相似文献   

11.
UDP-glucuronosyltransferase 2B7 (UGT2B7) is involved in the glucuronidation of a wide array of clinically important drugs and endogenous compounds in humans. The aim of this study was to identify an isoform-selective probe substrate that could be used to investigate genetic and environmental influences on glucuronidation mediated by UGT2B7. Three potential probe substrates [3'-azido-3'-deoxythymidine (AZT), morphine, and codeine], were evaluated using recombinant UGTs and human liver microsomes (HLMs; n = 54). Of 11 different UGTs screened, UGT2B7 was the principal isoform mediating AZT glucuronidation, morphine-3-glucuronidation, and morphine-6-glucuronidation. Codeine was glucuronidated equally well by UGT2B4 and UGT2B7. Enzyme kinetic analysis of these activities typically showed higher apparent Km values for HLMs (pooled and individual) compared with UGT2B7. This difference was least (less than 2-fold higher Km) for AZT glucuronidation and greatest (3- to 6-fold higher Km) for codeine glucuronidation. Microsomal UGT2B7 protein content correlated well with AZT glucuronidation (rs = 0.77), to a lesser extent with morphine-3-glucuronidation (rs = 0.50) and morphine-6-glucuronidation (rs = 0.51), but very weakly with codeine glucuronidation (rs = 0.33). Livers were also genotyped for the UGT2B7*2 (H268Y) polymorphism. No effect of genotype on microsomal glucuronidation or UGT2B7 protein content was observed. In conclusion, although both AZT and morphine can serve as in vitro probe substrates for UGT2B7, AZT appears to be more selective than morphine. Codeine is not a useful UGT2B7 probe substrate because of significant glucuronidation by UGT2B4. The UGT2B7*2 polymorphism is not a determinant of glucuronidation of AZT, morphine, or codeine in HLMs.  相似文献   

12.
Previous studies have shown the importance of the addition of albumin for characterization of hepatic glucuronidation in vitro; however, no reports exist on the effects of albumin on renal or intestinal microsomal glucuronidation assays. This study characterized glucuronidation clearance (CL(int, UGT)) in human kidney, liver, and intestinal microsomes in the presence and absence of bovine serum albumin (BSA) for seven drugs with differential UDP-glucuronosyltransferase (UGT) 1A9 and UGT2B7 specificity, namely, diclofenac, ezetimibe, gemfibrozil, mycophenolic acid, naloxone, propofol, and telmisartan. The impact of renal CL(int, UGT) on accuracy of in vitro-in vivo extrapolation (IVIVE) of glucuronidation clearance was investigated. Inclusion of 1% BSA for acidic drugs and 2% for bases/neutral drugs in incubations was found to be suitable for characterization of CL(int, UGT) in different tissues. Although BSA increased CL(int, UGT) in all tissues, the extent was tissue- and drug-dependent. Scaled CL(int, UGT) in the presence of BSA ranged from 2.22 to 207, 0.439 to 24.4, and 0.292 to 23.8 ml · min(-1) · g tissue(-1) in liver, kidney, and intestinal microsomes. Renal CL(int, UGT) (per gram of tissue) was up to 2-fold higher in comparison with that for liver for UGT1A9 substrates; in contrast, CL(int, UGT) for UGT2B7 substrates represented approximately one-third of hepatic estimates. Scaled renal CL(int, UGT) (in the presence of BSA) was up to 30-fold higher than intestinal glucuronidation for the drugs investigated. Use of in vitro data obtained in the presence of BSA and inclusion of renal clearance improved the IVIVE of glucuronidation clearance, with 50% of drugs predicted within 2-fold of observed values. Characterization and consideration of kidney CL(int, UGT) is particularly important for UGT1A9 substrates.  相似文献   

13.
Carvedilol is administered orally as a racemic mixture of R(+)- and S(-)-enantiomers for treatment of angina pectoris, hypertension and chronic heart failure. We have reported that enzyme kinetic parameters for carvedilol glucuronidation by human liver microsomes (HLM) differed greatly depending on the substrate form, namely, racemic carvedilol and each enantiomer. These phenomena were thought to be caused by mutual inhibition between carvedilol enantiomers during racemate glucuronidation. The aim of this study was to clarify the mechanism of these phenomena in HLM and human intestinal microsomes (HIM) and its relevance to uridine 5'-diphosphate (UDP)-glucuronosyl transferase (UGT) 1A1, UGT2B4 and UGT2B7, which mainly metabolize carvedilol directly in phase II enzymes. HLM apparently preferred metabolizing (S)-carvedilol to (R)-carvedilol in the racemate, but true activities of HLM for both glucuronidation were approximately equal. By determination of the inhibitory effects of (S)-carvedilol on (R)-carvedilol glucuronidation and vice versa, it was shown that (R)-carvedilol glucuronidation was more easily inhibited than was (S)-carvedilol glucuronidation. UGT2B7 was responsible for (S)-carvedilol glucuronidation in HLM. Ratios of contribution to (R)-carvedilol glucuronidation were approximately equal among UGT1A1, UGT2B4 and UGT2B7. However, enzyme kinetic parameters were different between the two lots of HLM used in this study, depending on the contribution ratio of UGT2B4, in which (R)-glucuronidation was much more easily inhibited by (S)-carvedilol than was (S)-glucuronidation by (R)-carvedilol. Meanwhile, HIM preferred metabolizing (R)-carvedilol, and this tendency was not different between the kinds of substrate form.  相似文献   

14.
Darexaban maleate is a novel oral direct factor Xa inhibitor, which is under development for the prevention of venous thromboembolism. Darexaban glucuronide was the major component in plasma after oral administration of darexaban to humans and is the pharmacologically active metabolite. In this study, we identified UDP-glucuronosyltransferases (UGTs) responsible for darexaban glucuronidation in human liver microsomes (HLM) and human intestinal microsomes (HIM). In HLM, the K(m) value for darexaban glucuronidation was >250 μM. In HIM, the reaction followed substrate inhibition kinetics, with a K(m) value of 27.3 μM. Among recombinant human UGTs, UGT1A9 showed the highest intrinsic clearance for darexaban glucuronidation, followed by UGT1A8, -1A10, and -1A7. All other UGT isoforms were inactive toward darexaban. The K(m) value of recombinant UGT1A10 for darexaban glucuronidation (34.2 μM) was comparable to that of HIM. Inhibition studies using typical UGT substrates suggested that darexaban glucuronidation in both HLM and HIM was mainly catalyzed by UGT1A8, -1A9, and -1A10. Fatty acid-free bovine serum albumin (2%) decreased the unbound K(m) for darexaban glucuronidation from 216 to 17.6 μM in HLM and from 35.5 to 18.3 μM in recombinant UGT1A9. Recent studies indicated that the mRNA expression level of UGT1A9 is extremely high among UGT1A7, -1A8, -1A9, and -1A10 in human liver, whereas that of UGT1A10 is highest in the intestine. Thus, the present results strongly suggest that darexaban glucuronidation is mainly catalyzed by UGT1A9 and UGT1A10 in human liver and intestine, respectively. In addition, UGT1A7, -1A8, and -1A9 play a minor role in human intestine.  相似文献   

15.
1.?Icaritin is a natural flavonoid with anti-osteoporosis activity. This study aimed to characterize icaritin glucuronidation by pooled human liver microsomes (HLM) and pooled human intestine microsomes (HIM), and to determine the contribution of individual UDP-glucuronosyltrans-ferase (UGT) enzyme to icaritin glucuronidation.

2.?Glucuronidation rates were determined by incubating icaritin with uridine diphosphate glucuronic acid (UDPGA)-supplemented microsomes. Kinetic parameters were derived by appropriate model fitting. Relative activity factors and activity correlation analysis were performed to identify main UGT isoforms.

3.?UGT1A3, 1A7, 1A8, 1A9 and 2B7 were mainly responsible for catalyzing the formation of two glucuronides (G1 and G2). Icaritin 3-O-glucuronidation (G1) was significantly correlated with Chenodeoxycholic acid (CDCA) glucuronidation (r?=?0.787, p?=?0.002), propofol glucuronidation (r?=?0.661, p?=?0.019) and Zidovudine (AZT) glucuronidation (r?=?0.805, p?=?0.002). Similarly, icaritin 7-O-glucuronidation (G2) was also correlated with CDCA glucuronidation (r?=?0.640, p?=?0.025), propofol glucuronidation (r?=?0.592, p?=?0.043) and AZT glucuronidation (r?=?0.661, p?=?0.019). In addition, UGT1A3, 1A9 and 2B7 contributed 37.5, 33.8 and 21.3% for G1 in pooled HLM, respectively. Also, UGT1A3, 1A9 and 2B7 contributed 34.3, 20.0 and 8.6% for G2 in pooled HLM, respectively.

4.?Icaritin was subjected to significant glucuronidation, wherein UGT1A3, 1A7, 1A8, 1A9 and 2B7 were main contributing enzymes.  相似文献   

16.
Linoleic acid has recently been shown to be glucuronidated in vitro by human liver and intestinal microsomes and recombinant UGT2B7. In the present study, the dietary fatty acids (FA), phytanic acid (PA), and docosahexaenoic acid (DHA) have been used as substrates for human UDP-glucuronosyltransferases (UGTs). Both compounds were effectively glucuronidated by human liver microsomes (HLM; 1.25 +/- 0.36 and 1.12 +/- 0.32 nmol/mg x min for PA and DHA, respectively) and UGT2B7 (0.71 and 0.53 nmol/mg x min). Kinetic analysis produced relatively low K(m) values for PA with both HLM and UGT2B7 (149 and 108 microM, respectively). The K(m) for DHA glucuronidation by HLM (460 microM) was considerably higher than that for UGT2B7 (168 microM), suggesting the involvement in microsomes of other UGT isoforms in addition to UGT2B7. Glucuronidation of PA and DHA by gastrointestinal microsomes from 16 human subjects was determined. In general, both PA and DHA were glucuronidated by gastric and intestinal microsomes, and activity toward both substrates was lowest in the stomach, increased in the small intestine, and lower in the colon. However, there were large interindividual variations in UGT activity toward both substrates in all segments of the intestine, as has been seen with other substrates. Thus, PA and DHA are effective in vitro substrates for human liver, gastric and intestinal microsomes, and glucuronidation may play a role in modulating the availability of these FA as ligands for nuclear receptors.  相似文献   

17.
Edaravone was launched in Japan in 2001 and was the first neuroprotectant developed for the treatment of acute cerebral infarction. Edaravone is mainly eliminated as glucuronide conjugate in human urine (approximately 70%), but the mechanism involved in the elimination pathway remains unidentified. We investigated the glucuronidation of edaravone in human liver microsomes (HLM) and human kidney microsomes (HKM) and identified the major hepatic and renal UDP-glucuronosyltransferases (UGTs) involved. As we observed, edaravone glucuronidation in HLM and HKM exhibited biphasic kinetics. The intrinsic clearance of glucuronidation at high-affinity phase (CL(int1)) and low-affinity phase (CL(int2)) were 8.4 ± 3.3 and 1.3 ± 0.2 μl · min(-1) · mg(-1), respectively, for HLM and were 45.3 ± 8.2 and 1.8 ± 0.1 μl · min(-1) · mg(-1), respectively, for HKM. However, in microsomal incubations contained with 2% bovine serum albumin, CL(int1) and CL(int2) were 16.4 ± 1.2 and 3.7 ± 0.3 μl · min(-1) · mg(-1), respectively, for HLM and were 78.5 ± 3.9 and 3.6 ± 0.5 μl · min(-1) · mg(-1), respectively, for HKM. Screening with 12 recombinant UGTs indicated that eight UGTs (UGT1A1, UGT1A6, UGT1A7, UGT1A8, UGT1A9, UGT1A10, UGT2B7, and UGT2B17) produced a significant amount of glucuronide metabolite. Thus, six UGTs (UGT1A1, UGT1A6, UGT1A7, UGT1A9, UGT2B7, and UGT2B17) expressed in human liver or kidney were selected for kinetic studies. Among them, UGT1A9 exhibited the highest activity (CL(int1) = 42.4 ± 9.5 μl · min(-1) · mg(-1)), followed by UGT2B17 (CL(int) = 3.3 ± 0.4 μl · min(-1) · mg(-1)) and UGT1A7 (CL(int) = 1.7 ± 0.2 μl · min(-1) · mg(-1)). Inhibition study found that inhibitor of UGT1A9 (propofol) attenuated edaravone glucuronidation in HLM and HKM. In addition, edaravone glucuronidation in a panel of seven HLM was significantly correlated (r = 0.9340, p = 0.0021) with propofol glucuronidation. Results indicated that UGT1A9 was the main UGT isoform involved in edaravone glucuronidation in HLM and HKM.  相似文献   

18.
A major metabolic pathway of haloperidol is glucuronidation catalyzed by UDP-glucuronosyltransferase (UGT). In this study, we found that two glucuronides were formed by the incubation of haloperidol with human liver microsomes (HLM) and presumed that the major and minor metabolites (>10-fold difference) were O- and N-glucuronide, respectively. The haloperidol N-glucuronidation was catalyzed solely by UGT1A4, whereas the haloperidol O-glucuronidation was catalyzed by UGT1A4, UGT1A9, and UGT2B7. The kinetics of the haloperidol O-glucuronidation in HLM was monophasic with K(m) and V(max) values of 85 μM and 3.2 nmol · min?1 · mg?1, respectively. From the kinetic parameters of the recombinant UGT1A4 (K(m) = 64 μM, V(max) = 0.6 nmol · min?1 · mg?1), UGT1A9 (K(m) = 174 μM, V(max) = 2.3 nmol · min?1 · mg?1), and UGT2B7 (K(m) = 45 μM, V(max) = 1.0 nmol · min?1 · mg?1), we could not estimate which isoform largely contributes to the reaction. Because the haloperidol O-glucuronidation in a panel of 17 HLM was significantly correlated (r = 0.732, p < 0.01) with zidovudine O-glucuronidation, a probe activity of UGT2B7, and the activity in the pooled HLM was prominently inhibited (58% of control) by gemfibrozil, an inhibitor of UGT2B7, we surmised that the reaction would mainly be catalyzed by UGT2B7. We could successfully estimate, using the concept of the relative activity factor, that the contributions of UGT1A4, UGT1A9, and UGT2B7 in HLM were approximately 10, 20, and 70%, respectively. The present study provides new insight into haloperidol glucuronidation, concerning the causes of interindividual differences in the efficacy and adverse reactions or drug-drug interactions.  相似文献   

19.
Mycophenolic acid (MPA), the active metabolite of the immunosuppressant mycophenolate mofetil is primarily metabolized by glucuronidation. The nature of UDP-glucuronosyltransferases (UGTs) involved in this pathway is still debated. The present study aimed at identifying unambiguously the UGT isoforms involved in the production of MPA-phenyl-glucuronide (MPAG) and MPA-acylglucuronide (AcMPAG). A liquid chromatography-tandem mass spectrometry method allowing the identification and determination of the metabolites of mycophenolic acid was developed. The metabolites were characterized in urine and plasma samples from renal transplant patients under mycophenolate mofetil therapy and in vitro after incubation of mycophenolic acid with human liver (HLM), kidney (HKM), or intestinal microsomes (HIM). The UGT isoforms involved in MPAG or AcMPAG production were investigated using induced rat liver microsomes, heterologously expressed UGT (Supersomes), and chemical-selective inhibition of HLM, HKM, and HIM. The three microsomal preparations produced MPAG, AcMPAG, and two mycophenolate glucosides. Among the 10 UGT isoforms tested, UGT 1A9 was the most efficient for MPAG synthesis with a K(m) of 0.16 mM, close to that observed for HLM (0.18 mM). According to the chemical inhibition experiments, UGT 1A9 is apparently responsible for 55%, 75%, and 50% of MPAG production by the liver, kidney, and intestinal mucosa, respectively. Although UGT 2B7 was the only isoform producing AcMPAG in a significant amount, the selective inhibitor azidothymidine only moderately reduced this production (approximately -25%). In conclusion, UGT 1A9 and 2B7 were clearly identified as the main UGT isoforms involved in mycophenolic acid glucuronidation, presumably due to their high hepatic and renal expression.  相似文献   

20.
Interactions between the UGT2B7-catalyzed glucuronidation of zidovudine (AZT), 4-methylumbelliferone (4MU), and 1-naphthol (1NP) were analyzed using multisite and empirical kinetic models to explore the existence of multiple substrate and effector binding sites within this important drug metabolizing enzyme. 4MU and 1NP glucuronidation by UGT2B7 exhibit sigmoidal kinetics characteristic of homotropic cooperativity (autoactivation), which may be modeled assuming the existence of two equivalent, interacting substrate binding sites. In contrast, UGT2B7-catalyzed AZT glucuronidation follows hyperbolic (Michaelis-Menten) kinetics. Although 4MU and 1NP decreased the binding affinity of AZT, the kinetics of AZT glucuronidation changed from hyperbolic to sigmoidal in the presence of both modifiers. Data were well described by a generic two-substrate binding site model in which there is no interaction between the sites in the absence of 4MU or 1NP, but heterotropic cooperativity results from the binding of modifier. Inhibition of 4MU and 1NP glucuronidation by AZT and interactions between 4MU and 1NP required more complex three-site models, where the modifier acts via a distinct effector site to alter either substrate binding affinity or Vmax without affecting the homotropic cooperativity characteristic of 4MU and 1NP glucuronidation. It is noteworthy that 1NP inhibited 4MU glucuronidation, whereas 4MU activated 1NP glucuronidation. The results are consistent with the existence of two "catalytic" sites for each substrate within the UGT2B7 active site, along with multiple effector sites. The multiplicity of binding and effector sites results in complex kinetic interactions between UGT2B7 substrates, which potentially complicates inhibition screening studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号