首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Severe injury primes the innate-immune system for increased Toll-like receptor 4 (TLR4)-induced proinflammatory cytokine production by macrophages. In this study, we examined changes in TLR4 signaling pathways in splenic macrophages from burn-injured or sham mice to determine the molecular mechanism(s) responsible for the increased TLR4 responsiveness. Using flow cytometry and specific antibodies, we first looked for injury-induced changes in the expression levels of several TLR-associated signaling molecules. We found similar levels of myeloid differentiation primary-response protein 88 (MyD88) and interleukin-1 receptor-associated kinase-M (IRAK-M) and somewhat lower levels of total p38, extracellular signal-regulated kinase (ERK), and stress-activated protein kinase (SAPK)/c-jun N-terminal kinase (JNK) mitogen-activated protein kinases (MAPKs) in burn compared with sham macrophages. However, with the use of antibodies specific for the phosphorylated (activated) forms of the three MAPKs, we found that macrophages from burn mice showed a twofold increase in purified lipopolysaccharide (LPS)-stimulated p38 activation as compared with cells from sham mice on days 1 and 7 post-injury, whereas ERK and SAPK/JNK activation was increased by burn injury only on day 1. Using the specific p38 inhibitor (SB203580), we confirmed that the increase in tumor necrosis factor alpha production by LPS-stimulated burn macrophages requires p38 activation. Although we demonstrated that injury increases macrophage TLR4 mRNA expression and intracellular expression of TLR4-myeloid differentiation protein-2 (MD-2) protein, macrophage cell-surface expression of TLR4-MD-2 was not changed by burn injury. Our results suggest that the injury-induced increase in TLR4 reactivity is mediated, at least in part, by enhanced activation of the p38 signaling pathway.  相似文献   

2.
目的:观察严重烧伤早期大鼠脾脏Toll样受体4(TLR4)、TNF-α mRNA的表达变化及外周血CD4 CD25 调节性T细胞(Treg)和内毒素(ET)的变化规律,探讨烧伤后肠源性感染时机体的防御反应机制。方法:将大鼠随机分成正常对照组和烧伤组,在其背部造成30%体表面积Ⅲ度烧伤模型,在烧伤前及烧伤后2、5、8、12、24、48及72h等不同时间点留取脾脏组织和外周血,RT-PCR方法测脾脏TLR4、TNF-α mRNA表达,Western blot法测脾脏TLR4蛋白表达,流式细胞术检测血浆Treg百分数,鲎试剂法测血浆内毒素含量。结果:各观测指标值较伤前显著升高,TLR4 mRNA、TLR4蛋白、Treg和ET均在烧伤后8h达高峰,其峰值分别为3.66±0.51、2.27±0.19、(63.19±12.65)%和11.68±1.71Eu/mL;TNF-α表达高峰在烧伤后12h,峰值为1.65±0.23;各观测指标峰值与正常对照组比较,差异有统计学意义(P<0.01)。烧伤后TLR4 mRNA的表达与Treg、ET及TNF-α mRNA之间均呈正相关,相关系数分别为0.898、0.811和0.462(P<0.01)。结论:Treg在严重烧伤早期的免疫调节过程中发挥了重要作用,其机制与烧伤后肠源性内毒素上调的LPS-TLR4信号转导系统有关。  相似文献   

3.
Studies have shown that cell-mediated immunity is markedly suppressed after thermal injury. T lymphocyte dysfunction and macrophage hyperactivity have been implicated as causative factors. Previous studies have primarily examined the effects of thermal injury on alphabeta T lymphocytes; however, the role of gammadelta T lymphocytes in the immune response after thermal injury is unclear. Therefore, wild-type mice and mice lacking the TCR delta gene (TCR delta-/-) were subjected to a third-degree scald burn and cell-mediated immune responses assessed at 7 days post-injury. TCR delta-/- mice had 75% mortality after burn injury compared with 25% mortality in the wild-type group. Plasma interleukin-6 (IL-6) levels were significantly elevated at 2, 4, and 18 h post-injury, whereas no difference was observed in tumor necrosis factor alpha (TNF-alpha) and prostaglandin E2 (PGE2) plasma levels. Plasma levels of these inflammatory mediators were similar in wild-type and TCR delta-/- mice post-injury. Splenic macrophage PGE2, IL-6, TNF-alpha, and IL-10 production was significantly increased in wild-type mice at 7 days post-injury, whereas macrophages from injured TCR delta-/- mice had a significantly attenuated capacity to produce IL-6 and TNF-alpha. In contrast, the increased release of PGE2 and IL-10 by macrophages post-injury was not reduced in TCR delta-/- mice. These results implicate a dual role for gammadelta T lymphocytes in the immunopathogenic response to burn injury: (1) they contribute to survival from the insult; and (2) they mediate the induction of a pro-inflammatory macrophage phenotype at 7 days post-injury. Thus, gammadelta T lymphocytes, in part through the modulation of macrophage activity, appear to contribute to the immune dysfunction after thermal injury.  相似文献   

4.
Disseminated fungal infections are increasing. However, the interactions between the body's largest population of tissue macrophages, the Kupffer cells and the fungal pathogens are scarcely understood. The aim of this study was to examine the involvement of Toll-like receptor 4 (TLR4) signalling in cytokine production, using primary cultures of rat and murine Kupffer cells exposed to Aspergillus fumigatus and Candida albicans hyphae and conidia. All fungal components induced the release of tumour necrosis factor-alpha (TNF-alpha), but with delayed kinetics compared with lipopolysaccharide (LPS). Candida albicans was the most potent inducer of TNF-alpha protein and mRNA and the only inducer of interleukin-10 (IL-10) in rat Kupffer cells. All fungal components induced enhanced mRNA levels of macrophage inhibitory protein-2 (MIP-2) in the cells, similar to LPS. Inhibitors of Src tyrosine kinases added to cells prior to stimulation led to attenuation in the release of both TNF-alpha (60%, P < 0.05) and IL-10 (70%, P < 0.05) induced by C. albicans conidia but did not influence the LPS-mediated cytokine release. Murine Kupffer cells (C57BL/10J) also released TNF-alpha as well as the chemokines keratinocyte-derived chemokine (KC) and MIP-2 in response to fungal component. Surprisingly, Kupffer cells from TLR4-deficient C57BL/ScCr mice exhibited significantly enhanced production of KC and MIP-2 upon stimulation by fungal components compared with control littermates (P < 0.05). Our study demonstrates that Aspergillus and Candida components induce cytokine production in rat Kupffer cells and that the response to C. albicans conidia involves Src tyrosine kinases. The experiments with TLR4-deficient Kupffer cells suggest that the cytokine response in these cells to fungal component is not mediated by TLR4.  相似文献   

5.
Death-associated protein kinase (DAPk) is a tumor suppressor thought to inhibit cancer by promoting apoptosis and autophagy. Because cancer progression is linked to inflammation, we investigated the in vivo functions of DAPk in lung responses to various acute and chronic inflammatory stimuli. Lungs of DAPk knockout (KO) mice secreted higher concentrations of IL-6 and keratinocyte chemoattractant (or chemokine [C-X-C motif] ligand 1) in response to transient intranasal administrations of the Toll-like receptor-4 (TLR4) agonist LPS. In addition, DAPk-null macrophages and neutrophils were hyperresponsive to ex vivo stimulation with LPS. DAPk-null neutrophils were also hyperresponsive to activation via Fc receptor and Toll-like receptor-3, indicating that the suppressive functions of this kinase are not restricted to TLR4 pathways. Even after the reconstitution of DAPk-null lungs with DAPk-expressing leukocytes by transplanting wild-type (WT) bone marrow into lethally irradiated DAPk KO mice, the chimeric mice remained hypersensitive to both acute and chronic LPS challenges, as well as to tobacco smoke exposure. DAPk-null lungs reconstituted with WT leukocytes exhibited elevated neutrophil content and augmented cytokine secretion in the bronchoalveolar space, as well as enhanced epithelial cell injury in response to both acute and chronic inflammatory conditions. These results suggest that DAPk attenuates a variety of inflammatory responses, both in lung leukocytes and in lung epithelial cells. The DAPk-mediated suppression of lung inflammation and airway injury may contribute to the tumor-suppressor functions of this kinase in epithelial carcinogenesis.  相似文献   

6.
Age-associated changes in glial reactivity may predispose individuals to exacerbated neuroinflammatory cytokine responses that are permissive to cognitive and behavioral complications. The purpose of this study was to determine if aging is associated with an exaggerated sickness response to central innate immune activation. Our results show that intracerebroventricular (i.c.v.) administration of lipopolysaccharide (LPS) caused a heightened proinflammatory cytokine response (IL-1beta, IL-6, and TNFalpha) in the cerebellum 2h post i.c.v. injection in aged mice compared to adults. This amplified inflammatory profile was consistent with a brain region-dependent increase in reactive glial markers (MHC class II, TLR2 and TLR4). Moreover, LPS caused a prolonged sickness behavior response in aged mice that was paralleled by a protracted expression of brain cytokines in the cerebellum and hippocampus. Finally, central LPS injection caused amplified and prolonged IL-6 levels at the periphery of aged mice. Collectively, these data establish that activation of the central innate immune system leads to exacerbated neuroinflammation and prolonged sickness behavior in aged as compared to adult mice.  相似文献   

7.
Acute lung injury (ALI) induced by lipopolysaccharide (LPS) is a major cause of mortality among humans. ALI is characterized by microvascular protein leakage, neutrophil influx, and expression of proinflammatory mediators, followed by severe lung damage. LPS binding to its receptors is the crucial step in the causation of these multistep events. LPS binding and signaling involves CD14 and Toll-like receptor 4 (TLR4). However, the relative contributions of CD14 and TLR4 in the induction of ALI and their therapeutic potentials are not clear in vivo. Therefore, the aim of the present study was to compare the roles of CD14 and TLR4 in LPS-induced ALI to determine which of these molecules is the more critical target for attenuating ALI in a mouse model. Our results show that CD14 and TLR4 are necessary for low-dose (300-microg/ml) LPS-induced microvascular leakage, NF-kappaB activation, neutrophil influx, cytokine and chemokine (KC, macrophage inflammatory protein 2, tumor necrosis factor alpha, interleukin-6) expression, and subsequent lung damage. On the other hand, when a 10-fold-higher dose of LPS (3 mg/ml) was used, these responses were only partially dependent on CD14 and they were totally dependent on TLR4. The CD14-independent LPS response was dependent on CD11b. A TLR4 blocking antibody abolished microvascular leakage, neutrophil accumulation, cytokine responses, and lung pathology with a low dose of LPS but only attenuated the responses with a high dose of LPS. These data are the first to demonstrate that LPS-induced CD14-dependent and -independent (CD11b-dependent) signaling pathways in the lung are entirely dependent on TLR4 and that blocking TLR4 might be beneficial in lung diseases caused by LPS from gram-negative pathogens.  相似文献   

8.
Toll-like receptor (TLR)4 is critical for endotoxin recognition and cellular responses. Using Tlr4 transgenic mice, we investigated the influence of Tlr4 gene dosage on acute respiratory response to endotoxin. Transgenic mice expressing three, six, or 30 copies of Tlr4, control, and Tlr4-deficient mice received intranasal administration of lipopolysaccharide (LPS; 10 ug), and the airway response was analyzed by plethysmography, lung histology, cell recruitment, cytokine and chemokine secretion and protein leakage into the bronchoalveolar space. We demonstrate that overexpression of Tlr4 augmented a LPS-induced bronchoconstrictive effect, as well as tumor necrosis factor and CXC chemokine ligand 1 (keratinocyte-derived chemokine) production. Neutrophil recruitment, microvascular and alveolar epithelial injury with protein leak in the airways, and damage of the lung microarchitecture were Tlr4 gene dose-dependently increased. Therefore, the TLR4 expression level determines the extent of acute pulmonary response to inhaled endotoxin, and TLR4 may thus be a valuable target for immunointervention in acute lung inflammation as a result of endotoxins.  相似文献   

9.
Zhao W  An H  Zhou J  Xu H  Yu Y  Cao X 《Immunology letters》2007,108(2):137-142
Fever influences multiple parameters of the immune response. However, the mechanisms by which fever manipulates immune response remain undefined. Here we present the evidences that fever range hyperthermia differentially regulates immune response to lipopolysaccharide (LPS) and lipoteichoic acids (LTA) through modulating Toll-like receptor (TLR) signaling. Pretreatment with 39.5 degrees C temperature enhanced LPS, but not LTA, induced NF-kappaB activation and TNF-alpha, IL-6 production in human macrophages. Consistently, expression of TLR4, but not TLR2, was up-regulated by 39.5 degrees C treatment. The increase in LPS-induced cytokine production was inhibited by TLR4-blocking antibody, indicating the enhancement of LPS-induced cytokine production by 39.5 degrees C pretreatment was TLR4-dependent. Pretreatment of mice with 39.5 degrees C temperature also enhanced LPS, but not LTA, induced TNF-alpha and IL-6 production in vivo. These results support the concept that fever range hyperthermia might activate innate immune response by promoting TLR4 expression and signaling, providing a possible mechanistic explanation for the function of fever in regulating innate immune responses.  相似文献   

10.
Dendritic cells (DCs) are required for the initiation of primary immune responses. The pattern of Toll-like receptor (TLR) expression on various subsets of these cells has been shown to differ, suggestive of distinct roles in influencing immune responses. We have examined here the responses of immature DCs derived from murine bone marrow (BMDCs) to a range of TLR ligands. BMDCs cultured for 6 days in the presence of granulocyte-macrophage colony-stimulating factor were stimulated for 24 hr with ligands to TLR1-2 [Pam(3)Cys-Ser-(Lys)(4) (PAM)], TLR2-6 (macrophage-activating lipopeptide-2 (MALP-2); zymosan or peptidoglycan (PG)], TLR3 (polyinosinic-polycytidylic acid), TLR4 [lipopolysaccharide R515 (LPS)], TLR5 (flagellin), TLR7 (polyuridylic acid) and TLR9 [CpG ODN2395 (CpG)]. DC activation was monitored using membrane marker expression and analysis of culture supernatants for cytokine/chemokine release. Ligands to TLR3 and TLR7 failed to activate BMDCs. All other TLR ligands caused elevated expression of membrane markers. PAM, MALP-2 and LPS induced high-level expression of proinflammatory cytokines and chemokines. Treatment with CpG was associated with a preferential type 1 cytokine and chemokine profile. Zymosan and PG were proinflammatory but also skewed towards a type 2 pattern of cytokines and chemokines. In contrast, flagellin did not cause marked secretion by BMDCs of cytokines or chemokines. These data for BMDCs are largely consistent with the reported TLR repertoire of freshly isolated murine Langerhans cells. In addition, murine BMDCs show selective responses to TLR ligands with respect to general activation, with differentiated cytokine patterns suggestive of potential priming for divergent immune responses.  相似文献   

11.
12.
Tight regulation of the production of the key pro-inflammatory cytokine tumour necrosis factor-alpha (TNF-alpha) is essential for the prevention of chronic inflammatory diseases. In vivo administration of a synthetic phospholipid, named hereafter phospho-ceramide analogue-1 (PCERA-1), was previously found to suppress lipopolysaccharide (LPS)-induced TNF-alpha blood levels. We therefore investigated the in vitro anti-inflammatory effects of PCERA-1. Here, we show that extracellular PCERA-1 potently suppresses production of the pro-inflammatory cytokine TNF-alpha in RAW264.7 macrophages, and in addition, independently and reciprocally regulates the production of the anti-inflammatory cytokine interleukin-10 (IL-10). Specificity is demonstrated by the inability of the phospholipids ceramide-1-phosphate (C1P), sphingosine-1-phosphate (S1P) and lysophosphatidic acid (LPA) to perform these activities. Similar TNF-alpha suppression and IL-10 induction by PCERA-1 were observed in macrophages when activated by Toll-like receptor 4 (TLR4), TLR2 and TLR7 agonists. Regulation of cytokine production is demonstrated at the mRNA and protein levels. Finally, we show that, while PCERA-1 does not block activation of nuclear factor (NF)-kappaB and mitogen-activated protein kinases by LPS, it elevates the intracellular cAMP level. In conclusion, the anti-inflammatory activity of PCERA-1 seems to be mediated by a cell membrane receptor, upstream of cAMP production, and eventually TNF-alpha suppression and IL-10 induction. Thus, identification of the PCERA-1 receptor may provide new pharmacological means to block inflammation.  相似文献   

13.
Burn patients often experience a devastating inflammatory response to infection within the first two weeks after thermal injury. The inflammatory cytokines IL-6, TNF and IL-1 have been implicated in this condition but most studies have focused on the abnormal levels of cytokines in the plasma. In this study the production of cytokines was compared for Kupffer cells versus splenic macrophages; endotoxin (LPS) stimulation versus no stimulation; and burn (post burn days 1, 3 and 8) versus no burn (control). Corresponding serum levels of IL-6 were also determined. Kupffer cells from normal or burned animals were shown to produce much higher amounts of the inflammatory cytokines than that produced by splenic macrophages. An exception to this was the equal production of TNF by LPS-stimulated hepatic and splenic cells. Both LPS-stimulated Kupffer cells and splenic macrophages produced larger amounts of the cytokines than that produced by the unstimulated cells. There was a significant effect of thermal injury on cytokine production by LPS-stimulated Kupffer cells at post burn day 8 and on TNF production by stimulated splenic macrophages also at post burn day eight. Although there was a statistically significant effect of thermal injury at post burn day 8 on IL-1 production by unstimulated splenic macrophages, the absolute amount of cytokine produced was very small. The results suggest that by post burn day 8 the cells may have become primed to respond to a stimulus such as endotoxin (LPS), a condition that could arise in a burn patient from sepsis. Strangely, the large spike in serum IL-6 level occurred at post burn day one and the level of the cytokine returned nearly to the control value on post burn days 3 and 8.  相似文献   

14.
CXC chemokines are potent attractants of neutrophil granulocytes, T cells or natural killer cells. Toll-like receptors (TLR) recognize microbial components and are also activated by endogenous molecules possibly implicated in autoimmune arthritis. In contrast to CXC chemokine ligand 8 (CXCL8), no CXC chemokine receptor 3 (CXCR3) ligand (ie CXCL9, CXCL10 and CXCL11) was induced by bacterial TLR ligands in human microvascular endothelial cells (HMVEC). However, peptidoglycan (PGN), double-stranded (ds) RNA or lipopolysaccharide (LPS) (TLR2, TLR3 or TLR4 ligands, respectively) synergized with interferon-gamma (IFN-gamma) at inducing CXCL9 and CXCL10. In contrast, enhanced CXCL11 secretion was only obtained when IFN-gamma was combined with TLR3 ligand. Furthermore, flagellin, loxoribine and unmethylated CpG oligonucleotide (TLR5, TLR7 and TLR9 ligands, respectively) did not enhance IFN-gamma-dependent CXCR3 ligand production in HMVEC. In analogy with TLR ligands, tumor necrosis factor-alpha (TNF-alpha) or interleukin-1beta (IL-1beta), in combination with IFN-gamma, synergistically induced CXCL9 and CXCL11 in HMVEC and human fibroblasts, two fundamental cell types delineating the joint cavity. Etanercept, a humanized soluble recombinant p75 TNF-receptor/IgG(1)Fc fusionprotein, neutralized synergistic CXCL9 production induced by TNF-alpha plus IFN-gamma, but not synergy between IFN-gamma and the TLR ligands PGN or LPS. Synovial chemokine concentrations exemplify the physiopathological relevance of the observed in vitro chemokine production patterns. In synovial fluids of patients with spondylarthropathies (ie ankylosing spondylitis or psoriatic arthritis) or rheumatoid arthritis, significantly enhanced CXCL9, but not CXCL11 levels, were detected compared to concentrations in synovial fluids of patients with metabolic crystal-induced arthritis. Thus, CXCL9 is an important chemokine in autoimmune arthritis.  相似文献   

15.
Dendritic cells are key components of successful immunological responses bridging innate and adaptive defenses. In this study we wanted to know whether ligation of toll-like receptors (TLR) expressed by dendritic cells would induce differential proinflammatory mediator expression and whether these dendritic cells would differentially impact T cell function. For this purpose bone marrow-derived dendritic cells from OTII mice were used. The dendritic cells showed detectable levels of TLR1, 2, 4, 6, 7, 8 and 9, with TLR2 and TLR4 expressed at the highest levels. To determine whether TLR ligation differentially influenced proinflammatory mediator expression the dendritic cells were stimulated with peptidoglycan (PGN) or lipopolysaccharide (LPS) for TLR2 or TLR4, respectively. Comparisons were made to dendritic cells exposed to TNF-alpha or saline as controls. Whereas, both LPS and PGN were equally effective at inducing CXCL1 and TNF-alpha expression from the dendritic cells, LPS was unique at inducing CCL2 expression, and PGN was unique at inducing IL-1beta expression. Despite these differences, LPS and PGN treated dendritic cells were equally effective at eliciting IFN-gamma expression from T cells in an antigen-specific manner. These data indicate that ligation of TLR by components of Gram+ and Gram- bacteria differentially influence dendritic cell proinflammatory mediator expression, and that differential mediator production by dendritic cells upon TLR stimulation does not impact T cell cytokine production.  相似文献   

16.
Tumor necrosis factor (TNF)-alpha is a cytokine produced by alveolar macrophages in response to LPS in the lung. Clara cells are bronchiolar epithelial cells that produce a variety of proinflammatory cytokines in response to LPS but not to TNF-alpha. In this study, we examined whether TNF-alpha affects Clara cell cytokine production in the setting of LPS stimulation. Using a transformed murine Clara cell line (C22), we observed that both LPS and TNF-alpha induced production of keratinocyte-derived chemokine (KC) and monocyte chemoattractant protein (MCP)-1. We also found that simultaneous LPS and TNF-alpha stimulation is synergistic for KC production, but additive for MCP-1 production. By using a Transwell coculture system of RAW264.7 macrophages and Clara cells isolated from C57Bl/6 mice, we found that macrophages produce a soluble factor that enhances Clara cell KC production in response to LPS. Cocultures of Clara cells from mice deficient in TNF-alpha receptors with RAW264.7 macrophages demonstrated that the effect of macrophages on Clara cells is mediated primarily via TNF-alpha. To determine whether these findings occur in vivo, we treated wild-type and TNF receptor-deficient mice intratracheally with LPS and examined the expression of KC. LPS-treated, TNF receptor-deficient mice showed much less KC mRNA in airway epithelial cells compared with wild-type mice. In contrast, a similar number of KC-expressing cells was seen in the lung periphery. Thus, upregulation of KC by Clara cells in the setting of LPS stimulation is largely dependent on TNF-alpha originating from alveolar macrophages. These findings shed light on macrophage-Clara cell interactions in regulating the pulmonary inflammatory response to LPS.  相似文献   

17.
Rapid overproduction of proinflammatory cytokines are characteristic of sepsis. CD14(dim)CD16(+) monocytes are thought to be major producers of cytokine and have been shown to be elevated in septic patients. Toll-like receptors (TLR) are pattern recognition receptors important in mediating the innate immune response and their activation can lead to production of cytokines. Using whole blood culture and flow cytometry we have investigated TLR2 and TLR4 regulation after stimulation with sepsis-relevant antigens [lipopolysaccharide (LPS), Staphylococcal enterotoxin B (SEB) and peptidoglycan (PGN)]. The percentage of CD14(dim)CD16(+) monocyte population expanded at 20 h post-stimulation, after a rise in tumour necrosis factor (TNF)-alpha and interleukin (IL)-6 at 2 h. A strong positive correlation between the percentage of CD14(dim)CD16(+) monocytes and secreted TNF-alpha was demonstrated (r = 0.72). Furthermore, we were able to induce expansion of the CD14(dim)CD16(+) population to approximately 35% of all monocytes with the addition of recombinant TNF-alpha to the whole blood culture. TLR4 was found to be expressed 2.5 times higher on CD14(dim)CD16(+) compared to CD14(+) CD16(-) monocytes, while TLR2 expression was similar in both subpopulations. The CD14(dim)CD16(+) and CD14(+) CD16(-) monocyte populations were different in their response to various antigens. LPS down-regulated TLR4 by 4.9 times in CD16(+) monocytes compared to only 2.3 times in CD16(-) monocytes at 2 h. LPS was able to up-regulate TLR2 by 6.2 times after 2 h, with no difference between the subpopulations. LPS further up-regulated TLR2 by 18.4 times after 20 h only in the CD14(+) CD16(-) population. PGN and SEB induced no significant changes in TLR2 or TLR4 expression. We hypothesize that following exposure to bacterial antigens, subsequent TNF-alpha drives a differentiation of monocytes into a CD14(dim)CD16(+) subpopulation.  相似文献   

18.
Lipopolysaccharide (LPS), the principal component of the outer membrane of Gram-negative bacteria, stimulates various cell types to release numerous proinflammatory mediators such as TNF-alpha, IL-6 and IL-12, which may damage cells and lead to organ injury, even sepsis and septic shock. Toll-like receptor 4 (TLR4) has been identified as the receptor involved in the recognition of LPS, but the role of LPS uptake in activating signal transduction remains controversial. In the present study, TNF-alpha was used as a marker of macrophages/ monocytes activated by LPS, and CQ was used as an inhibitor of endosome mature in order to definitude what stage of the signal transduction elicited by LPS was interrupted. We found that there indeed existed internalization of LPS and internalization partially participated in LPS signaling since CQ inhibited cytokine release, and decreased accumulation of FITC-LPS in hPBMCs. In contrast, anti-hTLR4 antibody could decrease cytokine release, but had no inhibition on accumulation of FITC-LPS. This result revealed that inhibition of cytokine release was related to reduction of FITC-LPS accumulation in the cells. But TLR4 on the cell surface couldn't participate in internalization of LPS. Thus, LPS signaling and internalization couldn't be viewed as mutually independent processes.  相似文献   

19.
20.
To investigate the differences in cytokine regulation in vitro as compared to in vivo, we examined the synthesis of tumor necrosis factor-alpha (TNF-alpha) and interleukin-6 (IL-6) by peritoneal macrophages in response to lipopolysaccharide (LPS). Mice (CBA/J) were primed with an intraperitoneal injection of complete Freund's adjuvant and after 2 weeks, peritoneal cells were harvested for culture or mice were injected intraperitoneally with LPS for in vivo studies. In ascites fluid, TNF-alpha peaked 1 hour after LPS and returned to baseline levels by 4 hours. In contrast, TNF-alpha in the media reached maximum at 7 hours. Expression of TNF-alpha messenger (m)RNA in vivo was rapid but transient, as levels peaked at 15 minutes and returned to baseline 1 hour after LPS. In contrast, TNF-alpha mRNA in vitro became maximal at 1 hour, but remained elevated to 5 hours after LPS. In vivo, IL-6 in ascites fluid peaked at 2 hours, whereas in vitro, IL-6 continued increasing to 24 hours. In vivo, IL-6 mRNA reached maximum at 30 minutes, but fell below baseline by 1.5 hours after LPS. In contrast, IL-6 mRNA in vitro was sustained at maximal expression between 5 to 9 hours after LPS. These results demonstrate that both TNF-alpha and IL-6 synthesis is more rapid in vivo than in vitro. The rapid kinetics of cytokine expression in vivo must considered when designing strategies to inhibit cytokine action in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号