首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 719 毫秒
1.
BACKGROUND: Experimental work in various prostate cancer models revealed that the androgen receptor is frequently upregulated and implicated in tumor progression. However, little attention has been paid to the androgen receptor-signaling pathway in the development of therapy resistance in patients who receive chronic treatment with a non-steroidal anti-androgen. METHODS: We have generated a novel subline, LNCaP-Bic, after prolonged treatment with androgen and bicalutamide in vitro. Proliferation of LNCaP-Bic cells in the absence or presence of androgen, tocopherol succinate, and/or bicalutamide was assessed by cell counting. Androgen receptor expression was determined by Western blot. Luciferase activity was measured in cells transfected with an androgen-responsive reporter. RESULTS: In basal conditions, proliferation of LNCaP-Bic cells increased more than threefold over that of control LNCaP cells. Neither synthetic androgen R1881 nor bicalutamide showed any effect on LNCaP-Bic growth in vitro. Androgen receptor expression did not differ between the cell subline generated in the presence of bicalutamide and parental LNCaP cells. The ability of R1881 to induce reporter gene activity in LNCaP-Bic cells was reduced by 56%. Tocopherol succinate caused inhibition of proliferation only in the parental cell line although the androgen receptor and prostate-specific antigen were down regulated by the vitamin E derivative in both parental LNCaP and LNCaP-Bic cells. CONCLUSIONS: Androgen receptor-mediated signal transaction is not enhanced in cells selected in the presence of bicalutamide. Our data may suggest that a more differentiated approach in targeting the androgen receptor is needed in prostate cancers that become resistant to classic endocrine treatment.  相似文献   

2.
BACKGROUND: We assessed the influence of sequential treatment of ionizing radiation followed by tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) on intracellular mechanisms of apoptosis of prostate tumor cells in vitro and in vivo. METHODS: Prostate normal and cancer cells were exposed to irradiation and TRAIL. Four- to 6-week-old athymic nude mice were injected s.c. with PC-3 tumor cells. Tumor bearing mice were exposed to irradiation and TRAIL, either alone or in combination (TRAIL after 24 hr of irradiation), and tumor growth, apoptosis, and survival of mice were examined. Expressions of death receptors, Bcl-2 family members, and caspase were measured by Western blotting, ELISA, and ribonuclease protection assay; tumor cellularity was assessed by H&E staining; inhibition of p53 was performed by RNA interference (RNAi) technology, and apoptosis was measured by annexin V/propidium iodide staining, and terminal deoxynucleotidyltransferase-mediated nick end labeling assay. RESULTS: Irradiation significantly augmented TRAIL-induced apoptosis in prostate cancer cells through upregulation of DR5, Bax, and Bak, and induction of caspase activation. Dominant negative FADD and p53 siRNA inhibited the synergistic interaction between irradiation and TRAIL. The pretreatment of cells with irradiation followed by TRAIL significantly enhanced more apoptosis than single agent alone or concurrent treatment. Furthermore, irradiation sensitized TRAIL-resistant LNCaP cells to undergo apoptosis. The sequential treatment of xenografted mice with irradiation followed by TRAIL-induced apoptosis through activation of caspase-3, induction of Bax and Bak, and inhibition of Bcl-2, and completely eradicated the established tumors with enhanced survival of nude mice. CONCLUSION: The sequential treatment with irradiation followed by TRAIL can be used as a viable option to enhance the therapeutic potential of TRAIL in prostate cancer.  相似文献   

3.
BACKGROUND: The differential sensitivity of tumor cells to TRAIL-induced apoptosis may be mediated by different intracellular inhibitors of apoptosis, and only a few reports have described the pathway(s) that are activated in response to TRAIL in prostate cells. METHODS: LNCaP was transfected with a dominant-negative form of FADD (FADD-DN) and cells were selected in the presence of hygromycin. Cell viability was estimated by calcein assay. Apoptosis was estimated by caspase activation using both fluorogenic substrates and Western blot analysis of activated caspases. To detect cytochrome c release, mitochondria-free cytosol was prepared and Western blot analysis was performed. RESULTS: LNCaP is resistant to TRAIL but TRAIL transiently induces DEVDase activity and activation of caspase-8; caspase-2, -3, -7, and -9 were not activated. Wortmannin, an inhibitor of the PI3K/Akt pathway, converted the phenotype of LNCaP from TRAIL-resistant to -sensitive. In the presence of wortmannin TRAIL induced activation of caspase-2, -3, -7, -8, and -9, as well as dissipation of mitochondrial transmembrane potential and release of cyto-chrome c from mitochondria into the cytosol. In addition, combined TRAIL and wortmannin treatment resulted in cleavage of several proteins: PARP, Akt, p21/WAF1, and MDM2 as well as dephosphorylation of Akt. The proteolysis of p21/WAFI and Akt, which are known survival factors, presumably amplify the apoptotic cascade in LNCaP. Transfection of FADD-DN in LNCaP resulted in inhibition of caspase activation as well as in resistance to combined treatment with TRAIL and wortmannin. CONCLUSIONS: These results suggest that caspase-8 activation is necessary but not sufficient for TRAIL-mediated apoptosis and is presumably blocked downstream of caspase-8 by the PI3K/Akt pathway.  相似文献   

4.
Most tumor cells are sensitive to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis but sparing to normal cells, thus providing therapeutic potential for clinical use. Some tumor cells are resistant to TRAIL-induced cell death while the sensitivity could be recruited with the existence of some chemical agents. In this study, human prostatic cancer cell line LNCaP was found to be resistant to TRAIL-induced apoptosis while it could be restored to TRAIL sensitivity with combination treatment of low concentration of doxorubicin. TRAIL receptor-1 (DR4) and TRAIL receptor-2 (DR5) were upregulated under the treatment of doxorubicin and verified to be responsible for TRAIL-mediated signal transduction. Furthermore, caspase-8 and caspase-3 were activated and drove their autocleavage into programmed cell death. Interestingly, apoptosis-inhibitory protein c-FLIP, but not Bcl-2 and XIAP was downregulated after doxorubicin treatment. Taken together, these findings suggested that the pathway of cell apoptosis induced by TRAIL was intact but under negative control. Subtoxic concentration of doxorubicin effectively boosted TRAIL sensitivity via depletion of antiapoptotic protein. These findings support the new strategies for killing tumors with TRAIL and chemical agents.  相似文献   

5.
BACKGROUND: Tumor necrosis factor related apoptosis-inducing ligand/Apo2 ligand (TRAIL/Apo-2L) is a novel anticancer agent, capable of inducing apoptosis preferentially in tumor and transformed cells. TRAIL-R1/death receptor (DR)4 and TRAIL-R2/DR5 are members of the tumor necrosis factor (TNF) receptor family, and can be activated by the TRAIL. We examined the clinical potential of chemotherapeutic drugs and TRAIL for the treatment of prostate cancer. METHODS: Prostate and bladder cancer cells were exposed to chemotherapeutic drugs (paclitaxel, vincristine, vinblastine, etoposide, doxorubicin, and camptothecin) and TRAIL. Cell viability was measured by sodium 3'[1-(phenylaminocarbonyl)-3,4-tetrazolium]-bis (4-methoxy-6-nitro) assay; expressions of death receptors and Bcl-2 family members were measured by Western blotting, ELISA and ribonuclease protection assay. PC-3 tumor cells xenografted athymic nude mice were exposed to chemotherapeutic drugs and TRAIL, either alone or in combination, to measure tumor growth and survival of mice. Apoptosis was measured by annexin V-FITC/propidium iodide staining, and terminal deoxynucleotidyltransferase-mediated nick end labeling assay. Caspase-3 activity was measured by the Western blotting and immunohistochemistry. RESULTS: TRAIL induced apoptosis with varying sensitivity. Chemotherapeutic drugs (paclitaxel, vincristine, vinblastine, etoposide, doxorubicin, and camptothecin) significantly augmented TRAIL-induced apoptosis in cancer cells through up-regulation of DR4, DR5, Bax, and Bak, and induction of caspase activation. Mitochondrial pathway enhanced the synergistic interactions between drugs and TRAIL. The sequential treatment of mice with chemotherapeutic drugs followed by TRAIL induced caspase-3 activity, and apoptosis, inhibited angiogenesis, completely eradicated the established tumors, and enhanced survival of mice. CONCLUSIONS: Chemotherapeutic drugs can be used to enhance the therapeutic potential of TRAIL in prostate cancer.  相似文献   

6.
BACKGROUND: Phytoestrogens may reduce tumorigenesis in prostate cancer. We screened five phytoestrogens for their effect on cell growth and apoptosis in PWR-1E, LNCaP, PC-3, and DU145 prostate epithelial cells in vitro. METHODS: We assessed cell number, proliferation, and apoptosis using crystal violet assays, flow cytometric analysis, and TUNEL. Focusing specifically on apigenin we assessed the ability of calpain, serine protease, caspase, estrogen receptor, and ceramide synthase inhibitors to block apigenin induced apoptosis. We also analyzed caspase 3, 7, 8, 9, Bcl-2, Bax, Bid, and cytochrome C by Western analysis, and mitochondrial permeability and reactive oxygen species production by flow cytometry using mitosensor(TM) and DCFH-DA, respectively. RESULTS: Apigenin and silybinin significantly reduced cell number, with apigenin inducing apoptosis in PWR-1E, LNCaP, PC-3, and DU145 cells. The PC-3 and DU145 cells were less susceptible to apigenin induced apoptosis then LNCaP and PWR-1E cells. The induction of apoptosis by apigenin was caspase dependent. Apigenin generated reactive oxygen species, a loss of mitochondrial Bcl-2 expression, mitochondrial permeability, cytochrome C release, and the cleavage of caspase 3, 7, 8, and 9 and the concomitant cleavage of the inhibitor of apoptosis protein, cIAP-2. The overexpression of Bcl-2 in LNCaP B10 cells reduced the apoptotic effects of apigenin. CONCLUSIONS: Apigenin induces cell death in prostate epithelial cells using a mitochondrial mediated cell death pathway. Bcl-2 has a role in inhibiting apigenin induced cell death in prostate epithelial cells.  相似文献   

7.
8.
BACKGROUND: Prostatic tumors are well known to progress to hormonal therapy-resistant terminal states. At this stage, there are no chemotherapeutic agents to affect clinical outcome. An effective cell death inducer for these prostate cells may be a candidate as an attractive antitumor agent. The extracts from S. repens have been used to improve the state of prostatic diseases and we have attempted to identify the effective component from the extract. METHODS: Cell viability was examined in LNCaP cells, an in vitro model for hormonal therapy-resistant prostatic tumor. RESULTS: We found that exposure of the extract from S. repens resulted in cell death of LNCaP cells. We also identified myristoleic acid as one of the cytotoxic components in the extract. The cell death exhibited both apoptotic and necrotic nuclear morphology as determined by Hoechst 33342 staining. Cell death was also partially associated with caspase activation. CONCLUSIONS: It was demonstrated that the extract from S. repens and myristoleic acid induces mixed cell death of apoptosis and necrosis in LNCaP cells. These results suggest that the extract and myristoleic acid may develop attractive new tools for the treatment of prostate cancer.  相似文献   

9.
The proteasome inhibitor, bortezomib, has been demonstrated to sensitize tumor cells to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-mediated apoptosis. Natural killer (NK) cells represent potent antitumor effector cells. They also express TRAIL. Therefore, we investigated whether bortezomib could sensitize tumor cells to NK cell-mediated killing, and have the same effect in human prostate cancer cell lines (LNCaP and DU145). We found that bortezomib strongly inhibits proliferation in both cell lines. Furthermore, compared with LNCaP cells, DU145 cells are more sensitive to bortezomib-induced apoptosis. However, bortezomib is unable to sensitize these two cell lines to NK cell-mediated killing in short-term assays. In long-term assays, we found that killing mediated by activated NK cells following bortezomib treatment leads to greater antitumor effects than either treatment alone. In addition, treatment with bortezomib causes these cells to upregulate apoptosis-related mRNA as well as death receptors and downregulate the major histocompatibility class (MHC)-I molecule on the cell surface of DU145 cells. In contrast, LNCaP cells are not sensitized by this treatment. Death receptors and the MHC-I molecule did not change in this cell line. These data suggest that bortezomib can be used to sensitize prostate cancer cells to NK cell-mediated killing and improve current cancer therapies. This therapeutic strategy may be more effective in patients with androgen-insensitive prostate cancer.  相似文献   

10.
11.
12.
BACKGROUND: As advanced prostate cancers are resistant to currently available chemotherapies, we evaluated the cytotoxic effect of TNF-related apoptosis-inducing ligand (TRAIL) and characterized the involvement of its five receptors DR4, DR5, DcR1, DcR2, and osteoprotegerin (OPG) and of the death-inducing signaling complex (DISC)-forming proteins caspase 8 and c-FLIP in prostate cell lines. METHODS: We used six prostate cell lines, each corresponding to a particular stage in prostate tumorigenesis, and analyzed TRAIL sensitivity in relation to TRAIL receptors' expression. RESULTS: TRAIL sensitivity was correlated with tumor progression and DR5 expression levels and apoptosis was exclusively mediated by DR5. DcR2 was significantly more abundant in tumor cells than in non-neoplastic ones and may contribute to partial resistance to TRAIL in some prostate tumor cells. Conversely, non-tumoral cells secreted high levels of OPG, which can protect them from apoptosis. Finally, caspase 8 expression levels were as DR5 directly correlated to TRAIL sensitivity in prostate tumor cells. CONCLUSION: TRAIL-induced apoptosis is closely related to the balanced expression of its different receptors in prostate cancer cells and their modulation could be of potential clinical value for advanced tumor treatment.  相似文献   

13.
Induction of apoptosis in tumor cells by TRAIL (tumor necrosis factor [TNF]-related apoptosis-inducing ligand) is a promising therapeutic principle in oncology, although toxicity and resistance against TRAIL are limiting factors. Taurolidine (TRD), an antineoplastic agent with low toxicity, is a potential candidate for combined therapy with TRAIL. The aim of this study was to evaluate the apoptotic effects of a combined treatment with TRD and TRAIL in a human HCT-15 colon carcinoma cell line. HCT-15 cells were incubated with increasing concentrations of recombinant human TRAIL (50 ng/mL to 500 ng/mL) or TRD (50 μ mol/L to 1000 μ mol/L). In a second experiment, cells were furthermore exposed to a combination of both substances (TRAIL 50 ng/mL and TRD 100 μ mol/L). At various time points (3 h to 36 h), cell viability, apoptosis, and necrosis were quantified by FACS analysis (propidium iodide/annexin V-FITC) and confirmed by TUNEL assay. Incubation with TRD resulted in cell death induction with maximum effects observed at 100 μ mol/L and 1000 μ mol/L after 36 h. TRAIL application led to dose-dependent cell death induction as early as 6 h. Combined treatment of TRD (100 μ mol/L) and TRAIL (50 ng/mL) caused a sustained induction of apoptosis that was superior to single-agent application, exceeding a merely additive effect. Combinatory treatment of human colon carcinoma cells with TRD and TRAIL results in a synergistic effect on apoptosis induction with a significant increase of the apoptotic index. Combination of TRAIL with the nontoxic TRD might represent a novel therapeutic strategy in oncological therapy.  相似文献   

14.
Ng CP  Zisman A  Bonavida B 《The Prostate》2002,53(4):286-299
BACKGROUND: Tumors have an inherent immunogenicity that can be exploited by immunotherapy. However, often tumors develop mechanisms that render them resistant to most immunologic cytotoxic effector mechanisms. This study examines the underlying mechanism of resistance to Apo2L/TRAIL (tumor necrosis factor-related apoptosis-inducing ligand)-mediated apoptosis. METHODS: We studied prostate tumor cell lines for their sensitivity to Apo2L/TRAIL-mediated apoptosis in the presence and absence of the sensitizing agent actinomycin D (Act D). Apoptosis was determined by flow cytometry and signaling for apoptosis by Western blot. RESULTS: Treatment with subtoxic concentrations of Act D significantly sensitizes the tumor cells (CL-1, DU-145, and PC-3 prostate tumor cells) to Apo2L/TRAIL-mediated apoptosis. The cytotoxicity of Act D-sensitized prostate tumor cells was a result of synergistic activation of caspases (caspase-3, -9, and -8), detectable after 6 hr of treatment. Treatment with Apo2L/TRAIL alone, although it was insufficient to induce apoptosis, resulted in the loss of mitochondrial membrane potential and release of cytochrome c from the mitochondria into the cytoplasm in the absence of significant caspases activation. These findings suggested that a major apoptosis resistance factor blocking the Apo2L/TRAIL apoptotic signaling events is present downstream of the mitochondrial activation. The expression of receptors and anti-apoptotic proteins were examined in Act D-sensitized CL-1 cells. The earliest and the most pronounced change induced by Act D was down-regulation of X-linked inhibitor of apoptosis (XIAP) and up-regulation of Bcl-xL/-xS proteins. The role of XIAP in resistance was demonstrated by overexpression of Smac/DIABLO, which inhibited inhibitors of apoptosis (IAPs) and sensitized the cells to Apo2L/TRAIL. Apo2L/TRAIL receptors (DR4, DR5, DcR1, and DcR2), c-FLIP, Bcl-2, and other IAP members (c-IAP1 and c-IAP2) were marginally affected at later times in the cells sensitized by Act D. CONCLUSION: This study suggests that the combination of Act D-induced down-regulation of XIAP (Signal I) and Apo2L/TRAIL-induced release of cytochrome c (Signal II) leads to the reversal of resistance to Apo2L/TRAIL-mediated apoptosis in the tumor cells. The sensitization of tumor cells to Apo2L/TRAIL by Act D is of potential clinical application in the immunotherapy of drug/Apo2L/TRAIL refractory tumors.  相似文献   

15.

OBJECTIVE

To determine the benefit of genistein combined polysaccharide (GCP) in combination with the androgen receptor antagonist bicalutamide, the antimicrotubule taxane docetaxel, and the Src kinase inhibitor pp2 as part of a treatment regimen for advanced prostate cancer (CaP).

MATERIALS AND METHODS

The growth inhibitory and apoptotic effects of GCP in combination with bicalutamide, docetaxel and pp2 were evaluated in both the androgen‐dependent LNCaP line, and three androgen‐independent lines: CWR22Rv1, PC‐3, and LNCaP‐R273H. The LNCaP‐R273H model is an LNCaP variant expressing a p53GOF allele; like CWR22Rv1 and PC‐3, it is able to grow in a minimal androgen environment. The effects of GCP treatment in combination with the aforementioned drugs were measured using an MTT assay, Western blotting, flow cytometric analysis, and caspase activation assay. Altered schedules of drug administration were explored using combinations of GCP and docetaxel.

RESULTS

GCP potentiated the activity of docetaxel in all four cell lines, resulting in growth inhibition and increased apoptosis. The combination of GCP and bicalutamide had enhanced activity in both the LNCaP and LNCaP‐R273H lines, which may better represent patient tumour cells after progression to androgen independence. Administration of docetaxel followed by GCP resulted in a synergistic interaction in LNCaP cells, with increased apoptosis. By contrast, GCP administered first showed subadditivity, probably resulting from GCP‐mediated induction of G1 arrest interfering with docetaxel activity.

CONCLUSION

These data suggest that GCP, an isoflavone‐enriched compound with minimal side‐effects and far superior intestinal absorption rate of genistein, has significant clinical potential in combination with docetaxel, bicalutamide or targeted agents for the treatment of advanced CaP.  相似文献   

16.
BACKGROUND: One of the mechanisms through which prostate cancers relapse during anti-androgen therapy may involve adaptation to low concentrations of androgen induced by anti-androgen therapies. Recent studies from our laboratory have reported that tumor necrosis factor-alpha (TNFalpha) is secreted from prostate cancer epithelial cells and LNCaP cells. We hypothesized that TNFalpha changes androgen-sensitivity in LNCaP cells. METHODS: We cultured LNCaP cells for more than 3 months in the presence of 50 ng/ml TNFalpha and established TNFalpha-resistant LNCaP cells (LN-TR2). Sensitivity to androgen was examined by the cell proliferation assay. We also transfected LNCaP and LN-TR2 cells with a luciferase reporter plasmid driven by prostate-specific antigen (PSA) promoter and compared PSA promoter activity. Nuclear localization of AR protein that binds to target genes was also examined by Western blotting. RESULTS: LN-TR2 cells had increased sensitivity to dihydrotestosterone (DHT) (i.e., proliferation and PSA promoter activation) than LNCaP cells. Total AR mRNA and AR protein levels were decreased in LN-TR2 cells. However, LN-TR2 cells demonstrated increased levels of nuclear AR compared to LNCaP cells. At 1 nM DHT, the anti-androgen bicalutamide stimulated LN-TR2 and inhibited LNCaP proliferation. CONCLUSIONS: Long-term exposure of TNFalpha causes hypersensitivity to DHT in LNCaP and this was associated with increased nuclear AR protein. Furthermore, hypersensitivity to androgen caused anti-androgen withdrawal phenomenon in the presence of DHT although bicalutamide itself did not stimulate LNCaP proliferation without androgen. This result may be one possible mechanism for the anti-androgen withdrawal phenomenon.  相似文献   

17.
BACKGROUND: Prostate cancer is the second leading cause of cancer death in men. The most common treatment of prostate cancer is androgen ablation therapy which leads to regression of the tumor due to increased cell death. However, at later stages, the tumor becomes resistant to androgen ablation. Ceramide is a lipid second messenger that mediates cell death in prostate cancer cells. Previous studies suggested that ceramide may cause either apoptosis or growth arrest in the androgen-responsive prostate cancer cell line LNCaP. However, the molecular details of ceramide-induced cell death in LNCaP cells remain to be elucidated. METHODS: To investigate the mechanisms of cell death in LNCaP cells, we used various methods, including cell viability assays, fluorescence image analysis, internucleosomal DNA fragmentation analysis, Western blotting, and protein kinase assays. RESULTS: Ceramide caused LNCaP cell death without exhibiting typical signs of apoptosis, such as internucleosomal DNA fragmentation and poly(ADP)-ribose-polymerase (PARP) proteolysis. In addition, the general caspase inhibitor z-VAD-fmk did not alter ceramide-induced cell death in LNCaP cells, whereas it efficiently inhibited thapsigargin-induced apoptosis under similar conditions. However, ceramide treatment of LNCaP cells resulted in nuclear fragmentation, which is characteristic of apoptosis. Ceramide induced a strong and prolonged activation of c-Jun N-terminal Kinase (JNK) that correlated very well with the time course of cell death. Whereas the PKC inhibitor bisindolylmaleimide prevented phorbol ester-induced apoptosis in LNCaP cells, it did not affect ceramide-induced cell death. These results suggest that LNCaP cell death induced by ceramide progresses through a novel pathway that is more necrotic than apoptotic.  相似文献   

18.
19.
Butyrate sensitizes human colon cancer cells to TRAIL-mediated apoptosis   总被引:10,自引:0,他引:10  
BACKGROUND: Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), a novel member of the tumor necrosis factor family, induces apoptosis in TRAIL-sensitive tumors through the activation of the caspase pathway. Sodium butyrate (NaBT) induces differentiation and apoptosis in certain colorectal cancers; the molecular mechanisms for these effects have not been clearly defined. The purpose of our study was to determine whether NaBT sensitizes TRAIL-resistant human colon cancer cells to the effects of TRAIL. METHODS: Human colon cancer cells (KM12C, KML4A, and KM20) that are resistant to TRAIL treatment alone were treated with TRAIL (100 ng/mL), NaBT (5 mmol/L), or a combination of these agents and harvested for total RNA and protein. Western blots were performed to assess intracellular expression of Flice-like inhibitory protein (FLIP), a caspase inhibitor. Percent-specific apoptosis, relative caspase-3 activity, and Annexin-V immunofluorescence were determined at 24 and 48 hours. Cell cycle--related gene expression was assessed by RNase protection. RESULTS: Treatment with NaBT for 24 and 48 hours decreased FLIP protein expression in all cell lines. Furthermore, NaBT sensitized these resistant cancer cells to the effects of TRAIL with significant increases noted in cell death, caspase-3 activity, and Annexin-V staining compared with NaBT alone. CONCLUSIONS: Our findings suggest that the reduction of FLIP protein levels by NaBT renders TRAIL-resistant human colon cancer cells sensitive to TRAIL-mediated apoptosis. The combination of TRAIL with agents (such as NaBT, which target proteins that prevent cell death) may provide a more effective and less toxic regimen for the treatment of resistant colon cancers.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号