首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ObjectiveThe biofilm of Streptococcus mutans is associated with induction of dental caries. Also, they produce glucan as an extracellular polysaccharide through glucosyltransferases and help the formation of cariogenic biofilm. β-caryophyllene has been used for therapeutic agent in traditional medicine and has antimicrobial activity. The purpose of this study was to investigate the effect of β-caryophyllene on S. mutans biofilm and the expression of biofilm-related factor.DesignThe susceptibility assay of S. mutans for β-caryophyllene was performed to investigate inhibitory concentration for S. mutans growth. To evaluated the effect of β-caryophyllene on S. mutans biofilm, β-caryophyllene was treated on S. mutans in the various concentrations before or after the biofilm formation. Live S. mutans in the biofilm was counted by inoculating on Mitis-salivarius agar plate, and S. mutans biofilm was analyzed by confocal laser scanning microscope after staining bacterial live/dead staining kit. Finally, the expression of glucosyltransferases of S. mutans was investigated by real-time RT-PCR after treating with β-caryophyllene at the non-killing concentration of S. mutans.ResultsThe growth of S. mutans was inhibited by β-caryophyllene in above concentration of 0.078%, S. mutans biofilm was inhibited by β-caryophyllene in above 0.32%. Also, 2.5% of β-caryophyllene showed anti-biofilm activity for S. mutans biofilm. β-caryophyllene reduced the expression of gtf genes at a non-killing concentration for S. mutans. On the basis on these results, β-caryophyllene may have anti-biofilm activity and the inhibitory effect on biofilm related factor.Conclusionsβ-caryophyllene may inhibit cariogenic biofilm and may be a candidate agent for prevention of dental caries.  相似文献   

2.
The development of dental caries has been an important topic in oral microbiology research for several decades. One of the common strains of bacteria oral Streptococcus mutans, has long been considered the primary bacterium involved in the initiation and progression of dental caries. One of the primary virulence traits of S. mutans is sucrose-dependent biofilm formation. However, beginning in the 1970s, several researchers have observed a naturally derived variant of S. mutans defective in biofilm formation, and there have since been numerous studies on this variant. The mechanism of the appearance of this variant has been well established, but little is known about its ecological significance. Additional studies will be needed to advance our understanding of the role and behavior of this colony variant within the oral cavity. In this review, we summarize the development and characterization of this naturally derived variant, and discuss its ecological implications in the oral habitat.  相似文献   

3.
During dental caries, the dental biofilm modifies the composition of the hundreds of involved bacterial species. Changing environmental conditions influence competition. A pertinent model to exemplify the complex interplay of the microorganisms in the human dental biofilm is the competition between Streptococcus sanguinis and Streptococcus mutans. It has been reported that children and adults harbor greater numbers of S. sanguinis in the oral cavity, associated with caries‐free teeth. Conversely, S. mutans is predominant in individuals with a high number of carious lesions. Competition between both microorganisms stems from the production of H2O2 by S. sanguinis and mutacins, a type of bacteriocins, by S. mutans. There is limited evidence on how S. sanguinis survives its own H2O2 levels, or if it has other mechanisms that might aid in the competition against S. mutans, nonetheless. We performed a genomic and metabolic pathway comparison, coupled with a comprehensive literature review, to better understand the competition between these two species. Results indicated that S. sanguinis can outcompete S. mutans by the production of an enzyme capable of metabolizing H2O2. S. mutans, however, lacks the enzyme and is susceptible to the peroxide from S. sanguinis. In addition, S. sanguinis can generate energy through gluconeogenesis and seems to have evolved different communication mechanisms, indicating that novel proteins may be responsible for intra‐species communication.  相似文献   

4.
BackgroundAlkali production via arginine deiminase system (ADS) of oral bacteria plays a significant role in oral ecology, pH homeostasis and inhibition of dental caries. ADS activity in dental plaque varies greatly between individuals, which may profoundly affect their susceptibility to caries.ObjectiveTo investigate the effect of arginine on the growth and biofilm formation of oral bacteria.Methods and resultsPolymicrobial dental biofilms derived from saliva were formed in a high-throughput active attachment biofilm model and l-arginine (Arg) was shown to reduce the colony forming units (CFU) counts of such biofilms grown for various periods or biofilms derived from saliva of subjects with different caries status. Arg hardly disturbed bacterial growth of Streptococcus mutans, Streptococcus sobrinus, Streptococcus sanguinis and Streptococcus gordonii in BHI medium, but only inhibited biofilm formation of S. mutans. Scanning electron microscope (SEM) showed S. mutans biofilms harboured fewer cells grown with Arg than that without Arg, even in the initial 2 h and 8 h phase. Confocal laser scanning microscope (CLSM) images of poly-microbial dental and S. mutans biofilms revealed the biofilms grown with Arg had lower exopolysaccharide (EPS)/bacteria ratios than those without Arg (P = 0.004, 0.002, respectively). Arg could significantly reduce the production of water-insoluble EPS in S. mutans biofilms (P < 0.001); however, quantitative real-time PCR (qRT-PCR) did not show significantly influence in gene expression of gtfB, gtfC or gtfD (P = 0.32, 0.06, 0.44 respectively).ConclusionsArg could reduce the biomass of poly-microbial dental biofilms and S. mutans biofilms, which may be due to the impact of Arg on water-insoluble EPS. Considering the contribution to pH homeostasis in dental biofilms, Arg may serve as an important agent keeping oral biofilms healthy thus prevent dental caries.  相似文献   

5.
6.
ObjectiveThe antibacterial activity of Casbane Diterpene (CD) was evaluated in vitro against Streptococcus oralis, S. mutans, S. salivarius, S. sobrinus, S. mitis and S. sanguinis. The viability of planktonic cells was analysed by susceptibility tests (MIC and MBC) and antibiofilm action was assayed.MethodsThe minimal inhibitory and bactericidal concentrations (MIC and MBC) of oral Streptococcus were evaluated through microdilution tests. To assay antibiofilm activity, biofilms were generated on 96-wells polystyrene plates under the presence of CD and quantified by a crystal violet technique and colonies forming units counting.ResultsThe CD isolated from Croton nepetaefolius showed antimicrobial effect on planktonic forms and biofilms of oral pathogens, with MIC values of 62.5 μg/mL against Streptococcus oralis and values between 125 and 500 μg/mL against S. mutans, S. salivarius, S. sobrinus, S. mitis and S. sanguinis. CD showed an inhibitory effect on S. mutans biofilm formation at 250 μg/mL, and a decrease on viable cell of 94.28% compared to the normal biofilm growth.ConclusionsThe compound CD can be considered as a promising molecule for the treatment against oral pathogens responsible for dental biofilm.  相似文献   

7.
IntroductionAn important virulence factor of Enterococcus faecalis is its ability to form biofilms. Most studies on biofilm formation have been carried out by using E. faecalis monocultures. Given the polymicrobial nature of root canal infections, it is important to understand biofilm formation of E. faecalis in the presence of other microorganisms.MethodsEight clinical strains of E. faecalis were tested for biofilm formation on hydroxyapatite disks in the presence and absence of a Streptococcus mutans biofilm.ResultsSignificantly more E. faecalis viable cells were found in biofilms in the presence of S. mutans. This phenomenon was, however, strain-dependent. Of the 8 strains tested, biofilm formation of strains AA-OR34, ER5/1, and V583 was not influenced by S. mutans biofilms.ConclusionsThe results from this study, especially the strain difference, underline the importance of studying biofilm formation in a more realistic multispecies setting.  相似文献   

8.
ObjectiveThis study aimed to assess the in vitro cariogenic potential of some Bifidobacterium species in comparison with caries-associated bacteria.DesignBifidobacterium lactis, Bifidobacterium longum, Bifidobacterium animalis, Bifidobacterium dentium, Lactobacillus acidophilus, Lactobacillus casei, Actinomyces israelii, Streptococcus sobrinus and Streptococcus mutans were tested for acidogenicity and aciduricity by measuring the pH of the cultures after growth in glucose and bacterial growth after exposure to acid solutions. Biofilm biomass was determined for each species either alone or associated with S. mutans or S. mutans/S. sobrinus. Enamel hardness was analyzed before and after 7-days biofilm formation using bacterial combinations.ResultsB. animalis and B. longum were the most acidogenic and aciduric strains, comparable to caries-associated bacteria, such as S. mutans and L. casei. All species had a significantly increased biofilm when combined either with S. mutans or with S. mutans/S. sobrinus. The greatest enamel surface loss was produced when B. longum or B. animalis were inoculated with S. mutans, similar to L. casei and S. sobrinus. All strains induced similar enamel demineralization when combined with S. mutans/S. sobrinus, except by B. lactis.ConclusionThe ability to produce acidic environments and to enhance biofilm formation leading to increased demineralization may mean that Bifidobacterium species, especially B. animalis and B. longum, are potentially cariogenic.  相似文献   

9.
The oral bacterium Streptococcus mutans is the principal agent in the development of dental caries. Biofilm formation by S. mutans requires bacterial attachment, aggregation, and glucan formation on the tooth surface under sucrose supplementation conditions. Our previous microarray analysis of clinical strains identified 74 genes in S. mutans that were related to biofilm morphology; however, the roles of almost all of these genes in biofilm formation are poorly understood. We investigated the effects of 21 genes randomly selected from our previous study regarding S. mutans biofilm formation, regulation by the complement pathway, and responses to competence‐stimulating peptide. Eight competence‐stimulating peptide‐dependent genes were identified, and their roles in biofilm formation and aggregation were examined by mutational analyses of the S. mutansUA159 strain. Of these eight genes, the inactivation of the putative hemolysin III family SMU.940 gene of S. mutansUA159 promoted rapid dextran‐dependent aggregation and biofilm formation in tryptic soy broth without dextrose (TSB) with 0.25% glucose and slightly reduced biofilm formation in TSB with 0.25% sucrose. The SMU.940 mutant showed higher expression of GbpC and gbpC gene than wild‐type. GbpC is known to be involved in the dextran‐dependent aggregation of S. mutans. An SMU.940gbpC double mutant strain was constructed in the SMU.940 mutant background. The gbpC mutation completely abolished the dextran‐dependent aggregation of the SMU.940 mutant. In addition, the aggregation of the mutant was abrogated by dextranase. These findings suggest that SMU.940 controls GbpC expression, and contributes to the regulation of dextran‐dependent aggregation and biofilm formation.  相似文献   

10.
Streptococcus mutans is recognized as one of the key contributors to the dysbiotic state that results in dental caries. Existing treatment strategies reduce the incidence of tooth decay, but they also eliminate both the cariogenic and beneficial microbes. Here we introduce a novel treatment alternative using Sephadex, cross‐linked dextranomer microspheres (DMs), typically used for gel filtration chromatography. In addition DM beads can be used for affinity purification of glucosyltransferases (GTFs) from S. mutans. In this study we take advantage of the native pathogenic mechanisms used by S. mutans to adhere, form a biofilm and induce dental caries through the expression of surface‐associated GTFs. We demonstrate that planktonic and biofilm‐grown (adhered to hydroxyapatite‐coated pegs to mimic the tooth surface) S. mutans, specifically and competitively attach to DMs. Further investigation demonstrated that DMs are a specific affinity resin for S. mutans and other cariogenic/pathogenic oral streptococci, whereas other commensal and probiotic strains failed to readily adhere to DMs. Using antimicrobial cargo loaded into the DM lumen, we demonstrate that when in co‐culture with non‐binding to even modestly binding commensal species, S. mutans was selectively killed. This proof of concept study introduces a novel means to safely and effectively reduce the pool of S. mutans and other pathogenic streptococci in the oral cavity with limited disturbance of the necessary commensal (healthy) microbiota when compared with current oral healthcare products.  相似文献   

11.
Introduction: The effects of Streptococcus salivarius on the competence‐stimulating peptide (CSP)‐dependent biofilm formation by Streptococcus mutans were investigated. Methods: Biofilms were grown on 96‐well microtiter plates coated with salivary components in tryptic soy broth without dextrose supplemented with 0.25% sucrose. Biofilm formations were stained using safranin and quantification of stained biofilms was performed by measuring absorbance at 492 nm. Results: S. mutans formed substantial biofilms, whereas biofilms of S. salivarius were formed poorly in the medium conditions used. Furthermore, in combination cultures, S. salivarius strongly inhibited biofilm formation when cultured with S. mutans. This inhibition occurred in the early phase of biofilm formation and was dependent on inactivation of the CSP of S. mutans, which is associated with competence, biofilm formation, and antimicrobial activity of the bacterium, and is induced by expression of the comC gene. Comparisons between the S. mutans clinical strains FSC‐3 and FSC‐3ΔglrA in separate dual‐species cultures with S. salivarius indicated that the presence of the bacitracin transport ATP‐binding protein gene glrA caused susceptibility to inhibition of S. mutans biofilm formation by S. salivarius, and was also associated with the regulation of CSP production by com gene‐dependent quorum sensing systems. Conclusion: It is considered that regulation of CSP by glrA in S. mutans and CSP inactivation by S. salivarius are important functions for cell‐to‐cell communication between biofilm bacteria and oral streptococci such as S. salivarius. Our results provide useful information for understanding the ecosystem of oral streptococcal biofilms, as well as the competition between and coexistence of multiple species in the oral cavity.  相似文献   

12.
Biofilm is an extremely complex microbial community arranged in a matrix of polysaccharides and attached to a substrate. Its development is crucial in the pathophysiology of oral infections like dental caries, as well as in periodontal, pulp, and periapical diseases. Streptococcus mutans is one of the most effective microorganisms in lactic acid production of the dental biofilm. Identifying essential Streptococcus mutans proteins using bioinformatics methods helps to search for alternative therapies. To this end, the bacterial genomes of several Streptococcus mutans strains and representative strains of other cariogenic and non-cariogenic bacteria were analysed by identifying pathogenicity islands and alignments with other bacteria, and by detecting the exclusive genes of cariogenic species in comparison to the non-pathogenic ones. This study used tools for orthology prediction such as BLAST and OrthoMCL, as well as the server IslandViewer for the detection of pathogenicity islands. In addition, the potential interactome of Streptococcus mutans was rebuilt by comparing it to interologues of other species phylogenetically close to or associated with cariogenicity. This protocol yielded a final list of 20 proteins related to potentially virulent factors that can be used as therapeutic targets in future analyses. The EIIA and EIIC enzymatic subunits of the phosphotransferase system (PTS) were prioritized, as well as the pyruvate kinase enzyme, which are directly involved in the metabolism of carbohydrates and in obtaining the necessary energy for the microorganism’s survival. These results will guide a subsequent experimental trial to develop new, safe, and effective molecules in the treatment of dental caries.  相似文献   

13.
《Dental materials》2022,38(5):848-857
ObjectiveDental plaque is a complex structure (called a biofilm) that is produced by a community of oral bacteria. As microorganisms accumulate in the oral cavity, bacteria can assemble into biofilms that protect them from antibiotics and disinfectants, which contribute to dental cavities and oral infections that acts as the seed for further infections throughout the body. Therefore, there is great interest in developing dental sealants that can effectively eliminate biofilms formed from an assortment of oral bacteria species.MethodsIn previous papers, it was shown that both in vivo and in vitro use of organo-selenium dental sealants have the potential to be an effective method for preventing dental caries and plaque formation. However, our previous in vitro study only examined the effect of the organo-selenium sealants on Streptococcus mutans and salivarius. Since that time, this organo-selenium sealant has been changed to improve its curing time.ResultsWe showed a selenium containing sealant (SeLECT-DefenseTM) can completely eliminate biofilm formation on the sealant at selenium concentrations of 0.25% and higher, by S. salivarius, S. sanguinis, or S. mutans, individually or in combination. This selenium containing sealant can also completely inhibit the same bacteria from growing under the sealant, while control sealant cannot. The selenium containing sealant was tested for stability and it was found to still kill these same bacteria after soaking for the equivalent of one year in PBS (pH 7.4). It was also found that the combination of the three bacteria were also killed by the selenium sealant, thus ruling out potential synergism of the bacteria in forming resistance.SignificanceThe following study showed that this modified selenium dental sealant effectively eliminates species of bacteria both on and under the dental sealant.  相似文献   

14.
Lactic acid bacteria have been widely used as probiotics for improving gut health. However, studies on oral probiotics were very limited. In this study, 67 lactic acid bacteria (LAB) were isolated from fermented food and screened for antagonistic activity against Streptococcus mutans, the causative pathogen of dental caries. Leuconostoc mesenteroides MJM60376 showed the highest antagonistic activity against S. mutans KCTC3065. L. mesenteroides MJM60376 also showed oral probiotic characteristics including weak acid production, lysozyme tolerance, adhesion to oral epithelial cell (YD-38), antibiotic susceptibility, and good coaggregation ability with S. mutans. Furthermore, the biofilm formation of S. mutans was significantly reduced when cocultured with L. mesenteroides. Scanning electron microscopy analysis showed that amounts of attached bacteria of S. mutans and network-like structures were significantly reduced by L. mesenteroides MJM60376. Cell-free supernatant (CFS) of L. mesenteroides MJM60376 also greatly inhibited biofilm formation of S. mutans from the adherent stage, the activity remained even after it was treated with catalase, trypsin, or pH neutralized. Expression levels of biofilm formation-related genes were significantly reduced in S. mutans when it was treated with the CFS of L. mesenteroides MJM60376. Therefore, L. mesenteroides MJM60376 has great potential to be used as a multifunctional ingredient.  相似文献   

15.
Ligustrum robustum (Roxb.) Blume is utilized as a traditional Chinese herbal tea with various health benefits and protective effects. Streptococcus mutans is an important cariogenic oral bacteria species. The present study aimed to assess the influence of Ligustrum robustum extract (LRE) on the biofilm formation of S. mutans and the mechanism of its action, as well as to identify its chemical components. For chemical identification, HPLC‐MS and nuclear magnetic resonance were applied and four identified phytochemicals were reported (Ligurobustoside B, Ligurobustoside N, Ligurobustoside J, and Ligurobustoside C). The dose‐dependent (0.5 to 2.0 μg/μL) antimicrobial toxicity of LRE against S. mutans biofilm formation and exopolysaccharide (EPS) synthesis was evaluated by confocal laser scanning microscopy (CLSM), Crystal violet stain, and CFU counting. The microstructure of S. mutans biofilm treated with LRE was investigated both on glass coverslips and ex vivo bovine dental enamel by scanning electron microscopy (SEM). Moreover, LRE downregulated the expression of S. mutans glucosyltransferase‐encoding genes gtfB, gtfC, and gtfD, and the quorum sensing (QS) factors comD and comE, suggesting its toxic mechanism. In addition, the result of CCK‐8 test on human oral cells revealed an acceptable biocompatibility of LRE. These findings indicated the possible application of this daily consumed herbal tea for caries prevention.  相似文献   

16.
ObjectiveThe aim of this study was to analyze the characteristics of the clustered regularly interspaced short palindromic repeats (CRISPR) sites in 45 clinical Streptococcus mutans strains and their relationship to the clinical manifestations of early childhood caries (ECC).MethodsForty-five S. mutans strains were isolated from the plaque samples taken from sixty-three children. CRISPR sites were sequenced and BLAST was used to compare these sites to those in the CRISPRTarget database. The association between the distribution of CRISPR sites and the manifestation of caries was analyzed by Chi-Square test. Further, biofilm formation (by crystal violet staining) and the synthesis of polysaccharide (by anthrone-sulfuric method) of all clinical isolated S. mutans strains with both CRISPR sites and no CRISPR site were comapared. Finally, acidogenicity and acidurity of two typical strains were determined using pH drop and acid tolerance assays. Biofilm formation and EPS synthesis by two typical strains were compared by 3D CLSM (Confocal Laser Scanning Microscope) assays and the expression of gtf genes were evaluated using qPCR.ResultsWe found that most of the spacers in the clinical S. mutans strains were derived from Streptococcus phages APCM01 and M102. The number of CRISPR sites in these strains was associated with the clinical manifestations of ECC. Moreover, we found that the biofilm formation and EPS synthesis ability of the S. mutans strains with both CRISPR sites was significant improved.ConclusionsAn association was found between the distribution of CRISPR sites and the clinical manifestations of caries. The CRISPR sites might contribute to the cariogenic potential of S. mutans.  相似文献   

17.
ObjectivePrevention is difficult to decrease dental caries only via the partial application of fluoride. The GC Co. has developed a coating material adhesive containing fluoride and zinc. It is thought that this zinc has an effect which prevents dental caries. The aim of this study was to evaluate the influence of the Caredyne Shield® (CS) on biofilm generation by S. mutans, as compared to an acidulated phosphate fluoride (APF) gel.Materials and methodsWe performed the comparative study of the biofilm inhibitory effect which used the enamel of bovine teeth. Specimens were separated into a control group, an APF gel group, and a CS group. Biofilms were generated by adherent S. mutans. We observed the antibacterial weigh by the creation state of Biofilms.ResultsSignificant difference was observed in the number of bacterial colonies formed after 24 h, the number of bacterial colonies formed from detached S. mutans from the CS-treated experimental group were fewer in number than in the other group (p < 0.01). The biofilm formed by S. mutans 72 h after dissemination on the enamel surface was visible by fluorescence microscopy (Live/Dead staining method) and under the scanning electron microscope, in the CS-treated group, no plastic structures were observed, as the models were free of the biofilm and only scattered S. mutans cells were observed.ConclusionWe showed in this study the efficacy of CS in controlling the formation of biofilm. From such a result, we conclude that CS is a novel anticaries agent.  相似文献   

18.
ObjectiveA glass-ionomer cement (GIC) containing BioUnion filler has been reported to release Zn2+ under acidic conditions and to inhibit oral bacteria on its surface. However, previous results are based on in vitro experiments under static conditions. This study aimed to assemble an in vitro saliva-drop setting to simulate in vivo conditions of the oral cavity and to investigate the ion releasing and recharging properties of the GIC containing BioUnion filler.MethodsThe effective concentrations of Zn2+ and F? against Streptococcus mutans and saliva-derived multi-species biofilms were determined. Artificial saliva was dropped on the GIC containing BioUnion filler using the in vitro saliva-drop setting assembly and was periodically replaced with acetic acid. Ion release/recharge properties were investigated by measuring the release concentrations of Zn2+ and F?.ResultsThe concentration of Zn2+ released from the BioUnion filler-containing GIC during seven days with repeated exposure to acid could be maintained at the level to inhibit S. mutans and saliva-derived multi-species biofilm formation. Moreover, the BioUnion filler-containing GIC could be recharged with Zn2+ and F? by the application of a tooth gel containing Zn2+ and F?. The release concentration of Zn2+ after recharging was significantly higher than the effective concentration of Zn2+ to hinder S. mutans and saliva-derived multi-species biofilm formation on material surfaces.SignificanceThe GIC containing BioUnion filler was shown to have the potential to inhibit biofilm formation in the oral cavity. In addition, recharging Zn2+ and F? would further enhance the effect of the GIC containing BioUnion filler.  相似文献   

19.
ObjectiveMonitoring selected key species related to health or disease may facilitate caries risk assessment and discovery of novel ecological preventive and therapeutic approaches. This study aimed at quantifying Actinomyces naeslundii, Bifidobacterium spp., Lactobacillus acidophilus, Lactobacillus casei group, Streptococcus gordonii, Mitis group and Streptococcus mutans by quantitative polymerase chain reaction (qPCR) in dental biofilm from Brazilian children with different stages of early childhood caries (ECC).DesignSeventy-five preschool children were clinically evaluated by ICDAS criteria and divided into groups: caries-free (CF; n = 20), enamel caries lesions (ECL; n = 17) and dentine caries lesions (DCL; n = 38). Plaque samples from all children were collected for detection and quantification of the selected bacteria.ResultsL. acidophilus and L. casei group were absent in almost all plaque samples. No differences in relative proportions of A. naeslundii, Mitis group and S. gordonii were observed in any stage of caries. However, S. mutans and Bifidobacterium spp. were present at higher concentrations in the biofilm of children with DCL (p < 0.001). Multivariate analysis showed that S. mutans and Bifidobacterium spp. were strongly associated with biofilm in children with DCL.ConclusionDifferences were observed in the proportion of acidogenic and aciduric bacteria with dental caries progression. The data indicate that S. mutans and Bifidobacterium spp. in dental biofilm may be involved in some progression processes for ECC.  相似文献   

20.
ObjectivesThe anti-cariogenic properties of the phenolic fraction from the pomace of Vitis coignetiae (VcPP) were evaluated by in vitro assays and compared with fruit juices from V. coignetiae and common grapes and with other phenolic fractions. The effects of VcPP against the biofilm of Streptococcus mutans were investigated.DesignSucrose-dependent biofilm formation by S. mutans cultured in the presence of VcPP was measured by crystal violet dye uptake. Inhibition of adhesion to the saliva-coated hydroxyapatite (sHA) beads was quantified using fluorescent-labelled cells. The MIC for S. mutans was determined by colony counting on agar plates containing VcPP. The ability of VcPP to inhibit glucan synthesis by three distinct recombinant glucosyltransferases (Gtfs) was assessed by quantifying the production of water-soluble and -insoluble polysaccharides in bacterial cultures. In addition, the buffering effect of VcPP in cultures of S. mutans was evaluated.ResultsVcPP reduced adhesion of S. mutans to sHA and biofilm formation in a dose-dependent manner. The MIC of VcPP was 7.50 mg/ml. VcPP inhibited GtfB activity associated with the synthesis of water-insoluble glucans. It also inhibited GtfD activity associated with the synthesis of water-soluble glucans at a concentration which was lower than that used for inhibition of GtfB. VcPP had no effect on acidification associated with glucose utilization by S. mutans.ConclusionsThe current study supports the potential of VcPP as a food additive for reducing caries by inhibiting adhesion to the tooth surface and GtfD-mediated soluble glucan synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号