首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Even though neurogenic axis is well known in asthma pathogenesis much attention had not been given on this aspect. Recent studies have reported the importance of TRP channels, calcium-permeable ion channels and key molecules in neurogenic axis, in asthma therapeutics. The role of TRPV1 channels has been underestimated in chronic respiratory diseases as TRPV1 knockout mice of C57BL/6 strains did not attenuate the features of these diseases. However, this could be due to strain differences in the distribution of airway capsaicin receptors. Here, we show that TRPV1 inhibition attenuates IL-13 induced asthma features by reducing airway epithelial injury in BALB/c mice. We found that IL-13 increased not only the lung TRPV1 levels but also TRPV1 expression in bronchial epithelia in BALB/c rather than in C57BL/6 mice. TRPV1 knockdown attenuated airway hyperresponsiveness, airway inflammation, goblet cell metaplasia and subepithelial fibrosis induced by IL-13 in BALB/c mice. Further, TRPV1 siRNA treatment reduced not only the cytosolic calpain and mitochondrial calpain 10 activities in the lung but also bronchial epithelial apoptosis indicating that TRPV1 siRNA might have corrected the intracellular and intramitochondrial calcium overload and its consequent apoptosis. Knockdown of IL-13 in allergen induced asthmatic mice reduced TRPV1, cytochrome c, and activities of calpain and caspase 3 in lung cytosol. Thus, these findings suggest that induction of TRPV1 with IL-13 in bronchial epithelia could lead to epithelial injury in in vivo condition. Since TRPV1 expression is correlated with human asthma severity, TRPV1 inhibition could be beneficial in attenuating airway epithelial injury and asthma features.  相似文献   

2.
Despite decreasing rates of invasive pneumococcal disease caused by vaccine serotypes, the prevalence of invasive pneumococcal pneumonia in asthmatic patients remains high. However, little is known about the mechanisms underlying the susceptibility of the asthmatic airway to bacterial infections. In this study, we used a combined model of allergic airway inflammation and Streptococcus pneumoniae lung infection to investigate the association between persistent allergic inflammation in the airway and antibacterial host defenses against S. pneumoniae. When challenged with S. pneumoniae, allergic mice exhibited higher airway bacterial burdens, greater eosinophil infiltration, lower neutrophil infiltration, and more severe structural damage than non-allergic mice. In sensitized mice, S. pneumoniae infection elicited higher IL-4 but lower IFN-γ, IL-17 and defensin-β2 expression than in control mice. These results indicate that persistent allergic inflammation impaired airway host defense against S. pneumoniae is associated with the insufficient IL-17 responses. To elicit IL-17 induced-anti-bacterial immune responses, mice were intranasally immunized with rIL-17. Immunized mice exhibited fewer bacterial colonies in the respiratory tract and less severe lung pathology than unimmunized mice. rIL-17 contributed to airway host defense enhancement and innate immune response promotion, which was associated with increased IL-23, MIP-2 and defensin-β2 expression. Administration of exogenous IL-17 (2 μg/mouse) suppressed eosinophil-related immune responses. The results demonstrate IL-17 plays a key role in host defenses against bacterial infection in allergic airways and suggest that exogenous IL-17 administration promotes the anti-becterial immune responses and attenuates the existed allergic inflammation.  相似文献   

3.
Peroxiredoxin (Prx) I, a ubiquitous antioxidant enzyme, is known to protect against inflammation; however, its role in the allergic inflammation remains unidentified. We determined whether intristic Prx I protects against allergic asthma traits using Prx-I knockout (−/−) mice. Prx I (−/−) and wild-type (WT) mice were immunized with ovalbumin (OVA) plus aluminum potassium sulfate (Alum: Th2 adjuvant) and subsequently challenged with OVA. Twenty-four hours after the last OVA challenge, leukocyte influx including eosinophils into bronchoalveolar lavage fluid was significantly greater in Prx I (−/−) mice compared to that in WT mice. On the other hand, when these mice were immunized with OVA + complete Freund's adjuvant (Th1 adjuvant), opposite phenomenon was observed. In the presence of OVA/Alum, peribronchial inflammatory leukocyte infiltration, cholinergic airway resistance, and the lung expression of interleukin (IL)-2 were significantly greater and that of interferon-γ was significantly lesser in Prx I (−/−) than in WT mice. In vitro, OVA/Alum-sensitized Prx I (−/−) T cells proliferated more profoundly than WT T cells when they were cocultured with syngeneic bone marrow-generated dendritic cells. These results indicate that endogenous Prx I protects against allergen-related Th2-type airway inflammation and hyperresponsiveness, at least partly, via the suppression of the lung expression of IL-2 and regulation of the Th1/Th2 balance in addition to its antioxidative properties. Furthermore, Prx I can inhibit allergen-specific T-cell proliferation through immunological synapse. Our findings implicate an alternative therapeutic value of Prx I in the treatment of Th2-skewed allergic airway inflammatory diseases such as atopic asthma.  相似文献   

4.
The activation of C-fibers in the airways induces coughing, mucus production and bronchoconstriction, which are also symptoms of airway diseases. In this study, we evaluated the role of the C-fibers and the TRPV1 (transient receptor potential vanilloid 1) receptor in an experimental mouse model of allergic airway inflammation. To study the role of C-fibers, we either degenerated the C-fibers persistently (capsaicin administration in neonate mice) or transiently (capsaicin administration in adult mice). No alteration was observed in eosinophil recruitment to the bronchoalveolar lavage fluid in animals treated with capsaicin in the neonatal period. However, in adult animals, capsaicin treatment after the first ovalbumin challenge (in the establishment of the inflammatory process) decreased the eosinophil numbers. This effect was more pronounced in adult animals treated with capsaicin before beginning the ovalbumin immunization (in the development of the inflammatory process). In addition, interleukin (IL)-5 and chemokine ligand 11 (CCL11) levels in the bronchoalveolar lavage fluid, as well as P-selectin expression and p65 nuclear factor κB (NF-κB) activation in the lung were also decreased. No alterations were observed in the IL-10 and IL-13 levels. Next we determined the effect of TRPV1 receptor blockade on allergic airway inflammation. SB366791 administrated in mice by intraperitoneal (500μg/kg) or intranasal (0.1, 1 or 10nmol/site) route failed to decrease eosinophil recruitment to the bronchoalveolar lavage fluid or alter any other metrics cited above. Thus, the present results confirm and extend previous data supporting the involvement of C-fibers, but not the TRPV1 receptor, in allergic airway inflammation.  相似文献   

5.
Tumor necrosis factor-alpha (TNF-alpha) is known to play a crucial role in the pathogenesis of rheumatoid arthritis. In the present study, we demonstrate the effects of SA13353 (1-[2-(1-Adamantyl)ethyl]-1-pentyl-3-[3-(4-pyridyl)propyl]urea), a novel orally active inhibitor of TNF-alpha production, in animal models, and its mechanism of action on TNF-alpha production. SA13353 significantly inhibited lipopolysaccharide (LPS)-induced TNF-alpha production in a dose-dependent manner in rats. Moreover, SA13353 exhibited a binding affinity for the rat vanilloid receptor and increased neuropeptide release from the rat dorsal root ganglion neurons. However, its effects were blocked by pretreatment with the transient receptor potential vanilloid 1 (TRPV1) antagonist capsazepine. The ability of SA13353 and capsaicin to inhibit LPS-induced TNF-alpha production was eliminated by sensory denervation or capsazepine pretreatment in vivo. Although they inhibited LPS-induced TNF-alpha production in mice, these effects were not observed in TRPV1 knockout mice. SA13353 provoked the release of neuropeptides without nerve inactivation, even when chronically administered to rats. These results suggest that SA13353 inhibits TNF-alpha production through activation of capsaicin-sensitive afferent neurons mediated via TRPV1 in vivo. Post-onset treatment of SA13353 strongly reduced the hindpaw swelling and joint destruction associated with collagen-induced arthritis in rats. Thus, SA13353 is expected to be a novel anti-arthritic agent with a unique mechanism of action.  相似文献   

6.
7.
目的:探讨阿奇霉素对哮喘(OVA)致敏大鼠气道炎症及Th1/Th2失衡的调节作用。方法:SD大鼠40只,随机分为生理盐水组、哮喘模型组、地塞米松组以及阿奇霉素组,每组10只。利用卵白蛋白(Ovalbumin,OVA)/Al(OH)3致敏与OVA雾化吸入激发建立大鼠过敏性气道炎症模型,收集肺泡灌洗液(BALF)进行白细胞分类计数。采用ELISA法测定肺泡灌洗液中IL-2、IL-4、TNF-α与ET-1的表达情况。光镜观察肺组织病理结构变化。结果:OVA模型大鼠肺泡灌洗液中的中性粒细胞、淋巴细胞以及嗜酸性粒细胞含量明显增加;HE染色观察肺组织病理结构出现明显的支气管上皮脱落、杯状细胞增生,支气管周围嗜酸性粒细胞明显浸润现象;BALF中IL-2、IL-4、TNF-α与ET-1的表达均明显高于生理盐水对照组(P<0.05)。阿奇霉素则显著降低肺泡灌洗液中中性粒细胞、淋巴细胞以及嗜酸性粒细胞含量;明显改善支气管上皮脱落、杯状细胞增生,支气管周围嗜酸性粒细胞浸润现象;BALF中IL-2、IL-4、TNF-α与ET-1的表达也明显低于OVA模型大鼠(P<0.05)。结论:阿奇霉素通过调节Th1/Th2失衡对过敏性哮喘的气道炎症具有明显的治疗作用。  相似文献   

8.
Thymoquinone (TQ), the main active constituent of the volatile oil extracted from Nigella sativa's seeds, has been reported to have an anti-inflammatory and immune stimulatory effect on bronchial asthma and inflammation. However, little is known about the factors and mechanisms underlying these effects. In the present study, we examined the effect of TQ on airway inflammation in a mouse model of allergic asthma. Intraperitoneal injection of TQ before airway challenge of ovalbumin (OVA)-sensitized mice resulted in a marked decrease in lung eosinophilia and the elevated Th2 cytokines observed after airway challenge with OVA antigen; both in vivo, in the bronchoalveolar lavage (BAL) fluid and in vitro, following stimulation of lung cells with OVA. TQ also decreased the elevated serum levels of OVA-specific IgE and IgG1. Histological examination of lung tissue demonstrated that TQ significantly inhibited allergen-induced lung eosinophilic inflammation and mucus-producing goblet cells. While TQ showed a significant effect in inhibiting IL-4, IL-5 and IL-13 and some effect in inducing IFN-gamma production in the BAL fluid, it did show a slight effect on in vitro production of IL-4 by cultured lung cells stimulated with OVA antigen. These data suggest that TQ attenuates allergic airway inflammation by inhibiting Th2 cytokines and eosinophil infiltration into the airways; thus demonstrating its potential anti-inflammatory role during the allergic response in the lung.  相似文献   

9.
Dexamethasone (DEX) is the mainstay treatment for asthma, which is a common chronic airway inflammation disease. However, the mechanism of DEX resolute symptoms of asthma is not completely clear. Here, we aimed to analyze the effect of DEX on airway inflammation in OVA-induced mice and whether this effect is related to the inhibition of the activation of NLRP3 inflammasome. Female (C57BL/6) mice were used to establish the allergic airway inflammation model by inhalation OVA. The number of inflammatory cells in the bronchi alveolar lavage fluid (BALF) was counted by Swiss-Giemsa staining, and the contents of IL-1β, IL-18, IL-5 and IL-17 were detected by ELISA. The degree of inflammatory cells infiltration and mucous cells proliferation in lung tissue were separately observed by H&E and PAS staining. The proteins expression of NLRP3, pro-caspase-1, caspase-1, IL-1β, IL-6 and IL-17 in lung tissue were detected by Western blotting. We found that DEX significantly inhibited OVA-induced inflammatory cells infiltration, airway mucus secretion and goblet cell proliferation in mice. The total and classified numbers of inflammatory cells and the levels of IL-1β, IL-18, IL-5 and IL-17 in the BALF of the experimental group were significantly lower than those of the model group after DEX treatment. DEX also significantly inhibited the activity of NLRP3 inflammasome and reduced the protein contents of Pro-Caspase-1, Caspase-1, Capase-1/Pro-Caspase-1, IL-1β, IL-6 and IL-17 in lung tissues. Our study suggested that DEX alleviates allergic airway inflammation by inhibiting the activity of NLRP3 inflammasome and the levels of IL-1β and IL-18.  相似文献   

10.
Thymic immunosuppressive pentapeptide (TIPP) is a novel pentapeptide originally obtained from calf thymic immunosuppressive extract. In this study we aimed to investigate the anti-inflammatory effect and mechanisms of TIPP in vivo with an ovalbumin-induced mouse allergic asthma model. We investigated the effects of TIPP on the infiltration of inflammation cells, immune cell subtypes, Th2 cytokines in BALF and IgE in serum, mRNA levels of IL-4, IL-10, TNF-α and eotaxin-1, expression of MCP-1, VCAM-1 and COX-2, and activation of MAP kinases and NF-κB. Our results showed that TIPP significantly inhibited the increase in Th2 cytokines and OVA-specific IgE production, mRNA levels of IL-4, TNF-α and eotaxin-1 and the expression of MCP-1, VCAM-1 and COX-2 in lung tissues, as well effectively resisting the balance changes of cells in BALF. In addition, it was found that the administration of TIPP attenuated the activation of MAP kinases and NF-κB in the lung tissues of the allergic mice. Our data suggest that TIPP effectively suppresses the allergic and inflammatory responses in allergic mice via blocking MAP kinases/NF-κB signalling pathway. The investigation indicated that TIPP may become an anti-allergic and anti-inflammatory drug.  相似文献   

11.
IL-12 modulates T cell responses between helper T cells Th2 and Th1; however, the therapeutic potential of IL-12 for allergic diseases either directly or as an adjuvant in allergen therapy has been controversial. The role of intranasal IL-12 as an adjuvant in modulating the grass pollen allergen (GAL) therapy-induced systemic immune response and lung-specific inflammation and airway reactivity was examined in this study using a mouse model of established allergic asthma. The effects of intranasal or nebulized IL-12 with or without intranasal anti-IFN-gamma antibody were examined in groups of control and allergen-sensitized or -challenged mice. T cell cytokine patterns, antibody response profiles, pulmonary inflammation and airway reactivity were examined. Intranasal IL-12 was found to be more effective in the Th2-Th1 shifting of immune response and anti-inflammatory activity in the lung compared to nebulized IL-12 at the given doses. Intranasal IL-12 significantly decreased production of IFN-gamma, eotaxin and LTC4/D4/E4 in the lung and decreased eosinophil infiltration, resulting in attenuated airway hyper-responsiveness in GAL-sensitized (GS) mice. In contrast, intranasal IL-12 significantly increased IFN-gamma production in the thoracic lymph node cultures and decreased the IL-5/IFN-gamma ratio, suggesting a Th2-Th1 shift. Also, intranasal IL-12 increased GAL-specific IgG2a antibody response, while the IgE response remained unaffected. The systemic effects of IL-12 were IFN-gamma dependent. IL-12 induces differential expression of its own receptor beta1 and beta2 subunits in the lung tissues to augment IL-12 responsiveness. Together, these results demonstrate that intranasal IL-12 is effective in shifting the systemic immune response in the direction of Th1 in IFN-gamma-dependent manner, while decreasing pulmonary inflammation and airway reactivity independent of IFN-gamma. Thus, intranasal delivery of IL-12 may provide an approach for the treatment of asthma and may be useful as an adjuvant in local nasal immunotherapy (IT) and in asthma.  相似文献   

12.
Phosphoinositide 3-kinase (PI3K) exhibits broad functional effects in immune cells. We investigated the role of PI3K in allergic airway inflammation using LY294002, a specific PI3K inhibitor, in a mouse asthma model. BALB/c mice were sensitized and challenged with ovalbumin (OVA), and developed airway eosinophilia, mucus hypersecretion, elevation in cytokine levels, and airway hyperresponsiveness. Intratracheal administration of LY294002 significantly inhibited OVA-induced increases in total cell counts, eosinophil counts, and IL-5, IL-13, and eotaxin levels in bronchoalveolar lavage fluid. Histological studies show that LY294002 dramatically inhibited OVA-induced lung tissue eosinophilia and airway mucus production. In addition, LY294002 significantly suppressed OVA-induced airway hyperresponsiveness to inhaled methacholine. Western blot analysis of whole lung lysates shows that LY294002 markedly attenuated OVA-induced serine phosphorylation of Akt, a direct downstream substrate of PI3K. Taken together, our findings suggest that inhibition of PI3K signaling pathway can suppress T-helper type 2 (Th2) cytokine production, eosinophil infiltration, mucus production, and airway hyperresponsiveness in a mouse asthma model and may have therapeutic potential for the treatment of allergic airway inflammation.  相似文献   

13.
14.
Allergic rhinitis is a common heterogeneous chronic upper airway disorder and is an IgE-mediated inflammation characterized by one or more nasal symptoms such as sneezing, itching, nasal discharge, rhinorrhea, post nasal drainage and nasal blockage. In the present study, the effects of skullcapflavone II (SCFII) on upper airway inflammation, Th2 cytokines, and NF-κB signaling in an ovalbumin (OVA)-induced allergic rhinitis (AR) murine model in vivo were investigated. OVA-induced AR mice increased nasal symptoms, eosinophils and mast cells infiltration into nasal cavity, OVA-specific IgE/IgG1 and histamine in serum, Th2 cytokines including IL-13 and GATA3, and NF-κB signaling in NALF and lung homogenate. Interestingly, treatment of SCFII reduced the levels of OVA-specific IgE/IgG1 and histamine in serum, of Th2 cytokines and of NF-κB signaling in the NALF and the lung homogenate, and histopathological changes in the nasal tissue and the lung. Also, dexamethasone suppressed such increases. The results of this study suggested that SCFII may ameliorate allergic inflammation of upper airway in AR mice model by blocking the Th2 cytokine production, the NF-κB signal pathway and the mast cell histamine release. Taken together, we suggest that SCFII may be used as a therapeutic agent for patients with Th2-mediated or mast cell-mediated allergic diseases.  相似文献   

15.
Asthma comprises a triad of reversible airway obstruction, bronchial smooth muscle cell hyperreactivity to bronchoconstrictors, and chronic bronchial inflammation. Clinical and experimental findings have established eosinophilia as a sign of allergic disorders. In the present investigation, we evaluated the anti-asthmatic effects of schizandrin and its underlying mechanisms in an in vivo murine asthmatic model. To accomplish this, female BALB/c mice were sensitized and challenged with ovalbumin (OVA), and examined for the following typical asthmatic reactions: increased numbers of eosinophils and other inflammatory cells in bronchoalveolar lavage fluid (BALF); production of Th1 cytokines (such as tumor necrosis factor (TNF)-α in BALF); production of Th2 cytokines (such as interleukin IL-4 and IL-5) in BALF; presence of total and OVA-specific immunoglobulins (Ig)E in serum; presence of oxidative stress; hyperplasia of goblet cells in the lung; and marked influx of inflammatory cells into the lung. Our results collectively show that schizandrin exerts profound inhibitory effects on accumulation of eosinophils into the airways and reduces the levels of IL-4, IL-5, IFN-γ, and TNF-α in BALF. Additionally, schizandrin suppresses the production of reactive oxygen species (ROS) in a dose-dependent manner, and inhibits goblet cell hyperplasia and inflammatory cell infiltration in lung tissue. Thus, schizandrin has anti-asthmatic effects, which seem to be partially mediated by reduction of oxidative stress and airway inflammation, in a murine allergic asthma model. These results indicate that schizandrin may be an effective novel therapeutic agent for the treatment of allergic asthma.  相似文献   

16.
We previously reported that 8-oxo-2'-deoxyguanosine (8-oxo-dG) suppressed airway hyperresponsiveness and allergy-associated immune responses in ovalbumin-induced allergic mice by inactivating Rac. In the present study, 8-oxo-dG was investigated for its suppression of inflammation and remodeling in lung tissues induced by allergic reaction in mice. Mice were sensitized and challenged with ovalbumin without or with oral administration of 8-oxo-dG. The mice without 8-oxo-dG administration showed the following inflammatory and airway remodeling signs: infiltration of inflammatory cells into peribronchial area, hyperplasia of mucus-secreting goblet cells in bronchial walls, increase of expressions of Muc5ac and vascular cell adhesion molecule (VCAM)-1, collagen deposition and protein expression, and matrix metalloproteinase (MMP)-2/-9 expressions. We also observed an increase of various inflammation-mediating proteins, namely IL-4, IL-5, IL-8, IL-13, TNF-α and IFN-γ, and activation of STAT1 and NF-κB. Production of reactive oxygen species and nitric oxide (NO(.)) was increased as indicated by a dramatic increase in formation of nitro-tyrosine. Importantly, Rac1 and 2 were also markedly activated. However, 8-oxo-dG suppressed all these inflammatory and tissue remodeling signs as well as activation of Rac1 and 2. These results indicate that 8-oxo-dG can inhibit allergy-induced inflammation and remodeling in airway and lung tissues through Rac inactivation.  相似文献   

17.
Diallyl disulfide (DADS) is a major organosulfur compound found in garlic oil that is widely used as a flavoring agent. In this study, we evaluated the effects of DADS on airway inflammation using an ovalbumin-induced model of allergic asthma and RAW264.7 cells. DADS decreased nitric oxide production with a reduction in the levels of interleukins (IL)-1β and IL-6 in RAW264.7 cells stimulated with LPS. DADS also reduced the expression of proinflammatory proteins including inducible nitric oxide synthase (iNOS), nuclear factor (NF)-κB, and matrix metalloproteinase (MMP)-9, and it enhanced the expression of antioxidant proteins including Nrf-2 and hemeoxygenase (HO)-1. In in vivo experiments, DADS decreased the inflammatory cell count in the bronchoalveolar lavage fluid (BALF) with IL-4, IL-5, IL-13, and immunoglobulin (Ig) E. These results were consistent with the histological analysis. DADS attenuated the airway inflammation and mucus hypersecretion induced by OVA challenge. In addition, DADS induced the activation of Nrf-2 and the expression of HO-1. In contrast, DADS reduced the activation of NF-κB, iNOS and MMP-9. In conclusion, DADS reduced the airway inflammation via regulation of Nrf-2/HO-1 and NF-κB. These results suggest that DADS might represent a useful new oral therapy to treat allergic asthma.  相似文献   

18.
Iloprost, a stable prostaglandin I2 (PGI2) analog, can inhibit allergic inflammation in an ovalbumin (OVA)-induced asthma model via inhibition of airway dendritic cell (DC) function. However, the underlying mechanism of PGI2 signaling-mediated immunosuppression remains unclear. This study explored whether iloprost-treated DCs can suppress inflammation by promoting antigen-specific regulatory T cell (Treg) differentiation through PGI2-G-protein-coupled receptor (IP). We established an allergic lung inflammation model using a hydrogel biomaterial delivery system and observed that iloprost significantly suppressed OVA-induced Th2 lung inflammation and increased the frequency of OVA-specific Tregs in vivo. We further observed that iloprost-treated DCs displayed tolerogenic characteristics, including low inflammatory cytokine (IL-12, TNF-α, IL-6, IL-23) expression levels, high anti-inflammatory cytokine (IL-10) production, and a semimature phenotype. In addition, iloprost-treated DCs increased OVA-specific CD4+Foxp3+ T cell differentiation from naïve T cells in an IP-dependent pathway in vitro and in vivo. Blocking experiments showed that iloprost-treated DCs promoted Treg differentiation, at least in part, through programmed death ligand 1 (PD-L1), whereas iloprost-induced PD-L1 expression in DCs was through the IP receptor. Furthermore, iloprost treatment suppressed DC-mediated airway inflammation and increased the frequency of OVA-specific Tregs through PD-L1 in vivo. Taken together, these results show that PGI2-IP signaling mediated by iloprost in DCs may lead to immune tolerance, suggesting that the PGI2 analog has the potential to be applied therapeutically for tolerogenic DC immunotherapy in autoimmune diseases or allergic asthma.  相似文献   

19.
Salidroside, an active component extracted from Rhodiola rosea, has been reported to inhibit allergic asthma. However, its mechanism has not been fully elucidated. Group 2 innate lymphoid cells (ILC2s) accumulate in the lung and cooperate with other cells to drive type 2 inflammation stimulated by inhaled allergens. The study aims to explore the suppressive effect of salidroside on ILC2s and IL-33/IL-33R (ST2) axis in allergic airway inflammation. The ovalbumin (OVA)-sensitized/challenged mice were established. Airway eosinophil recruitment, increased total IgE in the serum and type 2 cytokines IL-4, IL-5, and IL-13 in the bronchoalveolar lavage fluids and lung tissues were identified in the OVA-induced mice model, all of which were inhibited by pretreatment with different doses of salidroside. Moreover, salidroside suppressed lung total ILC2 and ST2-expressing ILC2 accumulation, lung IL-33 and ST2 expressions in mice. In vitro, OVA could induce IL-33 expression in BEAS-2B cells, which was also effectively inhibited by salidroside. This study firstly reveals salidroside as a potential therapeutic drug for allergic asthma by inhibiting ILC2-mediated airway inflammation via targeting IL-33/ST2 axis.  相似文献   

20.
We recently demonstrated that benzo[a]pyrene (BaP), the aryl hydrocarbon receptor (AhR) ligand, directly contributes to aggravation of cutaneous allergy in a mouse model of allergic dermatitis. The present study aimed to determine whether BaP-induced AhR activation results in development of airway inflammation. Initially, the potential for a direct relationship between BaP-induced AhR activation and airway inflammation was investigated in vivo, using a mouse model of type 2 helper T cell (Th2) hapten toluene-2,4-diisocyanate (TDI)-induced airway inflammation. Mice were orally administered BaP at 48, 24, and 4 h before the final allergen challenge. Oral administration of BaP showed a significant increase in lung inflammation and eosinophil infiltration. While expression of Th2 cytokines such as interleukin 4 (IL-4) and IL-13 was not affected by exposure to BaP, AhR activation significantly increased IL-33 expression. To confirm the in vivo results, in vitro experiments were performed using the human eosinophilic leukemia cell line (EOL-1), human bronchial epithelial cell line (BEAS-2B), and human lung adenocarcinoma epithelial cell line (A549). Results indicated that pre-treatment with BaP increased expression of IL-8 in house dust mite-activated EOL-1, BEAS-2B, and A549 cells. In addition, IL-33 levels in BEAS-2B cells were significantly increased after BaP exposure. Our findings indicated that BaP-induced AhR activation is involved in the pro-inflammatory response in respiratory allergy, and that this effect may be mediated by increased IL-33 expression and eosinophil infiltration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号