首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.
The human immunodeficiency virus type 1 (HIV-1) protease inhibitors (PIs)—saquinavir, ritonavir, nelfinavir, and indinavir—interact with the ABC-type multidrug transporter proteins MDR1 and MRP1 in CEM T-lymphocytic cell lines. Calcein fluorescence was significantly enhanced in MDR1+ CEM/VBL100 and MRP1+ CEM/VM-1-5 cells incubated in the presence of various HIV PIs and calcein acetoxymethyl ester. HIV PIs also enhanced the cytotoxic activity of doxorubicin, a known substrate for MDR1 and MRP1, in both VBL100 and VM-1-5 CEM lines. Saquinavir, ritonavir, and nelfinavir enhanced doxorubicin toxicity in CEM/VBL100 cells by approximately three- to sevenfold. Saquinavir and ritonavir also enhanced doxorubicin toxicity in CEM/VM-1-5 cells. HIV-1 replication was effectively inhibited by the various PIs in all of the cell lines, and the 90% inhibitory concentration for a given compound was comparable between the different cell types. Therefore, overexpression of MDR1 or MRP1 by T lymphocytes is not likely to limit the antiviral efficacy of HIV PI therapy.  相似文献   

2.
The differentiating agent and histone deacetylase inhibitor, sodium butyrate (NaB), was shown previously to cause a transient, 3-17-fold induction of human DNA topoisomerase II alpha (topo II alpha) gene promoter activity and a 2-fold increase in topo II alpha protein early in monocytic differentiation of HL-60 cells. This observation has now been extended to other short chain fatty acids and aromatic butyrate analogues, and evidence is presented that human topo II alpha promoter induction correlates closely with histone H4 acetylation status. Because increased topo II alpha expression is associated with enhanced efficacy of topo II-poisoning antitumor drugs such as etoposide, the hypothesis tested in this report was whether NaB pretreatment could sensitize HL-60 myeloid leukemia and K562 erythroleukemia cells to etoposide-triggered DNA damage and cell death. A 24-72 h NaB treatment (0.4-0.5 mM) induced topo II alpha 2-2.5-fold in both HL-60 and K562 cells and caused a dose-dependent enhancement of etoposidestimulated, protein-linked DNA complexes in both cell lines. At concentrations with minimal effects on cell cycle kinetics (0.4 mM in HL-60; 0.5 mM in K562), NaB pretreatment also modestly enhanced etoposidetriggered apoptosis in HL-60 cells, as determined morphologically after acridine orange/ethidium bromide staining, and substantially increased K562 growth inhibition and poly(ADP-ribose)polymerase cleavage after etoposide exposure. Therefore, a temporal window may exist whereby a differentiating agent may sensitize experimental leukemias to a cytotoxic antitumor agent. These results indicate that histone deacetylase inhibitors should be investigated for etoposide sensitization of other butyrate-responsive hematopoietic and nonhematopoietic tumor lines in vitro and in vivo.  相似文献   

3.
The anthracycline group of compounds is extensively used in current cancer chemotherapy regimens and is classified as topoisomerase II inhibitor. However, previous work has shown that doxorubicin can be activated to form DNA adducts in the presence of formaldehyde-releasing prodrugs and that this leads to apoptosis independently of topoisomerase II-mediated damage. To determine which anthracyclines would be useful in combination with formaldehyde-releasing prodrugs, a series of clinically relevant anthracyclines (doxorubicin, daunorubicin, idarubicin, and epirubicin) were examined for their capacity to form DNA adducts in MCF7 and MCF7/Dx (P-glycoprotein overexpressing) cells in the presence of the formaldehyde-releasing drug pivaloyloxymethyl butyrate (AN-9). All anthracyclines, with the exception of epirubicin, efficiently yielded adducts in both sensitive and resistant cell lines, and levels of adducts were similar in mitochondrial and nuclear genomes. Idarubicin was the most active compound in both sensitive and resistant cell lines, whereas adducts formed by doxorubicin and daunorubicin were consistently lower in the resistant compared with sensitive cells. The adducts formed by doxorubicin, daunorubicin, and idarubicin showed the same DNA sequence specificity in sensitive and resistant cells as assessed by lambda-exonuclease-based sequencing of alpha-satellite DNA extracted from drug-treated cells. Growth inhibition assays were used to show that doxorubicin, daunorubicin, and idarubicin were all synergistic in combination with AN-9, whereas the combination of epirubicin with AN-9 was additive. Although apoptosis assays indicated a greater than additive effect for epirubicin/AN-9 combinations, this effect was much more pronounced for doxorubicin/AN-9 combinations.  相似文献   

4.
Depletion of glutathione (GSH) in MCF-7 and MDA-MB-231 cell lines by pretreatment with the GSH synthesis inhibitor buthionine sulfoximine potentiated the activity of 10,11-methylenedioxy-20(S)-camptothecin, SN-38 [7-ethyl-10-hydroxy-20(S)-camptothecin], topotecan, and 7-chloromethyl-10,11-methylenedioxy-20(S)-camptothecin (CMMDC). The greatest potentiation was observed with the alkylating camptothecin CMMDC. Buthionine sulfoximine pretreatment also increased the number of camptothecin-induced DNA-protein crosslinks, indicating that GSH affects the mechanism of action of camptothecin. We also report that GSH interacts with CMMDC to form a stable conjugate, 7-(glutathionylmethyl)-10,11-methylenedioxy-20(S)-camptothecin (GSMMDC), which is formed spontaneously in buffered solutions and in MCF-7 cells treated with CMMDC. GSMMDC was synthesized and found to be nearly as active as 10,11-methylenedioxy-20(S)-camptothecin in a topoisomerase (topo) I-mediated DNA nicking assay. The resulting topo I cleavage complexes were remarkably stable. In cell culture, GSMMDC displayed potent growth-inhibitory activity against U937 and P388 leukemia cell lines. GSMMDC was not active against a topo I-deficient P388 cell line, indicating that topo I is its cellular target. Peptide-truncated analogues of GSMMDC were prepared and evaluated. All three derivatives [7-(gamma-glutamylcysteinylmethyl)-10,11-methylenedioxy-20(S)-camptothecin, 7-(cysteinylglycylmethyl)-10,11-methylenedioxy-20(S)-camptothecin, and 7-(cysteinylmethyl)-10,11-methylenedioxy-20(S)-camptothecin] displayed topo I and cell growth-inhibitory activity. These results suggest that 7-peptidyl derivatives represent a new class of camptothecin analogues.  相似文献   

5.
Topoisomerase II is a target for clinically active anticancer drugs. Drugs targeting these enzymes act by preventing the religation of enzyme-DNA covalent complexes leading to protein-DNA adducts that include single- and double-strand breaks. In mammalian cells, nonhomologous repair pathways are critical for repairing topoisomerase II-mediated DNA damage. Because topoisomerase II-targeting agents, such as etoposide, can also induce chromosomal translocations that can lead to secondary malignancies, understanding nonhomologous repair of topoisomerase II-mediated DNA damage may help to define strategies that limit this critical side effect on an important class of anticancer agents. Using Saccharomyces cerevisiae as a model eukaryote, we have determined the contribution of genes required for nonhomologous end-joining (NHEJ) for repairing DNA damage arising from treatment with topoisomerase II poisons, such as etoposide and 4'-(9-acridinylamino)methanesulfon-m-anisidide (mAMSA). To increase cellular sensitivity to topoisomerase II poisons, we overexpressed either wild-type or drug-hypersensitive alleles of yeast topoisomerase II. Using this approach, we found that yku70 (hdf1), yku80 (hdf2), and other genes required for NHEJ were important for cell survival following exposure to etoposide. The clearest increase in sensitivity was observed with cells overexpressing an etoposide-hypersensitive allele of TOP2 (Ser740Trp). Hypersensitivity was also seen in some end-joining defective mutants exposed to the intercalating agent mAMSA, although the increase in sensitivity was less pronounced. To confirm that the increase in sensitivity was not solely due to the elevated expression of TOP2 or due to specific effects of the drug-hypersensitive TOP2 alleles, we also found that deletion of genes required for NHEJ increased the sensitivity of rad52 deletions to both etoposide and mAMSA. Taken together, these results show a clear role for NHEJ in the repair of DNA damage induced by topoisomerase II-targeting agents and suggest that this pathway may participate in translocations generated by drugs, such as etoposide.  相似文献   

6.
Plumbagin and shikonin, plant metabolites which have naphthoquinone structures, induced mammalian topoisomerase II-mediated DNA cleavage in vitro. Treatment of a reaction mixture containing these naphthoquinones and topoisomerase II at an elevated temperature (65 degrees C) resulted in a great reduction in DNA cleavage, suggesting that the mechanism of the topoisomerase II-mediated DNA cleavage induced by these naphthoquinones is through formation of a cleavable complex, as seen with antitumor agents such as 4'-(9-acridinylamino)methanesulfon-m-anisidide and demethylepipodophyllotoxin ethylidene-beta-glucoside. Lawson and lapacol, which are structurally related plant metabolites with naphthoquinone moieties, could not induce topoisomerase II-mediated DNA cleavage. Plumbagin and shikonin induced a similar DNA cleavage pattern with topoisomerase II which was different from the cleavage patterns induced with other known topoisomerase II-active drugs. A DNA-unwinding assay with T4 DNA ligase showed that shikonin, lawson, and lapacol did not intercalate into DNA, while plumbagin and 2-methyl-1,4-naphthoquinone intercalate into DNA, but to a lower degree than 4'-(9-acridinylamino)methanesulfon-m-anisidide does.  相似文献   

7.
Cloretazine is an antitumor sulfonylhydrazine prodrug that generates both chloroethylating and carbamoylating species. The cytotoxic potency of these species was analyzed in L1210 leukemia cells using analogues with chloroethylating or carbamoylating function only. Clonogenic assays showed that the chloroethylating-only agent 1,2-bis(methylsulfonyl)-1-(2-chloroethyl)hydrazine (90CE) produced marked differential cytotoxicity against wild-type and O6-alkylguanine-DNA alkyltransferase-transfected L1210 cells (LC10, 1.4 versus 31 micromol/L), indicating that a large portion of the cytotoxicity was due to alkylation of DNA at the O-6 position of guanine. Consistent with the concept that O-6 chloroethylation of DNA guanine progresses to interstrand cross-links, the comet assay, in which DNA cross-links were measured by a reduction in DNA migration induced by strand breaks, showed that cloretazine and 90CE, but not the carbamoylating-only agent 1,2-bis(methylsulfonyl)-1-[(methylamino)carbonyl]hydrazine (101MDCE), produced DNA cross-links and that cloretazine caused more DNA cross-links than 90CE at equimolar concentrations. Cell cycle analyses showed that 90CE and 101MDCE at concentrations of 5 and 80 micromol/L, respectively, produced similar degrees of G2-M arrest. 90CE produced selective inhibition of DNA synthesis after overnight incubation, whereas 101MDCE caused rapid and nonselective inhibition of RNA, DNA, and protein syntheses. Both 90CE and 101MDCE induced phosphorylation of histone H2AX, albeit with distinct kinetics. These results indicate that (a) differential expression of O6-alkylguanine-DNA alkyltransferase in tumor and host cells seems to be responsible for tumor selectivity exerted by cloretazine; (b) 101MDCE enhances DNA cross-linking activity; and (c) 90CE induces cell death at concentrations lower than those causing alterations in the cell cycle and macromolecular syntheses.  相似文献   

8.
Chloroethylaminoanthraquinones are described with intercalating and alkylating capacity that potentially covalently cross-link topoisomerase II (topo II) to DNA. These compounds have potent cytotoxic activity (IC(50) = 0.9-7.6 nM) against the A2780 human ovarian carcinoma cell line. Hydroxyethylaminoanthraquinones also reported in this paper have similar IC(50) values (0.7-1.7 nM) in the same cell line. Alchemix (ZP281M, 1-(2-[N,N-bis(2-chloroethyl)amino]ethylamino)-4-(2-[N,N-(dimethyl)amino]ethylamino)-5,8-dihydroxy-9,10-anthracenedione), an alkylating anthraquinone, retains excellent antitumor activity in Adriamycin-resistant (2780AD) and cisplatin-resistant (2780/cp70) cell lines in vitro and in vivo. This indicates that Alchemix can evade both P-glycoprotein efflux pump and DNA mismatch repair-mediated resistance. In treated cells, Alchemix was shown to preferentially induce drug-stabilized covalent bound topo IIalpha-DNA complexes over topo IIbeta-DNA complexes.  相似文献   

9.
The effect of Pluronic P-105 micelle structure and ultrasound on the uptake of two anthracycline drugs, doxorubicin and its paramagnetic analogue, ruboxyl, by HL-60 cells was investigated. Pluronic micellization was studied over the temperature range of 25-42 degrees C using the EPR and fluorescence spectroscopy. In the presence of Pluronic P-105 at concentrations corresponding to unimers (or loose aggregates), drug uptake by HL-60 cells was enhanced, apparently due to the effect of the polymeric surfactant on cell membrane permeability. At Pluronic concentrations corresponding to the formation of dense micelles with hydrophobic cores, drug uptake was substantially decreased. However, insonation with 70 kHz ultrasound enhanced the intracellular uptake of drugs encapsulated in dense Pluronic micelles. These findings may provide for developing a new technique of drug targeting by encapsulating the drug in micelles to prevent unwanted interactions with healthy cells and focusing ultrasound on a tumor to enhance drug uptake at the tumor site.  相似文献   

10.
Multidrug resistance (MDR) mediated by the over expression of drug efflux protein P-glycoprotein (P-gp) is one of the major impediments to successful treatment of cancer. P-gp acts as an energy-dependent drug efflux pump and reduces the intracellular concentration of structurally unrelated drugs inside the cells. Therefore, there is an urgent need for development of new compound that are less toxic and effective against drug resistance in cancer. Preclinical studies have shown that quinoline derivatives possess anticancer activities. Here, we report the antitumor potential of quinoline derivative, 2-(2-Methyl-quinolin-4ylamino)-N-phenyl acetamide (S4). To evaluate the cytotoxic potential of S4, we used four different cell lines (Hela, HCT-116, CCRF-CEM, and CEM/ADR 5000) in vitro, and showed that S4 kills doxorubicin resistant T lymphoblastic leukemia cell, CEM/ADR 5000 in a concentration dependent manner while others remains unaffected. Moreover, S4 induces apoptosis in CEM/ADR 5000 cells through generation reactive oxygen species (ROS). This is substantiated by the fact that the antioxidant N-acetyle-cysteine (NAC) completely blocks ROS generation and, subsequently, abrogates S4 induced apoptosis. Furthermore, in vivo treatment with S4 significantly increases the life span of swiss albino mice bearing sensitive and doxorubicin resistant subline of Ehrlich ascites carcinoma. In addition, intraperitoneal application of S4 in mice does not show any systemic toxicity at concentrations that in preliminary trials in a mice Ehrlich ascites carcinoma model. Therefore, present report provides evidence that S4, a quinoline derivative, may be a promising new therapeutic agent against drug resistant cancers.  相似文献   

11.
VP-16 resistant cells, FvprB350 (50B-3), were isolated from mouse breast cancer cell line FM3A. 50B-3 cells showed 84-fold higher resistance than their parent cells. Reduced drug uptake was not found in resistant cells. Quantitative analysis of drug-stimulated DNA cleavage activity using 3'32P end-labeled pBR322 restriction fragments showed that VP-16 stimulated DNA-topoisomerase II cleavable complex forming activity in crude nuclear extract from 50B-3 cells was approximately one-fifth as compared with that of FM3A wild-type cells. Dot-blot analysis of RNA extracted from the two cell lines showed that mRNA levels of topoisomerase II in 50B-3 cells drastically decreased and catalytic activity was also 1/2-1/3 as compared with that of parent cells. 50B-3 cells showed cross resistance to VM-26, m-AMSA, adriamycin. These findings suggest that reduced topoisomerase II activity (cellular levels) and cleavable complex forming activity may be significant factors in the marked drug resistance.  相似文献   

12.
13.
The cardiotoxicity of doxorubicin (DOX) and other quinone-containing antitumor anthracyclines has been tentatively attributed to the formation of drug semiquinones which generate superoxide anion and reduce ferritin-bound Fe(III), favoring the release of Fe(II) and its subsequent involvement in free radical reactions. In the present study NADPH- and DOX-supplemented cytosolic fractions from human myocardial biopsies are shown to support a two-step reaction favoring an alternative mechanism of Fe(II) mobilization. The first step is an enzymatic two-electron reduction of the C-13 carbonyl group in the side chain of DOX, yielding a secondary alcohol metabolite which is called doxorubicinol (3.9 +/- 0.4 nmoles/mg protein per 4 h, mean +/- SEM). The second step is a nonenzymatic and superoxide anion-independent redox coupling of a large fraction of doxorubicinol (3.2 +/- 0.4 nmol/mg protein per 4 h) with Fe(III)-binding proteins distinct from ferritin, regenerating stoichiometric amounts of DOX, and mobilizing a twofold excess of Fe(II) ions (6.1 +/- 0.7 nmol/mg protein per 4 h). The formation of secondary alcohol metabolites decreases significantly (Pi < 0.01) when DOX is replaced by less cardiotoxic anthracyclines such as daunorubicin, 4'-epi DOX, and 4-demethoxy daunorubicin (2.1 +/- 0.1, 1.2 +/- 0.2, and 0.6 +/- 0.2 nmol/mg protein per 4 h, respectively). Therefore, daunorubicin, 4'-epi DOX, and 4-demethoxy daunorubicin are significantly (P < 0.01) less effective than DOX in mobilizing Fe(II) (3.5 +/- 0.1, 1.8 +/- 0.2, and 0.9 +/- 0.3 nmol/mg protein per 4 h, respectively). These results highlight the formation of secondary alcohol metabolites and the availability of nonferritin sources of Fe(III) as novel and critical determinants of Fe(II) delocalization and cardiac damage by structurally distinct anthracyclines, thus providing alternative routes to the design of cardioprotectants for anthracycline-treated patients.  相似文献   

14.
为探讨bcl-2蛋白对足叶乙甙触发T淋巴细胞白血病细胞株CEM程序性死亡的调控作用,采用脂质体Lipofectin法,将bcl-2基因逆转录病毒载体转入人T淋巴细胞白血病细胞株CEM中,并使其稳定、高效地表达。结果,经足叶乙甙处理后,高表达bcl-2蛋白的CEM细胞产生梯状DNA的量低于对照(P<0.05)。这表明高水平bcl-2蛋白对白血病细胞程序性死亡过程可能具有较强的抑制效应。  相似文献   

15.
In this review, both cationic and neutral synthetic ligands that bind in the minor groove of DNA are discussed. Certain bis-distamycins and related lexitropsins show activities against human immunodeficiency virus (HIV)-1 and HIV-2 at low nanomolar concentrations. DAPI binds strongly to AT-containing polymers and is located in the minor groove of DNA. DAPI intercalates in DNA sequences that do not contain at least three consecutive AT bp. Berenil can also exhibit intercalative, as well as minor groove binding, properties depending on sequence. Furan-containing analogues of berenil play an important role in their activities against Pneumocystis carinii and Cryptosporidium parvuam infections in vivo. Pt(II)-berenil conjugates show a good activity profile against HL60 and U-937 human leukemic cells. Pt-pentamidine shows higher antiproliferative activity against small cell lung, non-small cell lung, and melanoma cancer cell lines compared with many other tumor cell lines. trans-Butenamidine shows good anti-P. carinii activity in rats. Pentamidine is used against P. carinii pneumonia in individuals infected with HIV who are at high risk from this infection. A comparison of the cytotoxic potencies of adozelesin, bizelesin, carzelesin, cisplatin, and doxorubicin indicates that adozelesin is a potent analog of CC-1065. Naturally occurring pyrrolo[2,1-c][l,4]benzodiazepines such as anthramycin have a 2- to 3-bp sequence specificity, but a synthetic PBD dimer spans 6 bp, actively recognizing a central 5'-GATC sequence. The crosslinking efficiency of PBD dimers is much greater than that of other major groove crosslinkers, such as cisplatin, melphalan, etc. Neothramycin is used clinically for the treatment of superficial carcinoma of the bladder.  相似文献   

16.
PURPOSE: Resistance to topoisomerase (topo) I inhibitors has been related to down-regulation of nuclear target enzyme, whereas sensitization to topo II inhibitors may result from induction of topo II by topo I inhibitors. Here, we evaluated a sequence-specific administration of a topo I inhibitor followed by a topo II inhibitor. EXPERIMENTAL DESIGN: Twenty-five patients with advanced or metastatic malignancies were treated with increasing doses (0.75, 1.0, 1.25, 1.5, 1.75, or 2.0 mg/m(2)) of 9-nitrocamptothecin (9-NC) on days 1 to 3, followed by etoposide (100 or 150 mg/d) on days 4 and 5. At the maximally tolerated dose, 20 additional patients were enrolled. The median age was 60 years (range, 40-84 years). Endpoints included pharmacokinetic analyses of 9-NC and etoposide, and treatment-induced modulations of topo I and II expression in peripheral blood mononuclear cells. RESULTS: Neutropenia, thrombocytopenia, nausea, vomiting, diarrhea, and fatigue were dose-limiting toxicities and occurred in six patients. Despite a median number of four prior regimens (range 1-12), 2 (4%) patients had an objective response and 13 (29%) patients had stable disease. In contrast to the expected modulation in topo I and IIalpha levels, we observed a decrease in topo IIalpha levels, whereas topo I levels were not significantly altered by 9-NC treatment. CONCLUSIONS: Sequence-specific administration of 9-NC and etoposide is tolerable and active. However, peripheral blood mononuclear cells may not be a predictive biological surrogate for drug-induced modulation of topo levels in tumor tissues and should be further explored in larger studies.  相似文献   

17.
Amonafide, a naphthalimide derivative, although selected for exploratory clinical trials for its potent anticancer activity, has long been challenged by its unpredictable side effects. In the present study, a novel amonafide analogue, 2-(2-dimethylamino)-6-thia-2-aza-benzo-[def]-chrysene-1,3-diones (R16) was synthesized by substituting 5'-NH(2) of the naphthyl with a heterocyclic group to amonafide, with additional introduction of a thiol group. In a panel of various human tumor cell lines, R16 was more cytotoxic than its parent compound amonafide. It was also effective against multidrug-resistant cells. Importantly, the i.p. administration of R16 inhibited tumor growth in mice implanted with S-180 sarcoma and H(22) hepatoma. The molecular and cellular machinery studies showed that the R16 functions as a topoisomerase II (topo II) poison via binding to the ATPase domain of human topo IIalpha. The superior cytotoxicity of R16 to amonafide was ascribed to its potent effects on trapping topo II-DNA cleavage complexes. Moreover, using a topo II catalytic inhibitor aclarubicin, ataxia-telangiectasia-mutated (ATM)/ATM- and Rad3-related (ATR) kinase inhibitor caffeine and topo II-deficient HL-60/MX2 cells, we further showed that R16-triggered DNA double-strand breaks, tumor cell cycle arrest, and apoptosis were in a topo II-dependent manner. Taken together, R16 stood out by its improved anticancer activity, appreciable anti-multidrug resistance activities, and well-defined topo II poisoning mechanisms, as comparable with the parent compound amonafide. All these collectively promise the potential value of R16 as an anticancer drug candidate, which deserves further development.  相似文献   

18.
β-catenin在白血病细胞系中表达的研究   总被引:2,自引:0,他引:2  
本研究检测β-catenin在白血病/淋巴瘤细胞系中的表达,探讨其与白血病的关系。采用半定量RT-PCR、免疫细胞化学和Western blot的方法检测β-catenin在白血病细胞系中的表达。结果表明:白血病细胞系中β-catenin在转录水平上有广泛表达,其中:在U937、KG1a、Jurkat、K562、Namalwa细胞中存在极高表达;在HEL、HUT78、Raji、Daudi、CEM中有中等表达;而在LCL-H、HL-60、NB4、J6-1、Ramos细胞中β-cateninmRNA呈相对较低水平的表达。蛋白表达水平与mRNA表达水平结果一致。所检测的细胞系中,胞核中均可见β-catenin的表达,但程度不一;在U937、K562、KG1a和Jurkat细胞的胞核内可见大量分布。结论:β-catenin作为WNT/β-catenin信号转导途径中重要的"调节子",其在白血病细胞中的过量表达提示WNT/β-catenin信号转导途径可能在白血病细胞中有异常激活。  相似文献   

19.
Sclareol is a labdane-type diterpene that has demonstrated a significant cytotoxic activity against human leukemic cell lines. Here, we report the effect of sclareol against the human breast cancer cell lines MN1 and MDD2 derived from the parental cell line, MCF7. MN1 cells express functional p53, whereas MDD2 cells do not express p53. Flow cytometry analysis of the cell cycle indicated that sclareol was able to inhibit DNA synthesis induce arrest at the G(0/1) phase of the cycle apoptosis independent of p53. Sclareol-induced apoptosis was further assessed by detection of fragmented DNA in the cells. Furthermore, sclareol enhanced the activity of known anticancer drugs, doxorubicin, etoposide and cisplatinum, against MDD2 breast cancer cell line.  相似文献   

20.
It is known that some cancers show platinum complex resistance and that others show platinum complex sensitivity among ovarian cancers. Oxaliplatin (cis-[oxalato[trans-l-1, 2-diamino-cyclohexane] platinum[II]]; l-OHP), an active anti-cancer agent consisting of platinum, inhibits RNA synthesis and results in cytostatic effects. We investigated the difference between an oxaliplatin-resistant ovarian cancer cell line, KFR, and an oxaliplatin-sensitive ovarian cancer cell line, KF-1, using DNA microarray analysis. The oxaliplatin-resistant cell line, KFR, was established by using KF-1 cells derived from human serous cystadenocarcinoma of the ovary. Acquisition of platinum resistance in human ovarian cancer cells thus appeared to be related mainly to the expression of gamma-glutamylcysteine synthetase (gamma-GCS), topo II and metallothionein (hMT) genes, and partly to that of topo I and glutathione S-transferase–pi (GST–pi) genes, in addition to a decrease in platinum accumulation. KFR cells had 8.5- and 24.7-fold higher mRNA levels of gamma-glutamylcysteine synthetase (gamma-GCS), and topo II genes than KF-1 cells, while KFR had only a slight increase in the glutathione S-transferase–pi (GST–pi) mRNA level as compared with KF-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号