首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Smooth muscle cell proliferation plays a major role in the genesis of restenosis after angioplasty or vascular injury. Local delivery of agents capable of modulating vascular responses, have the potential to prevent restenosis. However, the development of injectable microspheres for sustained drug delivery to the arterial wall is a major challenge. We demonstrated the possibility of entrapping an antiproliferative agent, cisplatin, in a series of surface coated biodegradable microspheres composed of poly(lactic acid)poly(caprolactone) blends, with a mean diameter of 2-10 pm. The microspheres were surface coated with poly ethylene glycol (PEG), chitosan (Chit), or alginate (Alg). A solution of cisplatin and a 50:50 blend of polylactic acid (PLA)-polycaprolactone (PCL) dissolved in acetone-dichloromethane mixture was poured into an aqueous solution of PEG (or polyvinyl alcohol or Chit or Alg) with stirring using a high speed homogenizer, for the formation of microspheres. Cisplatin recovery in microspheres ranged from 25-45% depending on the emulsification system used for the preparations. Scanning electron microscopy revealed that the PLA-PCL microspheres were spherical in shape and had a smooth surface texture. The amount of drug release was much higher initially (20-30%), this was followed by a constant slow-release profile for a 30-day period of study. It has been found that drug release depends on the amount of entrapped drug, on the presence of extra cisplatin in the dispensing phase, and on the polymer coatings. This PEG or Alg-coated PLA/PCL microsphere formulation may have potential for the targeted delivery of antiproliferative agents to treat restenosis.  相似文献   

2.
A simple, degradable poly(ethylene glycol) (PEG) microsphere system formed from a water-in-water emulsion process is presented. Microsphere network degradation and erosion were controlled by adjusting the number of hydrolytically labile sites, by varying the PEG molecular weight, and by adjusting the emulsion conditions. Microsphere size was also controllable by adjusting the polymer formulation. Furthermore, it is demonstrated that alternative degradation and erosion mechanisms, such as proteolytic degradation, can be incorporated into PEG microspheres, resulting in mixed-mode degradation. Owing to the adaptability of this approach, it may serve as an attractive option for emerging tissue engineering, drug delivery and gene delivery applications.  相似文献   

3.
The ideal biomaterial for the repair of bone defects is expected to have good mechanical properties, be fabricated easily into a desired shape, support cell attachment, allow controlled release of bioactive factors to induce bone formation, and biodegrade into nontoxic products to permit natural bone formation and remodeling. The synthetic polymer poly(propylene fumarate) (PPF) holds great promise as such a biomaterial. In previous work we developed poly(DL-lactic-co-glycolic acid) (PLGA) and PPF microspheres for the controlled delivery of bioactive molecules. This study presents an approach to incorporate these microspheres into an injectable, porous PPF scaffold. Model drug Texas red dextran (TRD) was encapsulated into biodegradable PLGA and PPF microspheres at 2 microg/mg microsphere. Five porous composite formulations were fabricated via a gas foaming technique by combining the injectable PPF paste with the PLGA or PPF microspheres at 100 or 250 mg microsphere per composite formulation, or a control aqueous TRD solution (200 microg per composite). All scaffolds had an interconnected pore network with an average porosity of 64.8 +/- 3.6%. The presence of microspheres in the composite scaffolds was confirmed by scanning electron microscopy and confocal microscopy. The composite scaffolds exhibited a sustained release of the model drug for at least 28 days and had minimal burst release during the initial phase of release, as compared to drug release from microspheres alone. The compressive moduli of the scaffolds were between 2.4 and 26.2 MPa after fabrication, and between 14.9 and 62.8 MPa after 28 days in PBS. The scaffolds containing PPF microspheres exhibited a significantly higher initial compressive modulus than those containing PLGA microspheres. Increasing the amount of microspheres in the composites was found to significantly decrease the initial compressive modulus. The novel injectable PPF-based microsphere/scaffold composites developed in this study are promising to serve as vehicles for controlled drug delivery for bone tissue engineering.  相似文献   

4.
We have prepared a semi-interpenetrating network (IPN) of poly(ethylene glycol) dimethacrylate (PEGDMA) with entrapped poly(D,L-lactide) (PLA) using photochemical techniques. These IPNs were developed for the controlled delivery of protein drugs such as growth factors. The PEG component draws water into the network, forming a hydrogel within the PLA matrix, controlling and facilitating release of the protein drug, while the PLA component both strengthens the PEG hydrogel and enhances the degradation and elimination of the network after the protein drug is released. The rate and extent of swelling and the resultant protein release kinetics could be controlled by varying the PEG/PLA ratio and total PLA content. These IPNs were prepared using a biocompatible benzyl benzoate/benzyl alcohol solvent system that yields a uniform, fine dispersion of the protein throughout the PEG/PLA IPN matrix. IPNs composed of high molecular mass PLA and lower PEG/PLA ratios exhibited lower equilibrium swelling ratios. The release of bovine serum albumin (BSA), a model protein, from these IPNs was characterized by a large initial burst, regardless of the PEG/PLA ratio, due to the entrapment of residual solvent within the network. Microparticles of the PEG/PLA IPNs were also prepared using a modified Prolease strategy. Residual solvent removal was significantly enhanced using this process. The microparticles also exhibited a significant reduction in the initial burst release of protein. Mixtures of different compositions of PEG/PLA microparticles should be useful for the delivery of a variety of protein drugs with different release kinetics from any tissue-engineering matrix.  相似文献   

5.
Paclitaxel is one of the best antineoplastic drugs found in nature in the past decades, which has excellent therapeutic effects against a wide spectrum of cancers. Because of its high hydrophobicity, Cremophor EL has to be used as adjuvant in its clinical dosage form (Taxol), which has been found to cause serious side effects. Nanoparticles of biodegradable polymers may provide an ideal solution. In this research, paclitaxel-loaded nanoparticles of poly(D,L-lactide)/methoxy poly(ethylene glycol)-polylactide (PLA/MPEG-PLA) blends of various blend ratio 100/0, 75/25, 50/50, 25/75, and 0/100 were formulated by the nanoprecipitation method for controlled release of paclitaxel. It was found that increasing the proportion of MPEG-PLA component in the blend from 0 to 100% resulted in a progressive decrease of the particle size from 230.6+/-11.1 nm to 74.8+/-14.0 nm. The zeta potential of the drug-loaded nanoparticles was increased accordingly from -19.60+/-1.13 mV to a nearly neutral, that is, -0.33+/-0.28 mV, which indicates the gradual enrichment of PEG segments on the particle surface. The findings were further confirmed by X-Ray Photoelectron Spectroscopy (XPS) analysis. Differential scanning calorimetry (DSC) analysis showed that the glass transition temperature of PLA was significantly decreased from 58.7 to 52.1 degrees C with an increase of MPEG-PLA proportion from 0 to 75%, suggesting the miscibility of PLA and MPEG-PLA. The pure PLA nanoparticles (100/0) exhibited the slowest drug-release rate with 37.3% encapsulated drug released from the nanoparticles for 14 days while the MPEG-PLA nanoparticles (0/100) achieved the fastest drug release with 95.9% drug release in the same period.  相似文献   

6.
This article describes the effects of six processing parameters on the release kinetics of a model drug Texas red dextran (TRD) from poly(propylene fumarate)/poly(lactic-co-glycolic acid) (PPF/PLGA) blend microspheres as well as the degradation of these microspheres. The microspheres were fabricated using a double emulsion-solvent extraction technique in which the following six parameters were varied: PPF/PLGA ratio, polymer viscosity, vortex speed during emulsification, amount of internal aqueous phase, use of poly(vinyl alcohol) in the internal aqueous phase, and poly(vinyl alcohol) concentration in the external aqueous phase. We have previously characterized these microspheres in terms of microsphere morphology, size distribution, and TRD entrapment efficiency. In this work, the TRD release profiles in phosphate-buffered saline were determined and all formulations showed an initial burst release in the first 2 days followed by a decreased sustained release over a 38-day period. The initial burst release varied from 5.1 (+/-1.1) to 67.7 (+/-3.4)% of the entrapped TRD, and was affected most by the viscosity of the polymer solution used for microsphere fabrication. The sustained release between day 2 and day 38 ranged from 7.9 (+/-0.8) to 27.2 (+/-3.1)% of the entrapped TRD. During 11 weeks of in vitro degradation, the mass of the microspheres remained relatively constant for the first 3 weeks after which it decreased dramatically, whereas the molecular weight of the polymers decreased immediately upon placement in phosphate-buffered saline. Increasing the PPF content in the PPF/PLGA blend resulted in slower microsphere degradation. Overall, this study provides further understanding of the effects of various processing parameters on the release kinetics from PPF/PLGA blend microspheres thus allowing modulation of drug release to achieve a wide spectrum of release profiles.  相似文献   

7.
Ruan G  Feng SS 《Biomaterials》2003,24(27):5037-5044
Microspheres of a new kind of copolymer, poly(lactic acid)-poly(ethylene glycol)-poly(lactic acid) (PLA-PEG-PLA), are proposed in the present work for clinical administration of an antineoplastic drug paclitaxel with hypothesis that incorporation of a hydrophilic PEG segment within the hydrophobic PLA might facilitate the paclitaxel release. Paclitaxel-loaded PLA-PEG-PLA microspheres of various compositions were prepared by the solvent extraction/evaporation method. Characterization of the microspheres was then followed to examine the particle size and size distribution, the drug encapsulation efficiency, the colloidal stability, the surface chemistry, the surface and internal morphology, the drug physical state and its in vitro release behavior. The effects of polymer types, solvents and drug loading were investigated. It was found that in the microspheres the PEG segment was homogeneously distributed and caused porosity. Significantly faster release from PLA-PEG-PLA microspheres resulted in comparison with the PLGA counterpart. Incorporation of water-soluble solvent acetone in the organic solvent phase further increased the porosity of the PLA-PEG-PLA microspheres and facilitated the drug release. A total of 49.6% sustained release of paclitaxel within 1 month was achieved. Potentially, the presence of PEG on the surface of PLA-PEG-PLA microspheres could improve their biocompatibility. PLA-PEG-PLA microspheres could thus be promising for the clinical administration of highly hydrophobic antineoplastic drugs such as paclitaxel.  相似文献   

8.
We developed poly(propylene fumarate)/poly(lactic-co-glycolic acid) (PPF/PLGA) blend microspheres and investigated the effects of various processing parameters on the characteristics of these microspheres. The advantage of these blend microspheres is that the carbon-carbon double bonds along the PPF backbone could be used for their immobilization in a PPF scaffold. Microspheres containing the model drug Texas red dextran were fabricated using a double emulsion-solvent extraction technique. The effects of the following six processing parameters on the microsphere characteristics were investigated: PPF/PLGA ratio, polymer viscosity, vortex speed during emulsification, amount of internal aqueous phase, use of poly(vinyl alcohol) (PVA) in the internal aqueous phase, and PVA concentration in the external aqueous phase. Our results showed that the microsphere surface morphology was affected most by the viscosity of the polymer solution. Microspheres fabricated with a kinematic viscosity of 39 centistokes had a smooth, nonporous surface. In most microsphere formulations, the model drug was dispersed uniformly in the polymer matrix. For all fabricated formulations, the average microsphere diameter ranged between 19.0 and 76.9 microm. The external PVA concentration and vortex speed had most effect on the size distribution. Entrapment efficiencies varied from 60 to 98% and were most affected by the amount of internal aqueous phase, vortex speed, and polymer viscosity. Overall, we demonstrated the ability to fabricate PPF/PLGA blend microspheres with similar surface morphology, entrapment efficiency, and size distribution as conventional PLGA microspheres.  相似文献   

9.
Schnieders J  Gbureck U  Thull R  Kissel T 《Biomaterials》2006,27(23):4239-4249
Modification of a self setting bone cement with biodegradable microspheres to achieve controlled local release of antibiotics without compromising mechanical properties was investigated. Different biodegradable microsphere batches were prepared from poly(lactic-co-glycolic acid) (PLGA) using a spray-drying technique to encapsulate gentamicin crobefate varying PLGA composition and drug loading. Microsphere properties such as surface morphology, particle size and antibiotic drug release profiles were characterized. Microspheres were mixed with an apatitic calcium phosphate bone cement to generate an antibiotic drug delivery system for treatment of bone defects. All batches of cement/microsphere composites showed an unchanged compressive strength of 60 MPa and no increase in setting time. Antibiotic release increased with increasing drug loading of the microspheres up to 30% (w/w). Drug burst of gentamicin crobefate in the microspheres was abolished in cement/microsphere composites yielding nearly zero order release profiles. Modification of calcium phosphate cements using biodegradable microspheres proved to be an efficient drug delivery system allowing a broad range of 10-30% drug loading with uncompromised mechanical properties.  相似文献   

10.
Biodegradable poly (lactic acid) microspheres for drug delivery systems   总被引:2,自引:0,他引:2  
In connection with aim of maximizing the bio-availability of conventional drugs with minimum side-effects, new drug delivery systems (DDS) continue to attracted much attention. The controlled or sustained release of drugs represents one such approach, and in this regard report upon a study of DDS using biodegradable polymers which include poly (lactic acid) (PLA), poly (glycolic acid), and their copolymers (PLGA). Much attention is being paid to the controlled release of bio-active agents from microcapsules and microspheres made of biodegradable polymers, such as lactic acid homopolymers, as well as copolymers of glycolic acid. (11-21) Microcapsules or microspheres are injectable and able to provide pre-programmed durations of action, offering several advantages over the conventional dosage forms. This article reviews the results of a work program conducted in collaboration with a medical doctor upon DDS using biodegradable microspheres, such as PLA and PLGA.  相似文献   

11.
Poly(orthoester) (POE) microspheres have been previously shown to possess certain advantages for the in vivo delivery of DNA vaccines. In particular, timing of DNA release from POE microspheres in response to acidic phagosomal pH was shown to be an important factor in determining immunogenicity, which was hypothesized to be linked to the natural progression of antigen-presenting cell uptake, transfection, maturation, and antigen presentation. Here we report in vitro characterization of the enhanced efficacy of POE microspheres by blending poly(ethylenimine) (PEI), a well-characterized cationic transfection agent, into the POE matrix. Blending of a tiny amount of PEI (approximately 0.04 wt%) with POE caused large alterations in POE microsphere properties. PEI provided greater control over the rate of pH-triggered DNA release by doubling the total release time of plasmid DNA and enhanced gene transfection efficiency of the microspheres up to 50-fold without any significant cytotoxicity. Confocal microscopy results of labeled PEI and DNA plasmids revealed that PEI caused a surface-localizing distribution of DNA and PEI within the POE microsphere as well as focal co-localization of PEI with DNA. We provide evidence that upon degradation, the microspheres of POE-PEI blends released electrostatic complexes of DNA and PEI, which are responsible for the enhanced gene transfection. Furthermore, blending PEI into the POE microsphere induced 50-60% greater phenotypic maturation and activation of bone marrow-derived dendritic cells in vitro, judged by the up-regulation of co-stimulatory markers on the cell surface. Physically blending PEI with POE is a simple approach for modulating the properties of biodegradable microspheres in terms of gene transfection efficiency and DNA release kinetics. Combined with the ability to induce maturation of antigen-presenting cells, POE-PEI blended microspheres may be excellent carriers for DNA vaccines.  相似文献   

12.
Current treatment protocol for postoperative pain is to infuse anesthetic solution around nerves or into the epidural space. This clinical practice is beset by the short duration of the anesthetic effect unless the infusion is continuous. Continuous infusion, however, requires hospitalization of the patients, thereby increasing medical costs. In addition, it also causes systemic accumulation of the drug. We reported herein a novel treatment for the postoperative pain by applying to the surgical site a biodegradable microsphere-gel system for prolonged and localized release of encapsulated anesthetic drugs. This lidocaine-containing biodegradable poly(D,L-lactic acid) (PLA) microsphere system, although being established previously by other investigators, was hindered by a burst release and a followed rapid release of the drug within several hours in vitro. In this article, we demonstrated that by a step-by-step modification of the formulation, prolonged release of lidocaine, up to several days in vitro, could be achieved. Differential scanning calorimetry revealed a lower glass transition temperature for these lidocaine-loaded microspheres comparing to that of lidocaine-free microspheres. This decreased Tg explained for the tendency of the lidocaine-loaded microspheres to physically fuse at higher temperatures. In vitro studies showed that microspheres, when loaded with 35% lidocaine, yielded a threefold increase in the degradation rate. The molecular weight of PLA of the drug-loaded microspheres was reduced by 50% within a period of 1 month. Based on the results (of prolonged lidocaine release and rapid PLA microsphere degradation), this lidocaine-loaded PLA microsphere system could offer a simple solution to the treatment of postoperative pain.  相似文献   

13.
Two series of triblock copolymers of poly(ethylene glycol) (PEG, number-average molecular weight M n = 6000) and poly(L -lactide) (PLLA) or poly(D -lactide) (PDLA) were prepared by ring-opening polymerization of lactide initiated by PEG end groups using stannous octoate as a catalyst, either in refluxing toluene or in the melt at 175°C. The weight percentage of PLA in the polymers varied between 15 and 75 wt.-%. Blends of polymers containing blocks of opposite chirality were prepared by co-precipitation from homogeneous solutions. The melting temperatures of the crystalline PEG and PLA phases strongly depended on the composition of the polymers. The melting temperature of the PLA phase in the blends was approximately 40°C higher than that of the single block copolymers. Stereocomplex formation between blocks of enantiomeric poly(lactides) in PEG/PLA block copolymers was established for the first time. Water uptake of polymeric films prepared by solution casting was solely determined by the PEG content of the film.  相似文献   

14.
Biocompatible, amphiphilic block copolymers, such as poly(lactic acid)‐b‐poly(ethylene glycol) (PLA‐b‐PEG), that can be conjugated to targeting ligands, therapeutics, and imaging agents are required for the development of polymeric nanoparticle drug delivery systems. Synthesis of targetable, heterobifunctional X‐PLA‐b‐PEG‐Y has required the use of heterobifunctional PEG, which involves specialty equipment to synthesize and is expensive to purchase. Herein, a new method for the synthesis of bifunctional HS‐PLA‐b‐PEG‐OH is described. The approach takes advantage of polymer solution properties to improve a critical purification step, and uses inexpensive and readily available PEG‐diol as a starting material. In the method demonstrated here, the ring‐opening polymerization of PLA is initiated by both ends of a cleavable bifunctional initiator. PEG is conjugated to each PLA end, resulting in a high molecular weight intermediate which is simple to purify from the excess PEG, with recoveries that are nearly three times higher than when a monofunctional initiator is used. Following purification, the triblock copolymer is cleaved to produce the final HS‐PLA‐b‐PEG‐OH product, in which both polymer ends are reactive. Moreover, the polymers successfully stabilize nanoparticles produced by Flash NanoPrecipitation. Importantly, the synthesis method can be adopted by non‐polymer experts.  相似文献   

15.
Poly(lactic-co-glycolic acid) (PLGA) microspheres have been widely used as drug carriers for minimally invasive, local, and sustained drug delivery. However, their use is often plagued by limited controllability of encapsulation efficiency, initial burst, and release rate of drug molecules, which cause unsatisfactory outcomes and several side effects including inflammation. This study presents a new strategy of tuning the encapsulation efficiency and the release rate of protein drugs from a PLGA microsphere by filling the hollow core of the microsphere with poly(ethylene glycol) (PEG) hydrogels of varying cross-linking density. The PEG gel cores were prepared by inducing in situ cross-linking reactions of PEG monoacrylate solution within the PLGA microspheres. The resulting PEG-PLGA core–shell microspheres exhibited (1) increased encapsulation efficiency, (2) decreased initial burst, and (3) a more sustained release of protein drugs, as the cross-linking density of the PEG gel core was increased. In addition, implantation of PEG-PLGA core–shell microspheres encapsulated with vascular endothelial growth factor (VEGF) onto a chicken chorioallantoic membrane resulted in a significant increase in the number of new blood vessels at an implantation site, while minimizing inflammation. Overall, this strategy of introducing PEG gel into PLGA microspheres will be highly useful in tuning release rates and ultimately in improving the therapeutic efficacy of a wide array of protein drugs.  相似文献   

16.
Permeation of protein from porous poly(epsilon-caprolactone) films   总被引:1,自引:0,他引:1  
The objective of this study was designed to extend the application of poly(epsilon-caprolactone) (PCL) in delivery of macromolecular proteins. The strategy applied here is to create a porous structure in PCL films in order to control the diffusion rate of protein. Various amounts of both high-molecular-weight and low-molecular-weight poly(ethylene glycol) (PEG) were used as pore-forming agents. The porous films were prepared by a solvent-casting-leaching method. The thicknesses of the prepared films were controlled to be in the range of 75.3 +/- 0.6 similar 81.7 +/- 0.6 mum. The pore fraction of films was determined to be 27.7 +/- 1.0% similar 52.5 +/- 0.8% for PEG(10000) and 26.6 +/- 1.8% similar 48.8 +/- 1.4% for PEG(4000). The pore fraction initially increased with increasing amounts of PEG, independent of the molecular weight of PEG. In the permeation study, lysozyme was used as a model diffuser. The permeation rate of protein increased as the pore fraction of films increased, especially when 30 similar 40% of PEG was added initially, and this phenomenon was more prominent when low-molecular-weight PEG was used. This result was probably due to the highly porous structure creating interconnected channels in the films, further enhancing protein diffusion. In addition, the size of micropores formed by PEG(4000) was observed to be larger than by PEG(10000), which also accounted for faster permeation rate of lysozyme through PCL-PEG(4000) porous films.  相似文献   

17.
BACKGROUND: Biodegradable poly(lactide- co -glycolide) (PLGA) microspheres are a promising carrier for vaccine delivery capable of maturing antigen-presenting cells to stimulate T-cell-mediated immune responses. However, the potential of microspheres to downregulate an allergic response in vivo is unknown. OBJECTIVE: The aim of this study was to determine whether microspheres could potentiate DNA vaccination against allergy and to evaluate the immunomodulatory properties of microspheres alone. METHODS: Mice were treated prophylactically with DNA-loaded plain PLGA microspheres before sensitization with phospholipase A2 (PLA2), the major allergen of bee venom. PLA2-specific IgG1, IgG2a, IgE in serum were measured for 8.5 months, and splenocyte proliferative responses and cytokine profiles were determined. Protection against anaphylaxis was evaluated after injection of an otherwise lethal dose of PLA2. RESULTS: Phospholipase A2-specific IgG1 and IgG2a production turned out to be 2 times higher using cationic microspheres compared with anionic microspheres, but was not influenced by the presence of DNA. In contrast, reduction in IgE production and T-cell hyporesponsiveness were observed with all microsphere formulations. Recall challenge with PLA2 triggered combined expression of both IL-4 and IFN-gamma, together with sustained expression of IL-10 that can explain the protective effect against anaphylaxis. CONCLUSION: Our data suggest a dual mechanism that does initially rely on a TH2 to TH1 immune deviation and then on IL-10-mediated suppression. This is the first physiological demonstration that plain PLGA microspheres can induce tolerance in mice for as long as 6 months postsensitization.  相似文献   

18.
Wang J  Wang BM  Schwendeman SP 《Biomaterials》2004,25(10):1919-1927
One major obstacle for development of injectable biodegradable microspheres for controlled peptide and protein delivery is the high initial burst of drug release occurring over the first day of incubation. We describe here the significant reduction in initial burst release of a highly water-soluble model peptide, octreotide acetate, from poly(D,L-lactide-co-glycolide) microspheres by the co-encapsulation of a small amount of glucose (e.g., 0.2%w/w), i.e., from 30+/-20% burst - glucose to 8+/-3% + glucose (mean+/-SD, n=4). This reduction is unexpected since hydrophilic additives are known to increase porosity of microspheres, causing an increase in permeability to mass transport and a higher burst. Using the double emulsion-solvent evaporation method of encapsulation, the effect of glucose on initial burst in an acetate buffer pH 4 was found to depend on polymer concentration, discontinuous phase/continuous phase ratio, and glucose content. Extensive characterization studies were performed on two microsphere batches, +/-0.2% glucose, to elucidate the mechanism of this effect. However, no significant difference was observed with respect to specific surface area, porosity, internal and external morphology and drug distribution. Continuous monitoring of the first 24-h release of octreotide acetate from these two batches disclosed that even though their starting release rates were close, the microspheres + glucose exhibited a much lower release rate between 0.2 and 24h compared to those - glucose. The microspheres + glucose showed a denser periphery and a reduced water uptake at the end of 24-h release, indicating decreased permeability. However, this effect at times was offset as glucose content was further increased to 1%, causing an increase in surface area and porosity. In summary, we conclude that the effect of glucose on initial burst are determined by two factors: (1) increased initial burst due to increased osmotic pressure during encapsulation and drug release, and (2) decreased initial burst due to decreased permeability of microspheres.  相似文献   

19.
Biodegradable block copolymers made of poly(ethylene glycol) monomethylether (Me.PEG) and poly( -lactic acid) (PLA) were investigated for their erosion properties. Wide angle X-ray diffraction (WAXD) and differential scanning calorimetry (DSC) investigations prior to erosion revealed that despite the low content of crystallizable Me.PEG of 10%, Me.PEG5-PLA45 is a partially crystalline polymer. The erosion of the polymer was investigated using cylindrical polymer matrix discs with a diameter of 8mm and a height of 1.5mm. WAXD and DSC spectra obtained from eroded polymer matrix discs suggest that both polymer blocks separate completely during erosion. The crystallinity of Me.PEG5-PLA45 was found to increase during erosion, which is probably due to the improved mobility of Me.PEG inside the polymer with a progressive degree of degradation. The erosion kinetics were found to be similar to that of PLA or poly(lactic-co-glycolic acid). During erosion the polymer matrix weight of dried samples remains constant for 11 weeks after which erosion sets in rapidly. From this observation one can conclude that the impact of the relatively small Me.PEG chains on Me.PEGS-PLA45 erosion is not pronounced. This is beneficial for all those applications that require the stability of the polymer matrix and in which the Me.PEG chain is intended to bring about other effects such as the modification of the surface properties of PLA polymers.  相似文献   

20.
Chan V  Liu KK  Le Visage C  Ju BF  Leong KW 《Biomaterials》2004,25(18):4327-4332
The efficacy of a drug delivery system is predicated on its retention in the target tissue. Microparticle is one of the most popular and effective drug delivery configurations. Recently, it has been shown that the interaction between drug-loaded microparticles and tissues is related to the effectiveness of paclitaxel delivery to the bladder wall of mice for treating superficial bladder cancer. In this study, the adhesive interaction between poly(methylidene malonate 2.12) or PMM 2.1.2 microparticles and collagen, which serves as the model extracellular matrix for bladder wall, was probed with confocal reflectance interference contrast microscopy (C-RICM), single-particle compressive force measurement and contact mechanics theory. Young's modulus of single PMM 2.1.2 microparticle was determined as 1.56 +/- 0.25 x 10(4)N/m(2). For plain PMM 2.1.2 microparticle in water (pH 5.5), the degree of deformation (a/R) on collagen coated substrate decreased from 0.77 to 0.26 against the increase of mid-plane diameter from 2 to 18 microm. The adhesion energy of PMM 2.1.2 microparticle was determined from Maguis-JKR theory and remained at around 1.5 mJ/m(2) against the increase of particle diameter. At pH 4, the average degree of particle deformation and adhesion energy was increased by 11% and 32%, respectively, in comparison with that at pH 5.5. The loading of paclitaxel in PMM 2.1.2 microspheres enhanced the deformation and adhesion of microspheres at pH 5.5. It is hypothesized that the electrostatic repulsion between paclitaxel and collagen at pH 4 reduces the adhesion energy of PMM 2.1.2-paclitaxel microsphere. This study may offer insight for design of future microparticulate delivery systems by providing the experimental and theoretical tools to study the bioadhesive interaction between drug-loaded microparticles and model extracellular matrices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号