首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Peripheral nerve injury results in sprouting of sympathetic and sensory nerve terminals around large diameter neurons in the dorsal root ganglia (DRG), but the underlying mechanism is not clear. Current study sought to examine changes of the nerve growth factor (NGF) receptor TrkA in DRG and spinal cord after a spinal nerve transection by an immunohistochemical technique and to investigate effects of NGF on the expression of TrkA protein in the same animal model. In the control rat, TrkA immunoreactivity was localized to about 55 +/ -1% of total neurons in DRG and to laminae I and II of the spinal cord. The percentage of TrkA immunoreactive neurons in DRG and TrkA staining intensity of spinal cord were reduced 1 week after the nerve lesion. The changes became maximal 2 weeks, but recovered partially 4 weeks after the lesion. The size of TrkA immunoreactive neurons dramatically shifted to smaller sizes, becoming more remarkable 4 weeks after the lesion. In the contralateral DRG, the percentage of TrkA immunoreactive neurons also decreased significantly. Exogenous NGF delivered to DRG for 2 weeks partially reversed the reduction of TrkA expression as well as atrophy of TrkA immunoreactive neurons. No TrkA immunoreactive basket was found around neuronal somata. Our data show that unilateral peripheral nerve injury results in dynamic downregulation of TrkA in sensory neurons in bilateral DRG and spinal cord, and that TrkA expression in sensory neurons is partially regulated by target-derived NGF.  相似文献   

2.
3.
Cheng XP  Wang BR  Liu HL  You SW  Huang WJ  Jiao XY  Ju G 《Neuroscience》2003,119(3):701-712
The present study was initiated to investigate the role of extracellular signal-regulated kinases (ERK) 1/2 signaling pathway in the early response of spinal cord and associated dorsal root ganglion (DRG) to rhizotomy by using Western blotting and immunohistochemical techniques in a rat model of L3 and L4 dorsal root transection. The results showed that there were a considerable amount of total and phosphorylated ERK 1/2 protein in both spinal cord and DRG in normal animals killed under pentobarbital anesthesia. The total ERK 1/2 distributed in both glia and neurons, while phosphorylated ERK 1/2 dominantly existed in the latter in the gray matter of spinal cord, as demonstrated with double immunofluorescent staining. Twenty-four and forty-eight hours after axotomy, the phosphorylation level of ERK 1/2 in the operation side of dorsal spinal cord was much higher than that in the contralateral side, while the total ERK 1/2 level seemed unchanged. The increased expression of Fos protein was also seen in the dorsal spinal cord at lesion side twelve and twenty-four hours after axotomy. Double fluorescent staining proved that the phosphorylated ERK 1/2 positive cells in the ipsilateral dorsal spinal cord after axotomy predominantly were microglia and small portion was oligodendrocytes, whereas the Fos expression was mainly in neurons. In normal DRG, most neurons, especially the medium and small-sized ones, and the satellite cells contained total ERK 1/2-like immunoreactivity, whereas only a small portion of neurons and satellite cells contained phosphorylated ERK 1/2. After unilateral dorsal rhizotomy, there were no detectable changes for the phosphorylation of ERK 1/2 in either neurons or satellite cells in DRG.Collectively, the present results suggest that both ERK and Fos signal pathways involve the cellular activation in the spinal cord following dorsal rhizotomy, with ERK mainly in microglia and Fos in neurons. The increase of phosphorylation of ERK 1/2 in microglia of spinal cord after rhizotomy implicates that ERK signaling pathway involves intracellular activity of microglia responding to the experimental injury.  相似文献   

4.
5.
Liu F  Sun WW  Wang Y  Hu LQ  Dai P  Tian CF  Wang TH 《Neuroscience letters》2009,450(2):158-162
It is well known that neuroplasticity occurs in the central nervous system in response to injury. Electro-acupuncture (EA) may also promote neuroplasticity. But little is known about the underlying molecular mechanisms for the beneficial effects of EA. This study investigated the effects of EA on neurotrophin-4 (NT-4) expression in L(6) spinal dorsal root ganglion (DRG) and associated segments of the spinal dorsal horn in cats subjected to unilateral removal of L(1)-L(5) and L(7)-S(2) DRG. NT-4 protein was normally present in the cytoplasm of the L(6) DRG neurons and L(3) and L(6) spinal dorsal horn neurons and glia. Adjacent ganglionectomy leads to a significant decrease in NT-4 expression in the L(6) DRG, but no change in the spinal dorsal horn. Following EA treatment a significant increase occurred in the L(6) DRG at 14 days post-operation (dpo) as well as the L(6) cord segment at 7 and 14 dpo. These findings pointed to a possible association between NT-4 expression and EA promoted spinal cord plasticity in adult cats subjected to partial ganglionectomy.  相似文献   

6.
Neuropeptide Y (NPY) expression in the spinal cord and dorsal root ganglia (DRG) was examined after application of colchicine, an axonal transport blocker, on the intact sciatic nerve or prior to axotomy or chronic constriction injury (CCI). Rats that underwent topical application of colchicine on the sciatic nerve showed decreased responsiveness to heat stimulation, ipsilaterally. CCI-induced hyperalgesia was prevented by prior application of colchicine. However, colchicine did not block axotomy-induced NPY increase when applied proximally to the injury. In fact, colchicine induced the expression of NPY in the DRG and spinal cord in an identical manner to axotomy. The present data indicates that the increase in NPY observed after nerve injury could be initiated by the suppression of retrograde transport of factors, possibly neurotrophins, rather than by the production of an active factor at the site of injury.  相似文献   

7.
S O Ha  J K Kim  H S Hong  D S Kim  H J Cho 《Neuroscience》2001,107(2):301-309
Chronic constriction injury of the sciatic nerve and lumbar L5 and L6 spinal nerve ligation provide animal models for pain syndromes accompanying peripheral nerve injury and disease. In the present study, we evaluated changes in brain-derived neurotrophic factor (BDNF) immunoreactivity in the rat L4 and L5 dorsal root ganglia (DRG) and areas where afferents from the DRG terminates (the L4/5 spinal cord and gracile nuclei) in these experimental models of neuropathic pain. Chronic constriction injury induced significant increase in the percentage of small, medium and large BDNF-immunoreactive neurons in the ipsilateral L4 and L5 DRG. Following spinal nerve ligation, the percentage of large BDNF-immunoreactive neurons increased significantly, and that of small BDNF-immunoreactive neurons decreased markedly in the ipsilateral L5 DRG, while that of BDNF-immunoreactive L4 DRG neurons of all sizes showed marked increase. Both chronic constriction injury and spinal nerve ligation induced significant increase in the number of BDNF-immunoreactive axonal fibers in the superficial and deeper laminae of the L4/5 dorsal horn and the gracile nuclei on the ipsilateral side.Considering that BDNF may modulate nociceptive sensory inputs and that injection of antiserum to BDNF significantly reduces the sympathetic sprouting in the DRG and allodynic response following sciatic nerve injury, our results also may suggest that endogenous BDNF plays an important role in the induction of neuropathic pain after chronic constriction injury and spinal nerve ligation. In addition, the increase of BDNF in L4 DRG may contribute to evoked pain which is known to be mediated by input from intact afferent from L4 DRG following L5 and L6 spinal nerve ligation.  相似文献   

8.
目的:研究坐骨神经损伤后Roundabout 2(Robo2)在成年大鼠背根节和脊髓的表达变化。方法:健康成年雌性SD大鼠坐骨神经切断后分别存活3~28d,取其L_(4~6)背根节(DRG)和脊髓;利用RT-PCR和免疫组织化学技术检测Robo2在上述组织中的表达变化。图像分析技术对阳性细胞的灰度值进行测定。结果:正常DRG感觉神经元表达Robo2 mRNA和蛋白质,脊髓前角运动神经元不表达。坐骨神经切断后3 d DRG内Robo2表达增加,7~14 d达高峰,21~28 d恢复到正常水平。结论:坐骨神经切断可导致DRG内Robo2的表达上调,可能与早期的感觉轴突再生有关。  相似文献   

9.
目的:观察外源性碱性成纤维细胞生长因子(bFGF)对坐骨神经损伤后大鼠背根神经节(DRG)和脊髓后角内降钙素基因相关肽(CGRP)变化的影响。方法:成年雄性Wistar大鼠随机分成正常组、阳性对照组和bFGF组。阳性对照组动物右侧坐骨神经钳夹损伤,bFGF组动物右侧坐骨神经损伤后给予bFGF,在不同时间点运用免疫荧光技术结合图像分析检测相应背根节和脊髓后角CGRP的变化。结果:bFGF处理组术侧DRG内中小型神经元和脊髓后角内的CGRP表达明显高于阳性对照组,积分光密度值相比(P<0.05);但DRG内大型神经元内CGRP表达没有明显变化。结论:结果提示外源性bFGF能明显促进损伤后同侧DRG中小型神经元和脊髓后角CGRP的合成,对DRG内大型神经元中CGRP的表达没有明显影响。  相似文献   

10.
大鼠脊神经后根切断后脊髓和背根神经节CGRP的表达变化   总被引:3,自引:0,他引:3  
为观察大鼠脊神经后根切断后相应背根神经节(DRG)和脊髓节段CGRP的表达变化,本研究采用25只健康成年SD大鼠随机分为正常对照组、假手术对照组和L4、5后根切断后3d、7d和14d组(n=5),用免疫组织化学方法结合图像分析技术检测各组相应DRG和脊髓节段内CGRP的表达变化。结果如下:后根切断后3d、7d和14d伤侧DRG内CGRP表达较对照组和对侧明显增强;后根切断后3d脊髓后角CGRP免疫阳性纤维减少,7d、14d时进一步减少;后根切断后3d脊髓前角运动神经元内CGRP表达增加,免疫阳性细胞数增多,7d和14d时表达进一步增强。以上结果提示,脊神经后根切断后DRG和脊髓CGRP表达变化呈现一定的时空模式,可能参与了神经损伤后的再生过程。  相似文献   

11.
Neuropathic pain (NPP) due to sensory nerve injury is, in part, the result of peripheral sensitization leading to a long-lasting increase in synaptic plasticity in the spinal dorsal horn. Thus, activation of GABA-mediated inhibitory inputs from sensory neurons could be beneficial in the alleviation of NPP symptoms. Dorsal root ganglia (DRG) conduct painful stimulation from the periphery to the spinal cord. Long-lasting down-regulation in GABA tone or sensitivity in DRG neurons has been reported in animals with neuropathy. To determine the function of GABA in DRG in the development of NPP, we examined how the acute pharmacological GABA(A)-receptor modulation of L5 DRG in vivo affects the development of NPP in rats with crush injury to the sciatic nerve. Direct application of muscimol and gaboxadol, GABA(A) agonists, to L5 DRG immediately after injury induced dose-dependent alleviation, whereas bicuculline and picrotoxin, GABA(A) antagonists, worsened NPP postaxonal injury. The pain-alleviating effects of muscimol and gaboxadol were blocked by bicuculline. Muscimol, applied at the time of injury, caused complete and long-lasting abolishment of NPP development. However, when muscimol was applied after NPP had already developed, its pain-alleviating effect, although significant, was short-lived. Using a fluorescent tracer, sodium fluorescein, we confirmed that local DRG application results in minimal spread into the corresponding dorsal horn of the ipsilateral spinal cord. GABA(A) receptors in DRG are important in the development of NPP after peripheral nerve injury, making timely exogenous GABAergic manipulation at the DRG level a potentially useful therapeutic modality.  相似文献   

12.
W. Xie  J.A. Strong  J.-M. Zhang   《Neuroscience》2009,160(4):847-857
Satellite glial cells in the dorsal root ganglion (DRG), like the better-studied glia cells in the spinal cord, react to peripheral nerve injury or inflammation by activation, proliferation, and release of messengers that contribute importantly to pathological pain. It is not known how information about nerve injury or peripheral inflammation is conveyed to the satellite glial cells. Abnormal spontaneous activity of sensory neurons, observed in the very early phase of many pain models, is one plausible mechanism by which injured sensory neurons could activate neighboring satellite glial cells. We tested effects of locally inhibiting sensory neuron activity with sodium channel blockers on satellite glial cell activation in a rat spinal nerve ligation (SNL) model. SNL caused extensive satellite glial cell activation (as defined by glial fibrillary acidic protein [GFAP] immunoreactivity) which peaked on day 1 and was still observed on day 10. Perfusion of the axotomized DRG with the Na channel blocker tetrodotoxin (TTX) significantly reduced this activation at all time points. Similar findings were made with a more distal injury (spared nerve injury model), using a different sodium channel blocker (bupivacaine depot) at the injury site. Local DRG perfusion with TTX also reduced levels of nerve growth factor (NGF) in the SNL model on day 3 (when activated glia are an important source of NGF), without affecting the initial drop of NGF on day 1 (which has been attributed to loss of transport from target tissues). Local perfusion in the SNL model also significantly reduced microglia activation (OX-42 immunoreactivity) on day 3 and astrocyte activation (GFAP immunoreactivity) on day 10 in the corresponding dorsal spinal cord. The results indicate that early spontaneous activity in injured sensory neurons may play important roles in glia activation and pathological pain.  相似文献   

13.
针刺对去部分背根猫脊髓和背根节NGF及NGF mRNA的影响   总被引:13,自引:1,他引:12  
用免疫组织化学和地高辛标记 c RNA探针原位分子杂交技术 ,观察了针刺对成年备用背根猫 (切断一侧 L1~ 5 、L7~ S2节段脊髓背根 ,保留 L6 背根 )脊髓 板层、背核和背根节内神经生长因子和神经生长因子 m RNA的影响。结果证明 ,针刺促进了备用根背根节的神经生长因子基因的表达 ,使备用背根节内神经生长因子、神经生长因子 m RNA阳性神经元数量明显增多 ,并且针刺时间越长促进作用也越强 ;而对脊髓 板层与背核则无明显影响。本实验结果提示 ,针刺对备用根猫脊髓侧支生芽具有促进作用 ,这种作用主要体现在通过增加背根节神经生长因子基因的表达和神经生长因子的合成来实现的  相似文献   

14.
不同延迟时间后修复大鼠坐骨神经缺损对CGRP表达的影响   总被引:3,自引:0,他引:3  
目的:观察大鼠坐骨神经缺损不同延迟时间后修复对降钙素基因相关肽(CGRP)表达的影响.方法:大鼠右侧坐骨神经切断分别预变性0、3、7、14和21 d后(n=6)以左侧自体新鲜神经桥接,神经再生6周后用免疫组化方法检测CGRP在脊髓和背根节(DRG)的表达变化.结果:术侧DRG CGRP表达均明显增强,其中21 d组明显强于0 d组(P<0.05);术侧脊髓后角CGRP免疫阳性面积明显增大,21 d组明显大于0 d组(P<0.05),其CGRP表达在0 d、3 d和21 d组均强于对侧(P<0.05),而3 d和21 d组又明显强于0 d组(P<0.05);3d组脊髓前角的CGRP表达在明显强于0 d组和对侧(P<0.05).结论:预变性处理可以影响CGRP的表达从而影响神经再生过程.  相似文献   

15.
Previous studies have shown that following peripheral nerve injury there was a downregulation of the gap junction protein connexin 36 (Cx36) in the spinal cord; however, it is not known whether Cx36 protein is expressed in the dorsal root ganglia (DRGs), nor if its levels are altered following peripheral nerve injuries. Here we address these aspects in the adult rat lumbar DRG. Cx36 mRNA was detected using qRT-PCR, and Cx36 protein was identified in DRG sections using immunohistochemistry (IHC) and immunofluorescence (IF). Double staining revealed that Cx36 co-localizes with both anti-β-III tubulin, a neuronal marker, and anti-glutamine synthetase, a satellite glial cell (SGC) marker. In neurons, Cx36 staining was mostly uniform in somata and fibers of all sizes and its intensity increased at the cell membranes. This labeling pattern was in contrast with Cx36 IF dots mainly found at junctional membranes in islet beta cells used as a control tissue. Co-staining with anti-Cx43 and anti-Cx36 showed that whereas mostly uniform staining of Cx36 was found throughout neurons and SGCs, Cx43 IF puncta were localized to SGCs. Cx36 mRNA was expressed in normal lumbar DRG, and it was significantly down-regulated in L4 DRG of rats that underwent sciatic nerve injury resulting in persistent hypersensitivity. Collectively, these findings demonstrated that neurons and SGCs express Cx36 protein in normal DRG, and suggested that perturbation of Cx36 levels may contribute to chronic neuropathic pain resulting from a peripheral nerve injury.  相似文献   

16.
17.
There is an increasing evidence that unilateral nerve injury induces cellular and molecular changes in the associated DRG not only on the ipsilateral but also in the contralateral side. In this investigation, ED-1+ macrophages were quantified by image analysis in the naïve L5 DRG (nDRG) and compared with the ipsi- and contralateral ones 2 and 4 weeks after unilateral sciatic nerve ligature and ventral root transection (VRT). A few ED-1+ macrophages were found in nDRG but not closely associated with the neuronal bodies. In contrast, following nerve injuries ED-1+ macrophages and their processes were frequently located close neuronal bodies and became their satellite cells. Moreover, an increased number of ED-1+ cells was found in the ipsilateral DRG 2 weeks after unilateral sciatic nerve ligature or VRT, but no significant differences were measured between 2 and 4 weeks after both types of nerve lesion. Contralateral DRG displayed a significant enhanced number of ED-1+ cells no sooner than 4 weeks from sciatic nerve ligature. In contrast, VRT induced a significant increased invasion of the ED-1+ cells in the contralateral DRG as early as 2 weeks after operation. Our experiments indicate that a significantly higher number of ED-1+ macrophages remained in both ipsi- and contralateral DRG up to 4 weeks from nerve injury. Based on results from different models of nerve injury, we suggest that more than one mechanism operates to stimulate the invasion of ED-1+ macrophages into the DRG including retrograde transport of factors produced during Wallerian degeneration or their delivery by blood flow. Signaling for macrophage invasion into DRG contralateral to nerve injury may be mediated by lost motoneurons or by interneurones.  相似文献   

18.
Robos are transmembrane receptors that mediate Slit signaling to repel growth cone outgrowth and neural migration in the developing central nervous system. Their distribution and function in the peripheral nervous system remains unclear. In the present study, we examined expression of Slit1 and Robo2 in adult rat dorsal root ganglion (DRG), spinal cord and sciatic nerve after peripheral nerve injury (axotomy). In control rats, Slit1 and Robo2 mRNA and protein were expressed at basic levels in the L5 and L6 DRGs. Sciatic transection resulted in a significant up-regulation of both Robo2 and Slit1 mRNA and protein (p<0.05 versus control). The peak of Slit1 and Robo2 expression occurred at days 7 and 14, respectively, and returned to control levels at days 28 and 21 post-axotomy, respectively. By contrast, injury to the central axons of the DRG by dorsal rhizotomy did not up-regulate Slit1 and Robo2 expression. Robo2 staining was stronger in small diameter neurons than in large diameter neurons in control DRG. Interestingly, post-axotomy, Robo2 immunostaining increased in the large diameter neurons and the number of Robo2 positive large diameter neurons increased significantly relative to controls. Non-neuronal cells surrounding the primary sensory neurons, including the satellite cells, were Slit1-positive, and Slit1 protein was expressed in the myelin sheath and non-neural cells in both intact and degenerating sciatic nerve axons. Sciatic nerve transection also led to an accumulation of Slit1 protein in peripheral region of the traumatic neuroma. In conclusion, we report an altered expression and redistribution of Robo2 and Slit1 in the DRG and sciatic nerve trunk after peripheral axotomy. Our results indicate that Slit1 and Robo2 likely play an important role in regeneration after peripheral nerve injury.  相似文献   

19.
Sun WW  Liu J  Wang XY  Zhang LS  Zhang W  Li LY  Li H  Wang TH 《Neuroscience letters》2008,431(2):112-117
Changes in the platelet derived growth factor (PDGF) in the spared dorsal root ganglia (DRG) and associated spinal dorsal horns were evaluated in cats subjected to unilateral removal of L1-L5 and L7-S2 DRG, sparing the L6 DRG. The number of PDGF immunopositive neurons and protein expression decreased significantly in the spared DRG and associated dorsal horns of the L3 and L6 cord segments at 3 days post-operation (dpo). It bottomed to the lowest level at 7 dpo in the DRG, then returned to the control level at 14 dpo; while in the L6 dorsal horn, it rapidly increased at 7 dpo and exceeded the control level at 14 dpo. This showed a significant upregulation in the spared DRG and associated spinal dorsal horns, especially in the L6 cord segment following a transient decrease. Meanwhile, a significant upregulation of PDGF mRNA was also seen in L6 DRG and L3 and L6 dorsal horns at 3 dpo. The upregulation of the endogenous PDGF in the said structures indicated a potential role of this factor in spinal cord plasticity after partial dorsal root ganglia removal in cats.  相似文献   

20.
Interleukin-10 prevents transition of a physiological inflammatory reaction to a pathological state that may result in neuropathic pain. We studied bilateral changes of IL-10 protein levels in L4-L5 and C7-C8 dorsal root ganglia (DRG) after a chronic constriction injury (CCI) of either L4-L5 spinal nerves (pCCI) or the sciatic nerve (dCCI). Rats undergoing pCCI or dCCI were left to survive for 1, 3, 7 or 14 d, sham-operated rats for 3 or 14 d. After the survival time, C7-C8 and L4-L5 DRG were removed bilaterally from naïve, operated, and sham-operated rats and IL-10 protein was detected by immunohistochemical staining and measured using ELISA analysis. Unilateral pCCI and dCCI induced a transient bilateral elevation in IL-10 protein level not only in the homonymous lumbar DRG but also in the heteronymous cervical DRG nonassociated with the spinal segments of constricted nerve. Sham operations also induced bilateral elevation of IL-10 protein in both homonymous and heteronymous DRG. Our experiments revealed that the more proximal is a nerve injury the more rapid is the initial increase and slower the subsequent decrease of IL-10 protein level in DRG. Changes of IL-10 protein in DRG nonassociated with damaged nerve could be related to a general neuroinflammatory reaction of the nervous system to injury and thereby promote potential of the DRG neurons for regenerating their axons following a conditioning lesion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号