首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
The circadian clock controls numerous physiological and molecular processes in organisms ranging from fungi to human. In plants, these processes include leaf movement, stomata opening, and expression of a large number of genes. At the core of the circadian clock, the central oscillator consists of a negative autoregulatory feedback loop that is coordinated with the daily environmental changes, and that generates the circadian rhythms of the overt processes. Phosphorylation of some of the central oscillator proteins is necessary for the generation of normal circadian rhythms of Drosophila, humans, and Neurospora, where CK1 and CK2 are emerging as the main protein kinases involved in the phosphorylation of PER and FRQ. We have previously shown that in Arabidopsis, the protein kinase CK2 can phosphorylate the clock-associated protein CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) in vitro. The overexpression of one of its regulatory subunits, CKB3, affects the regulation of circadian rhythms. Whether the effects of CK2 on the clock were due to its phosphorylation of a clock component had yet to be proven. By examining the effects of constitutively expressing a mutant form of the Arabidopsis clock protein CCA1 that cannot be phosphorylated by CK2, we demonstrate here that CCA1 phosphorylation by CK2 is important for the normal functioning of the central oscillator.  相似文献   

2.
Ectokinases can phosphorylate extracellular proteins and external domains of membrane proteins influencing cell adhesion, movement, and cellular interactions. An ectokinase with the properties of casein kinase 2 (CK2) has been previously described, but little is known about the structural characteristics that allow this enzyme to be exported from the cell. Transfection of human embryonic kidney-293 cells with cDNAs coding for the catalytic (CK2alpha or CK2alpha') and regulatory (CK2beta) subunits with hemaglutinin tags allowed us to study the export of ectopically synthesized enzyme. When the catalytic (CK2alpha or CK2alpha') and the CK2beta regulatory subunits are cotransfected, the tetrameric enzyme composed of both subunits (holoenzyme) is detected outside the cell. This observation has been confirmed by assaying protein kinase activity in immunoprecipitates obtained with antihemaglutinin antibody by using a CK2-specific peptide substrate and by Western blots as well as by immunofluorescence of nonpermeabilized cells. Transfection with cDNA of catalytic or regulatory subunit alone does not result in export of these subunits. A study of the kinetics of appearance of the ectopically synthesized protein at different times after transfection indicates that a 5- to 7-h delay after the synthesis of the protein before it appears in the extracellular compartment. Using mutations of CK2alpha that eliminate phosphorylating activity [CK2alpha(Asp-156-Ala)] or that make it less sensitive to heparin inhibition [CK2alpha(Lys-75-Glu,Lys-76-Glu)] demonstrated that these mutations do not prevent the holoenzyme to be exported from the cells.  相似文献   

3.
Hoyt  CH; Oh  CJ; Beekman  JB; Litchfield  DW; Lerea  KM 《Blood》1994,83(12):3517-3523
We have recently shown that inhibition of protein phosphatases in platelets causes increases in protein phosphorylations with a concomitant inhibition of platelet responses. The burst in protein phosphorylation appears to be catalyzed by messenger-independent protein kinases. The aim of the present study was to characterize the presence of broad families of protein kinases found in platelets. Lysates of control and thrombin-stimulated platelets were prepared, and proteins were separated on MONO Q fast protein liquid chromatography. In addition to the presence of histone protein kinase and tyrosine kinase activities, human platelets contain casein kinase II (CKII) activity as assessed by phosphorylation of a specific substrate peptide. Western blot analysis and immunogold electron microscopy studies further showed the presence of alpha-, alpha'-, and beta- subunits of CKII. The enzyme appears to be distributed throughout the cytosol and not secreted after thrombin treatment. Immunoprecipitation studies suggest that at least some of the holoenzymes exist as an alpha alpha' beta 2 complex. Although no activation of the enzyme was detected after thrombin treatment, our results show that CKII is a major messenger-independent protein kinase in platelets.  相似文献   

4.
A casein kinase II (CK II)-like protein kinase was identified and partially isolated from a purified envelope-matrix fraction of pea (Pisum sativum L.) nuclei. When [gamma-32P]ATP was directly added to the envelope-matrix preparation, the three most heavily labeled protein bands had molecular masses near 71, 48, and 46 kDa. Protein kinases were removed from the preparation by sequential extraction with Triton X-100, EGTA, 0.3 M NaCl, and a pH 10.5 buffer, but an active kinase still remained bound to the remaining lamina-matrix fraction after these treatments. This kinase had properties resembling CK II kinases previously characterized from animal and plant sources: it preferred casein as an artificial substrate, could use GTP as efficiently as ATP as the phosphoryl donor, was stimulated by spermine, was calcium independent, and had a catalytic subunit of 36 kDa. Some animal and plant CK II kinases have regulatory subunits near 29 kDa, and a lamina-matrix-bound protein of this molecular mass was recognized on immunoblot by anti-Drosophila CK II polyclonal antibodies. Also found associated with the envelope-matrix fraction of pea nuclei were p34cdc2-like and Ca(2+)-dependent protein kinases, but their properties could not account for the protein kinase activity bound to the lamina. The 71-kDa substrate of the CK II-like kinase was lamin A-like, both in its molecular mass and in its cross-reactivity with anti-intermediate filament antibodies. Lamin phosphorylation is considered a crucial early step in the entry of cells into mitosis, so lamina-bound CK II kinases may be important control points for cellular proliferation.  相似文献   

5.
A previous study demonstrated that the translational inhibitor from lysates of heme-deficient rabbit reticulocytes is associated with a protein kinase activity. Chromatography of this inhibitor preparation on phosphocellulose yields two distinct protein kinase activities, PC1 and PC2. PC1, which consitutes about 90% of the activity in the unresolved preparation, does not inhibit protein synthesis in lysates, but actively phosporylates calf thymus histone II in a 3':5'-cyclic AMP-denpendent reaction. PC2 contains the translational inhibitor, phosphorylates histone poorly, and is not cyclic AMP-dependent. While [gamma-32P]ATP as the phosphate donor, the two kinase fractions were analyzed with the putative substrates, salt-washed 40S ribosomal subunits, and the initiation factor that mediates the binding of Met-tRNAf to the 40S subunit. PC1 is inactive with the initiation factor, but phosphorylates 40S subunits at a single major site that migrates as a 31,000-dalton band in sodium dodecyl sulfate-acrylamide gels; phosphorylation requires cyclic AMP. Similar phosphorylation of the reticulocyte 40S site (31,000 daltons) can be demonstrated with other cyclic AMP-dependent kinases from reticulocytes, rat liver, and bovine heart muscle. PC2 phosphorylates the small subunit (38,000 daltons) but not the large subunit(s) of the initiation factor; the reaction does not require cyclic AMP. PC2 does not phosphorylate 40S subunits. In the presence of 40S subunits, the initiation factor appears to be rapidly bound in a manner that effectively blocks phosphorylation of the initiation factor by PC2; under the same conditions phosphorylation of the 40S subunit by PC1 is not affected. The initiation factor has been shown to reverse the inhibitions of protein chain initiation induced in lysates by heme deficiency, double-stranded RNA, oxidized glutathione, or the purified translational inhibitor. The observation that the Met-tRNAf binding factor is phosphorylated by PC2 supports the hypothesis that this initiation factor is a target for the action of the translational inhibitor activated in heme deficiency.  相似文献   

6.
Rab8 is a small GTP-binding protein that plays a role in vesicular transport from the trans-Golgi network to the basolateral plasma membrane in polarized epithelial cells (MDCK), and to the dendritic surface in hippocampal neurons. As is the case for most other rab proteins, the precise molecular interactions by which rab8 carries out its function remain to be elucidated. Here we report the identification and the complete cDNA-derived amino acid sequence of a murine rab8-interacting protein (rab8ip) that specifically interacts with rab8 in a GTP-dependent manner. Rab8ip displays 93% identity with the GC kinase, a serine/threonine protein kinase recently identified in human lymphoid tissue that is activated in the stress response. Like the GC kinase, rab8ip has protein kinase activity manifested by autophosphorylation and phosphorylation of the classical serine/threonine protein kinase substrates, myelin basic protein and casein. When coexpressed in transfected 293T cells, rab8 and the rab8ip/GC kinase formed a complex that could be recovered by immunoprecipitation with antibodies to rab8. Cell fractionation and immunofluorescence analyses indicate that in MDCK cells endogenous rab8ip is present both in the cytosol and as a peripheral membrane protein concentrated in the Golgi region and basolateral plasma membrane domains, sites where rab8 itself is also located. In light of recent evidence that rab proteins may act by promoting the stabilization of SNARE complexes, the specific GTP-dependent association of rab8 with the rab8ip/GC kinase raises the possibility that rab-regulated protein phosphorylation is important for vesicle targeting or fusion. Moreover, the rab8ip/GC kinase may serve to modulate secretion in response to stress stimuli.  相似文献   

7.
8.
Phosphorylation of the alpha-subunit of translation eukaryotic initiation factor-2 (eIF2) leads to the inhibition of protein synthesis in response to diverse conditions of stress. Serine/threonine RNA-dependent protein kinase (PKR) is an eIF2alpha kinase family member induced by type I IFN and activated in response to dsRNA or virus infection. Herein, we demonstrate that human PKR is a dual specificity kinase phosphorylated at Y101, Y162 and Y293 in vitro and in vivo. Site-specific tyrosine phosphorylation is essential for efficient dsRNA-binding, dimerization, kinase activation and eIF2alpha phosphorylation of PKR. Biologically, tyrosine phosphorylation of PKR mediates the antiviral and antiproliferative properties of the kinase through its ability to control translation. Our data demonstrate an important role of tyrosine phosphorylation in biochemical and biological processes caused or mediated by the activation of the eIF2alpha kinase PKR.  相似文献   

9.
Postsynaptic membranes, rich in the nicotinic acetylcholine receptor, were isolated from the electric organ of Torpedo californica and shown to contain a cAMP-dependent protein kinase and a calcium/calmodulin-dependent protein kinase. The cAMP-dependent protein kinase phosphorylated the gamma and delta subunits of the acetylcholine receptor. The phosphorylated subunits were identified after purification of the acetylcholine receptor by affinity chromatography on a choline carboxymethyl affinity gel. In contrast, the calcium/calmodulin-dependent protein kinase phosphorylated proteins that were separated from the acetylcholine receptor by affinity chromatography. Protein kinase inhibitor, a specific inhibitor of the catalytic subunit of cAMP-dependent protein kinase, abolished the basal endogenous phosphorylation of the gamma and delta subunits of the receptor. cAMP activation of the endogenous phosphorylation of the gamma and delta subunits was dose dependent with a half-maximal response at 25 nM. Studies were also carried out with acetylcholine receptor purified from T. californica and catalytic subunit of cAMP-dependent protein kinase purified from bovine heart. The purified acetylcholine receptor was rapidly and specifically phosphorylated on the gamma and delta subunits by the purified catalytic subunit of cAMP-dependent protein kinase to a stoichiometry of 1.0 and 0.89 mol of (32)P per mol of receptor, respectively. The initial rates of phosphorylation of the gamma and delta subunits of the receptor were comparable to those of histone f2B and synapsin I (protein I), two of the most effective substrates for the catalytic subunit. Under the conditions used, the gamma and delta subunits had K(m) values of 4.0 and 3.3 muM and V(max) values of 2.7 and 2.1 mumol/min per mg, respectively. The results are consistent with the idea that the acetylcholine receptor is phosphorylated in vivo by a cAMP-dependent protein kinase.  相似文献   

10.
Knight JB  Cao KT  Gibson GV  Olson AL 《Endocrinology》2000,141(1):208-218
Rab proteins are small GTP-binding proteins of the Ras superfamily that function in the regulation of vesicle transport processes. The Rab4 isoform has been implicated in insulin action. For instance, overexpression of a prenylation-deficient form of Rab4 has been shown to inhibit insulin-dependent GLUT4 translocation. Other steps affected by Rab4 in the cascade of events resulting from insulin receptor activation have not been elucidated. In the present studies, we measured effects on insulin-signaling proteins in 3T3-L1 adipocytes transiently expressing cytoplasmic forms of Rab4 and Rab5. Expression of a mutant Rab4 lacking a prenylation site resulted in reduced insulin-dependent phosphorylation ofcytoplasmic and internal membrane-associated insulin receptor substrate-1, leading to decreased insulin receptor substrate-1-associated phosphatidylinositol 3'-OH kinase activation and decreased Akt activation. These effects were not observed upon introduction of a similar mutant form of Rab5. These data indicate that Rab4 or a Rab4-associated protein is involved at one or more steps in propagating the insulin signal, in addition to any role it may play in the regulation of GLUT4 vesicle translocation. Our results support models of insulin signaling in which regulation of internal membrane trafficking plays a role in transduction of the insulin signal.  相似文献   

11.
FKBP52 (HSP56, p59, HBI) is the 59-kDa immunosuppressant FK506-binding protein and has peptidyl prolyl isomerase as well as a chaperone-like activity in vitro. FKBP52 associates with the heat shock protein HSP90 and is included in the steroid hormone receptor complexes in vivo. FKBP52 possesses a well conserved phosphorylation site for casein kinase II (CK2) that was previously shown to be associated with HSP90. Here we examined whether FKBP52 is phosphorylated by CK2 both in vivo and in vitro. Recombinant rabbit FKBP52 was phosphorylated by purified CK2. We expressed and purified deletion mutants of FKBP52 to determine the site(s) phosphorylated by CK2. Thr-143 in the hinge I region was identified as the major phosphorylation site for CK2. A synthetic peptide corresponding to this region was phosphorylated by CK2, and the peptide competitively inhibited the phosphorylation of other substrates by CK2. The [32P]phosphate labeling of FKBP52-expressing cells revealed that the same site is also phosphorylated in vivo. FK506 binding to FKBP52 did not affect the phosphorylation by CK2 and, conversely, the FK506-binding activity of FKBP52 was not affected by the phosphorylation. Most importantly, CK2-phosphorylated FKBP52 did not bind to HSP90. These results indicate that CK2 phosphorylates FKBP52 both in vitro and in vivo and thus may regulate the protein composition of chaperone-containing complexes such as those of steroid receptors and certain protein kinases.  相似文献   

12.
Physiological studies indicate that voltage-sensitive calcium channels are regulated by cAMP and protein phosphorylation. The calcium antagonist receptor of the voltage-sensitive calcium channel from transverse-tubule membranes consists of three subunits, designated alpha, beta, and gamma. The catalytic subunit of cAMP-dependent protein kinase phosphorylates both the alpha and beta subunits of the purified receptor at a rate and extent that suggests they are potential physiological substrates of this enzyme. The phosphorylation of the alpha and beta subunits in transverse-tubule membranes was analyzed by two-dimensional gel electrophoresis. In intact transverse-tubule membranes, the alpha subunit is not significantly phosphorylated. However, the beta subunit, identified by its Mr, pI, and binding to wheat germ agglutinin-Sepharose, was one of the substrates selectively phosphorylated by cAMP-dependent protein kinase in transverse-tubule membranes. These results suggest that cAMP-dependent phosphorylation of the beta subunit of the calcium antagonist receptor may be an important regulatory mechanism for calcium channel function.  相似文献   

13.
Endometriosis is a frequent gynecological disease, which is crucially dependent on the process of angiogenesis. However, the underlying regulatory mechanisms of blood vessel development are still poorly understood. CK2 is a pleiotropic protein kinase, which is implicated in the regulation of various cellular processes including angiogenesis. Herein we studied for the first time the function of protein kinase CK2 in angiogenesis of endometriotic lesions. For this purpose, we analyzed the anti-angiogenic activity of the CK2 inhibitor quinalizarin in a rat aortic ring assay and its effect on the expression of individual CK2 subunits and on kinase activity in endometrial tissue. Moreover, endometriotic lesions were induced in dorsal skinfold chambers of quinalizarin- and vehicle-treated C57BL/6 mice to study their vascularization and morphology by means of repetitive intravital fluorescence microscopy and histology. Our results demonstrate that quinalizarin dose-dependently inhibits vascular sprouting. In addition, treatment of endometrial tissue with quinalizarin reduces CK2 activity without affecting the expression of the three CK2 subunits α, α′ and β. In the dorsal skinfold chamber model of endometriosis, quinalizarin inhibits the vascularization of endometriotic lesions, which exhibit a significantly decreased vascularized area and functional capillary density when compared to those of vehicle-treated controls. This is associated with a reduced lesion size and histological fraction of endometrial glands. These findings indicate that CK2 is a regulator of angiogenesis in endometriotic lesions. Accordingly, inhibition of CK2 represents a novel option in the development of anti-angiogenic strategies for the treatment of endometriosis.  相似文献   

14.
Postsynaptic membranes from the electric organ of Torpedo californica, rich in the nicotinic acetylcholine receptor, were shown to contain an endogenous tyrosine protein kinase. This endogenous kinase phosphorylated three major proteins with molecular masses corresponding to 50 kDa, 60 kDa, and 65 kDa. The phosphorylation of these three proteins occurred exclusively on tyrosine residues under the experimental conditions used and was abolished by 0.1% Nonidet P-40 and stimulated by Mn2+. The 50-kDa, and 60-kDa, and 65-kDa phosphoproteins were demonstrated to be the beta, gamma, and delta subunits, respectively, of the nicotinic acetylcholine receptor by purification of the phosphorylated receptor using affinity chromatography. The endogenous tyrosine kinase specifically phosphorylated the beta, gamma, and delta subunits rapidly to a final stoichiometry of approximately equal to 0.5 mol of phosphate per mol of sub-unit. Two-dimensional phosphopeptide mapping of the phosphorylated beta, gamma, and delta subunits, after limit proteolysis with trypsin or thermolysin, indicated that each subunit was phosphorylated on a single site. Locations are proposed for the amino acid residues phosphorylated on the receptor by the tyrosine-specific protein kinase and by two other protein kinases (cAMP-dependent protein kinase and protein kinase C) which phosphorylate the receptor.  相似文献   

15.
Maik-Rachline G  Shaltiel S  Seger R 《Blood》2005,105(2):670-678
The pigment epithelium-derived factor (PEDF) belongs to the superfamily of serine protease inhibitors (serpin). There have been 2 distinct functions attributed to this factor, which can act either as a neurotrophic or as an antiangiogenic factor. Besides its localization in the eye, PEDF was recently reported to be present also in human plasma. We found that PEDF purified from plasma is a phosphoprotein, which is extracellularly phosphorylated by protein kinase CK2 (CK2) and to a lesser degree, intracellularly, by protein kinase A (PKA). CK2 phosphorylates PEDF on 2 main residues, Ser24 and Ser114, and PKA phosphorylates PEDF on one residue only, Ser227. The physiologic relevance of these phosphorylations was determined using phosphorylation site mutants. We found that both CK2 and PKA phosphorylations of PEDF markedly affect its physiologic function. The fully CK2 phosphorylation site mutant S24, 114E abolished PEDF neurotrophic activity but enhanced its antiangiogenic activity, while the PKA phosphorylation site mutant S227E reduced PEDF antiangiogenic activity. This is a novel role of extracellular phosphorylation that is shown here to completely change the nature of PEDF from a neutrophic to an antiangiogenic factor.  相似文献   

16.
To overcome host defenses, bacterial pathogens of the genus Yersinia inject specific effector proteins into colonized mammalian cells. One such virulence factor, YopJ, inhibits the host inflammatory response and induces apoptosis of immune cells by blocking multiple signaling pathways, including the MAPK and NF-kappaB pathways. In this study, we show that YopJ exerts its deleterious effects by catalyzing the acetylation of two serine residues in the activation loop of the MAP kinase kinase, MEK2. This covalent modification prevents the phosphorylation of these serine residues that is required for activation of MEK2 and downstream signal propagation. We also show that YopJ causes acetylation of a threonine residue in the activation loop of both the alpha and beta subunits of the NF-kappaB pathway kinase, IKK. These results establish a hitherto uncharacterized mode of action for bacterial toxins and suggest the possibility that serine/threonine acetylation may occur even under nonpathogenic conditions and may be a widespread protein modification regulating protein function in eukaryotic cells.  相似文献   

17.
Ca2+/calmodulin-dependent protein kinase II contains two types of subunit, alpha (Mr 50,000) and beta (Mr 60,000/58,000), both of which undergo Ca2+/calmodulin-dependent autophosphorylation. Autophosphorylation is known to convert the enzyme to a Ca2+/calmodulin-independent form. In the present study, we have characterized the autophosphorylation sites on rat forebrain Ca2+/calmodulin-dependent protein kinase II that are most likely to be responsible for the generation of Ca2+/calmodulin-independence. Under conditions (0 degree C, low concentrations of ATP) sufficient to generate close to maximal Ca2+/calmodulin-independence, only a few of the phosphorylatable sites on the enzyme became phosphorylated. These autophosphorylation sites were examined by phospho amino acid analysis, two-dimensional thermolytic phosphopeptide mapping, and high-performance liquid chromatography. The time course of phosphorylation of threonine in both alpha and beta subunits was similar to the time course of the generation of Ca2+/calmodulin-independence. Moreover, the time course of phosphorylation of one set of peptides, referred to as peptide 1/1', present in both alpha and beta subunits was similar to the time course of the generation of Ca2+/calmodulin-independence. Threonine was the only amino acid phosphorylated in peptide 1/1'. An additional peptide, referred to as peptide 2, was phosphorylated in the beta subunit. The time course of phosphorylation of peptide 2, which also contained only phosphothreonine, did not parallel the time course of the generation of Ca2+/calmodulin-independence. It is likely that the phosphorylation of a threonine residue on peptide 1/1' is responsible for the generation of Ca2+/calmodulin-independence of Ca2+/calmodulin-dependent protein kinase II.  相似文献   

18.
This study examined the acute actions of ethanol on recombinant rat GIuR6 kainate receptors expressed in Xenopus oocytes and HEK 293 cells. Electrophysiological recordings showed that co-application of ethanol with submaximal kainate concentrations resulted in similar inhibition of kainate-gated currents in both expression systems. Manipulation of intracellular phosphorylation pathways by intracellular dialysis with a solution without ATP and GTP did not modify the inhibitory effects of ethanol. Moreover, co-transfection of GIuR6 receptor subunits with PKA-α catalytic subunit or the calcium/ calmodulin-dependent protein kinase II (CamKII) catalytic fragment did not change the sensitivity of the receptor to ethanol. Treatment of Xenopus oocytes with specific inhibitors of PKC, PKA, CamKII, tyrosine kinases, and serine-threonine protein phosphatases did not affect the 100 mM ethanol-induced inhibition of GIuR6 receptor-mediated currents. Biochemical experiments with transiently transfected HEK 293 cells confirmed published reports that GIuR6 receptors are minimally phosphorylated under basal conditions in these cells and also revealed that acute ethanol did not increase GIuR6 phosphorylation. These results suggest that, under our experimental conditions, ethanol inhibits recombinant GIuR6 receptor function by a direct effect on the receptor rather than an indirect action via protein phosphorylation.  相似文献   

19.
We have established in vitro conditions under which we can reliably measure kinase activity in normal postmortem human brain. Using these conditions, we detected in the brains of patients with Alzheimer disease a 2-fold increase in the level of Mr 60,000 protein phosphorylation compared to age-matched controls. The Mr 60,000 protein phosphorylation was found exclusively in the cytosol fraction. No differences were detected between phosphoproteins in 100,000 X g pellet fractions from brains of Alzheimer disease patients and from age-matched controls. Postmortem time up to 17 hr does not seem to affect the phosphorylation level of the Mr 60,000 protein. Younger Alzheimer disease patients had more prominent changes in the elevation of the Mr 60,000 protein phosphorylation level than older patients, although in the control patient, age did not affect the phosphorylation level of the Mr 60,000 protein. We conclude that in the brain cytosol of Alzheimer disease there may be an abnormality in either the degree of Mr 60,000 protein phosphorylation or in the Mr 60,000 protein concentration.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号