首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Parathyroid hormone (PTH)-stimulated cyclic adenosine monophosphate (cAMP) in rat osteoblastlike (OB) cells has been shown to be modulated by steroid hormones; glucocorticoids are known to increase the level, while the effects of 1,25(OH)2D3 are inhibitory. In the present study, we found that the PTH-stimulated cAMP responses are similar in neonatal mouse and fetal rat OB cells. Dexamethasone (0.13–13nM) augmented PTH-stimulated cAMP in both species. Mouse cells showed a higher maximal response to dexamethasone (100% increment) than rat cells (60–70% increment) with similar sensitivity to dexamethasone (ED50 ∼ 1.0 nm). On the other hand, 1,25(OH)2D3 decreased PTH-stimulated cAMP, but the effect required pharmacological levels of hormone; mouse cells responded at a lower dose (1.3 nM) and were more sensitive than rat cells (responded at 13 nM) to 1,25(OH)2D3 treatment. Introduction of physiological concentrations of 1,25(OH)2D3 (0.013–1.3 nm) in addition to dexamethasone (13 nM) resulted in a synergistic enhancement of PTH-stimulated cAMP in rat cells. In contrast, a dose-dependent antagonistic effect was observed in mouse cells. In summary, our findings demonstrate species and concentration-dependent differences in hormonal responses to 1,25(OH)2D3 and a complex interplay among PTH, dexamethasone, and 1,25(OH)2D3.  相似文献   

2.
Summary We have used cultured osteoblastlike rat osteogenic sarcoma cells (ROS 17/2) which have receptors for 1,25(OH)2D3 and for glucocorticoids, and have examined the modulation of the 1,25(OH)2D3 receptor by the potent glucocorticoid triamcinolone acetonide. We report that triamcinolone acetonide caused an increase of the 1,25(OH)2D3 receptor concentration in these cells but it did not affect the affinity of the receptor to 1,25(OH)2D3; this phenomenon occurred in a dosedependent fashion for triamcinolone (10−9 to 10−7 M) with a maximum increase of 1,25(OH)2D3 receptor concentration of ⋍twofold. During the culture period, the 1,25(OH)2D3 receptor concentration was altered both in untreated as well as in triamcinolone-treated cells, being highest at the early logarithmic phase and diminished progressively as cells approached confluence. However, throughout the culture period, the 1,25(OH)2D3 receptor concentration was higher in the triamcinolone-treated cells.  相似文献   

3.
Summary Parathyroid hormone (PTH) alone is known to increase bone mass, but clinical studies of osteoporotic men suggest that when 1,25 dihydroxyvitamin D3 (1,25(OH)2D3) is given in combination with PTH, the effect on bone growth is enhanced. To determine if 1,25(OH)2D3 alone would stimulate bone growth, young male rats were given daily subcutaneous injections of either vehicle or 2.5, 5, 10, or 20 ng 1,25(OH)2D3 per 100 g body weight for 30 days. To determine if 1,25(OH)2D3 would augment the PTH anabolic response, rats were given daily subcutaneous injections of either vehicle for 12 days; or 4 μg/100 g hPTH alone or in combination with 5 ng/100 g 1,25(OH)2D3; or 8 μg/100 g hPTH alone or in combination with 5 ng/100 g 1,25(OH)2D3. Calcium (Ca), dry weight (DW), and hydroxyproline (Hyp) of the distal femur; the rate of mineralization in the metaphysis of the proximal tibia; and serum calcium and phosphate were measured. Low normocalcemic doses of 1,25(OH)2D3 did not significantly stimulate bone growth. 1,25(OH)2D3 did not augment the PTH-stimulated anabolic effect in young male rats. Low doses (2.5 and 5 ng) of 1,25(OH)2D3 were not hypercalcemic, and there was no increase in total bone calcium or dry weight although the 5 ng dose increased trabecular bone calcium. 1,25(OH)2D3 at 10 and 20 ng increased trabecular bone DW and Hyp, but mineralization was impaired and rats were hypercalcemic. 1,25(OH)2D3 in combination with PTH did not augment the PTH stimulation of bone growth as trabecular and cortical bone Ca, DW, and HYP were not increased in rats given both hPTH and 1,25(OH)2D3 compared with values for rats treated with hPTH alone.  相似文献   

4.
Summary Increasing the extracellular Ca2+ concentration from 0.5 to 3.0 mM induced marked increments in cytoplasmic Ca2+ concentration (Ca2+ i) and inhibition of parathyroid hormone (PTH) release of freshly isolated bovine parathyroid cells. 1,25-dihydroxycholecalciferol (1,25(OH)2D3; 0.1–100 ng/ml) did not affect (Ca2+ i) and was also without acute effect on the secretion. During 4 days of monolayer culture, the parathyroid cells underwent significant increases in both number and size, and presence of 10–100 ng/ml 1,25(OH)2D3 almost completely inhibited the cell proliferation, whereas the hypertrophy was unaffected. One day of culture with 0.1–100 ng/ml 1,25(OH)2D3 was without effect on PTH release but after 4 days there was a dose-related reduction of recretion. At this time point and irrespective of the culture condition, PTH release was no longer suppressed by high extracellular Ca2+. Furthermore, Ca2+ i increased little upon increments in the extracellular Ca2+ concentration as compared with freshly isolated cells. It is concluded that after prolonged exposure to 1,25(OH)2D3, PTH release is inhibited and, at high concentrations, the parathyroid cells cease to proliferate. However, 1,25(OH)2D3 does not affect the development of functional dedifferentiation of parathyroid cells during monolayer culture.  相似文献   

5.
Summary Mammalian cells increase net expression of 1,25(OH)2D3 receptors after exposure to physiological concentrations of 1,25(OH)2D3 in vitro. we examined specific binding of 1,25(OH)2D3 by human monocytes before and after daily administration of 1.5–2 ug 1,25(OH)2D3 p.o. for 3 days in 5 healthy normal D-replete probands. Median specific binding (Nmax) at baseline was 793 molecules/cell and 2052 or 2828 at 24h and 72h of 1,25(OH)2D3 treatment respectively. The results suggest (a) up-regulation of 1,25(OH)2D3 receptors occurs in man and (b) monocyte preparations can be used to assess receptor regulationin vivo.  相似文献   

6.
Summary This study presents measurements of serum vitamin D metabolites, calcium and phosphorus as well as measurements of the equilibrium dissociation constant for duodenal 1,25(OH)2D3 receptor in 15-, 18-, 19-, and 20-day chick embryos in comparison to that in 1- and 118-day-old chicks and to vitamin D-deficient chicks. The present results showed that: (a) serum 1,25(OH)2D and 24,25(OH)2D levels rise from 15 and 18 to days 19 and 20 of embryonic development while serum phosphate levels are stable; (b) serum calcium levels rise at hatching to adult levels; (c) the duodenal 1,25(OH)2D3 receptor is detectable in 15-day-old embryo and has a Kd similar to that of 118-day-old vitamin D-replete chicks; and (d) the activity of 1,25(OH)2D3 receptor in chick duodenal cytosol is maximal at hatching.  相似文献   

7.
Summary 1,25(OH)2D3, 25OHD3, and intact parathyroid hormone, as well as various parameters of calcium-phosphorus metabolism were measured in 38 patients with Graves' disease (GD) and in 24 patients with toxic nodular goiter (TNG). Plasma 1,25(OH)2D3 levels were lower in GD patients (82 ±29 pmol/liter) than in those with TNG (155±32 pmol/liter) (P<0.0005). The mean value of 1,25(OH)2D3 in 45 controls was intermediate between the two groups of patients (140±41) and the difference was statistically significant. GD patients before and after treatment had higher alkaline phosphatase (P<0.05), lower intact parathyroid hormone (PTH) (P<0.05), and lower 1,25(OH)2D3 levels (P<0.0005 in the hyperthyroid andP<0.01 in the euthyroid state) than TNG patients. We conclude that increased skeletal calcium resorption is due to elevated levels of T3 causing suppression of 1,25(OH)2D3 production and of PTH levels in both groups of patients albeit of different degrees. Furthermore, we postulate that the profound suppression of 1,25(OH)2D3 in GD is secondary to an immune-mediated phenomenon.  相似文献   

8.
Summary Vitamin D deficiency leads to disturbed calcification of growth cartilage and enlargement of growth plate, illustrating that chondrocytes are a target for vitamin D. This observation prompted an investigation of 1,25(OH)2D3 receptor expression and action of vitamin D metabolites on chondrocyte proliferation. In primary cultures of tibial growth cartilage of male SD rats (80 g), specific binding of [3H]-1,25(OH)2D3 is noted in both the logarithmic growth phase and at confluence (Nmax 12780 molecules/cell versus 4368 molecules/cell). Scatchard analysis revealed the presence of a single class of noninteracting binding sites. KD was 10−11 M irrespective of growth phase. The binding macromolecule had a sedimentation coefficient of 3.5 S. Interaction with DNA was demonstrated by DNA cellulose affinity chromatography. In immunohistology, growth cartilage cells (rabbit tibia) expressed nuclear 1,25(OH)2D3 receptors most prominently in the proliferative and hypertrophic zone. This corresponds to binding data which showed highest Nmax in the proliferating cartilage. 1,25(OH)2D3 in the presence of delipidated fetal calf serum (FCS) had a biphasic effect on cell proliferation and density, i.e., stimulation at 10−12 M and dose-dependent inhibition at 10−10 M and below. Inhibition was specific and not seen with 24,25(OH)2D3 or dexamethasone. Growth phase-dependent 1,25(OH)2D3 receptor expression and effects of 1,25(OH)2D3 on chondrocyte proliferation point to a role of vitamin D in the homeostasis of growth cartilage.  相似文献   

9.
Summary Binding of [3H] 1,25 (OH)2D3 and effects of 1,25 (OH)2D3 on cell ultrastructure were evaluated in vascular smooth muscle cells (VSMC) primary cultures (aortic media). Specific reversible binding of [3H] 1,25 (OH)2D3 by a 3.5 S macromolecule with DNA binding, KD 6.2×10−10M and Nmax 16 fmol/mg protein was demonstrated. Incubation of VSMC with 10−8 M 1,25 (OH)2D3, but not 25 (OH)D3, in the presence of 10% FCS for up to three weeks caused rapid reversible appearance in the cytoplasm of membrane-bounded electron-dense lysosomal particles which on electronspectroscopic imaging contained Ca and Pi. VSMC are targets for vitamin D.  相似文献   

10.
Growth plate chondrocytes are affected by 1,25(OH)2D3 and androgens, which may critically interact to regulate proliferation and differentiation during the male pubertal growth spurt. We investigated possible interactions of 1,25(OH)2D3 and the non-aromatizable androgen dihydrotestosterone (DHT) in primary chondrocyte cultures from young male rats. DHT and 1,25(OH)2D3 independently stimulated DNA synthesis and cell proliferation in a dose-dependent manner with maximally effective doses of [10-8 M] and [10-12 M], respectively. Both DHT and 1,25(OH)2D3 stimulated the expression and release of IGF-I, and the proliferative effects of each hormone were prevented by an IGF-I antibody. DHT and 1,25(OH)2D3 increased messenger RNAs (mRNAs) of their cognate receptors and of IGF-I receptor mRNA (IGF-I-R). 1,25(OH)2D3 also stimulated mRNA of the androgen receptor (AR), whereas DHT did not affect mRNA of the vitamin-D receptor (VDR). Coincubation with both steroid hormones did not stimulate receptor mRNAs more than either hormone alone. The proliferative effects of DHT and 1,25(OH)2D3 were completely inhibited by simultaneous incubation with both hormones, despite potentiation of IGF-I synthesis. In contrast, both hormones synergistically stimulated cell differentiation as judged by alkaline phosphatase activity, collagen X mRNA, and matrix calcification in long-term experiments. We conclude that DHT and 1,25(OH)2D3 interact with respect to chondrocyte proliferation and cell differentiation. The proliferative effects of both hormones are mediated by local IGF-I synthesis. Simultaneous coincubation with both hormones blunts the proliferative effect exerted by either hormone alone, in favor of a more marked stimulation of cell differentiation.  相似文献   

11.
Summary Controversy exists over a direct effect of 1,25(OH)2D3 on PTH secretion. To investigate the possibility that the suppressive effect of 1,25(OH)2D3 on PTH secretion may be demonstrable in 1,25(OH)2D3-depleted tissue and/or after prolonged periods of exposure to 1,25(OH)2D3, primary monolayer cultures of bovine parathyroid cells were established in 1∶1 DMEM/Ham's F-12 media supplemented with 2% calf serum but not 1,25(OH)2D3. Ionized calcium was maintained at 1.0 mM. Experiments were performed on 4-day-old culture cells. PTH concentration was measured using both a mid-region/carboxyl and an amino-terminal PTH antisera. 1,25(OH)2D3 at a concentration of 0.1 ng/ml suppressed PTH secretion by 32±7% after 48 hours. High calcium concentration (2.0 mM) suppressed PTH secretion by 37±10% and this effect was not additive over that of 1,25(OH)2D3. PTH secretion rate recovered fully 48 hours after normalization of the external calcium concentration but not after the removal of 1,25(OH)2D3. It is concluded that 1,25(OH)2D3 directly suppresses PTH secretion by monolayer culture of bovine parathyroid cells.  相似文献   

12.
Summary The purpose of this study was to evaluate whether the 1,25(OH)2D3-induced increased bone mineralization in the mouse occurs in response to stimulation of bone resorption. In order to inhibit bone resorption, 35-day-old mice were given 16 μmol/kg/day of (3-amino-1-hydroxypropylidene)-1,1-bisphosphonate (AHPrBP) for 10 days, the first injection occurring 3 days prior to the continuous infusion of 0.06, 0.13, or 0.20 μg/kg/day of 1,25(OH)2D3 for 7 days. Two groups of mice were treated with AHPrBP or 1,25(OH)2D3 alone. The skeletal changes were assessed by histomorphometric study of caudal vertebrae after double3H-proline and double tetracycline labelings for evaluation of the matrix apposition rate (MaAR) and mineral apposition rate (MiAR), respectively. Treatment with AHPrBP alone or combined to 1,25(OH)2D3 decreased the number of acid phosphatase-stained osteoclasts and reduced the endosteal MaAR and MiAR and the amount of osteoid. When given alone, 1,25(OH)2D3 increased serum calcium above normal, enhanced the number of histochemically active osteoclasts, and stimulated the endosteal MiAR. Pretreatment with AHPrBP blocked both the increase in serum calcium and the stimulation of the MiAR induced by 1,25(OH)2D3 infusion though serum 1,25(OH)2D3 levels rose according to the dose given. The results show that 1) the serum calcium and the bone resorbing responses to 1,25(OH)2D3 infusion are prevented by pretreatment with AHPrBP, and 2) the stimulatory effect of 1,25(OH)2D3 on the mineralization rate is blocked when bone resorption is inhibited. The data indicate that 1,25(OH)2D3 promotes bone mineralization in the mouse mainly in response to stimulation of bone resorption.  相似文献   

13.
Summary Interaction among vitamin D3 metabolites on bone receptor sites is not known. Therefore, interaction between the most potent vitamin D3 metabolite, 1,25(OH)2D3, and the most abundant dihydroxymetabolite, 24R,25(OH)2D3, was studied on isolated rat fetal bone by measuring45Ca release from prelabeled bones. 24R,25(OH)2D3 at concentrations of 10–50 ng/ml caused marked inhibition of the bone-resorbing activity of 1,25 (OH)2D3 at concentrations of 10–50 pg/ml. 24S,25-(OH)2 (unnatural enantiometer), on the other hand, at a concentration of 100 ng/ml did not inhibit the bone-resorbing effect of 10 pg/ml 1,25(OH)2D3. 24R,25(OH)2D3 at a concentration of 20 ng/ml did not inhibit the45Ca-releasing effect of a submaximal concentration of PTH (500 ng/ml). Therefore, the inhibitory effect of 24R,25(OH)2D3 on the bone response to 1,25(OH)2D3 appeared to be specific and probably due to a competitive inhibitory effect. In addition, the inhibitory effect of 24R,25(OH)2D3 was weak, since it could be partially overcome by increasing the concentration of 1,25 (OH)2D3.  相似文献   

14.
Summary Rachitic rats, maintained on diets with low or normal P contents, were given daily intraperitoneal doses of 1,25(OH)2D3 or 25OHD3 at levels of 100 or 200 ng. Plasma chemistry was measured and the ash content and histological appearance of the bones investigated. Using labeled material it was shown that the dosing levels of 1,25(OH)2D3 employed ensured a higher than normal plasma concentration of that metabolite over the period between doses. 1,25(OH)2D3 was not as effective as 25OHD3 in raising bone ash or reducing the amount of osteoid. The difference between the effects of the metabolites was evident at both dietary P levels, but more marked at the higher P level. In contrast, the metabolites reduced the width of the epiphyseal plate to an approximately similar degree, and this is possibly the reason why there are discrepancies between previous reports of the effectiveness of 1,25(OH)2D3 compared with 25OHD3 or vitamin D3. Dosing with 1,25(OH)2D3 failed to maintain a constant plasma Pi value over the period between doses in animals fed the low P diet.  相似文献   

15.
Summary A closed tibial fracture, which was controlled by an intramedullary stainless steel pin, was created in 16 rabbits. Eight rabbits were treated with 75 ng of 1,25(OH)2D3 daily as subcutaneous (s.c.) injections. After three weeks, the fractured tibia resisted a force of 101,7±21.0 Newtons in the control group and 57.3±8.0 Newtons in animals given 1,25(OH)2D3 (m±SE,P<0.05). In another group of eight rabbits, the left hindleg was immobilized in a plastic splint. Four rabbits were given 75 ng of 1,25(OH)2D3/day s.c. and the effect of immobilization was studied on the calcaneus. Bone ash/cm3 of the calcaneus on the immobilized side was decreased by 11±2% in control rabbits and by 20±2% in the group treated with 1,25(OH)2D3 indicating a more advanced immobilization osteoporosis (m±SE,P<0.05), which was also demonstrated by studies of bone density. Eighteen rabbits were used in a study of the effects of 1,25(OH)2D3 on the development of prednisolone osteoporosis. The dose of prednisolone was 2.5 mg per day, given by the oral route. After four months, the density of the femur was 1.53±0.02 g/cm2 in control rabbits and 1.42±0.01 in prednisolonetreated animals (P<0.01). In rabbits additionally given 1,25(OH)2D3, the mean value for bone density was further lowered (n.s.). It appears that 1,25(OH)2D3 exaggerates disuse osteoporosis and prednisolone osteoporosis and impairs fracture healing in rabbits. These results differ from what has been shown earlier with 1,25(OH)2D3 treatment in the rat.  相似文献   

16.
Summary We have previously shown that cyclosporin A (CsA) produces high bone remodeling with resorption exceeding formation and loss of bone volume in the rat. This may have important clinical implications where CsA is widely used in organ transplantation. 1,25 dihydroxyvitamin D3 (1,25(OH)2D3) is a bone mineralizing hormone which also has immune modifying properties. Consequently, we studied the effect of combined CsA and 1,25(OH)2D3 administration over 28 days in four groups of rats. Group A received vehicle (n=10), group B CsA (15 mg/kg) (n=10) alone, group C 1,25(OH)2D3 plus CsA (n=15), and group D 1,25(OH)2D3 alone (20 ng/100 g) (n=15). Rats were bled periodically at day 0, 7, 14, and 28 and Ca, parathyroid hormone (PTH), 1,25(OH)2D, osteocalcin (bone Gla-protein, BGP), BUN, and creatinine were measured. Rats were sacrificed on day 28 and bones were examined histomorphometrically. Compared to controls, CsA resulted in significant elevation of BGP and a transient increase in 1,25(OH)2D with excess bone remodeling and loss of bone volume. 1,25(OH)2D3 administration produced hypercalcemia, a significant rise in BGP, with suppression of PTH and increased osteoid volume. Combined therapy prevented the loss of bone volume probably due to increased osteoid tissue and enhanced osteoblast activity. Renal dysfunction, a side-affect of CsA, was not a factor. In conclusion, 1,25(OH)2D3 combined with CsA restores bone volume which is accompanied by increases in serum calcium and BGP.  相似文献   

17.
Summary Vitamin D3 metabolites have been shown to affect proliferation, differentiation, and maturation of cartilage cells. Previous studies have shown that growth zone chondrocytes respond primarily to 1,25(OH)2D3 whereas resting zone chondrocytes respond primarily to 24,25(OH)2D3. To examine the role of calcium in the mechanism of hormone action, this study examined the effects of the Ca ionophore A23187, 1,25(OH)2D3, and 24,25(OH)2D3 on Ca influx and efflux in growth zone chondrocytes and resting zone chondrocytes derived from the costochondral junction of 125 g rats. Influex was measured as incorporation of45Ca. Efflux was measured as release of45Ca from prelabeled cultures into fresh media. The pattern of45Ca influx in unstimulated (control) cells over the incubation period was different in the two chondrocyte populations, whereas the pattern of efflux was comparable. A23187 induced a rapid influx of45Ca in both types of chondrocytes which peaked by 3 minutes and was over by 6 minutes. Influx was greatest in the growth zone chondrocytes. Addition of 10−8–10−9 M 1,25(OH)2D3 to growth zone chondrocyte cultures results in a dose-dependent increase in45Ca influx after 15 minutes. Efflux was stimulated by these concentrations of hormone throughout the incubation period. Addition of 10−6–10−7 M 24,25(OH)2D3 to resting zone chondrocytes resulted in an inhibition in ion efflux between 1 and 6 minutes, with no effect on influx during this period. Efflux returned to control values between 6 and 15 minutes.45Ca influx was inhibited by these concentrations of hormone from 15 to 30 minutes. These studies demonstrate that changes in Ca influx and efflux are metabolite specific and may be a mechanism by which vitamin D metabolites directly regulated chondrocytes in culture.  相似文献   

18.
A few studies have reported on the measurement of 1,25-dihydroxycholecalciferol (1,25(OH)2D3) in bone, using chloroform/methanol extraction and radioreceptor assay. As the significance of bone 1,25(OH)2D3 content was not defined in any of these reports, the objective of the current investigation was to determine whether 1,25(OH)2D3 may be stored in skeletal matrix. Bone powder samples from the iliac crest were extracted in ethylacetate/cyclohexane and 1,25(OH)2D3 isolated from the extract by means of Sephadex LH-20 and high pressure liquid chromatographic separation and subsequently measured by radioimmunoassay (RIA). Within the detection range of the RIA, no 1,25(OH)2D3 could be measured, suggesting that 1,25(OH)2D3 is not stored in skeletal matrix. Vitamin D bone concentrations previously measured may therefore have reflected plasma contamination. Consistent with this hypothesis, only traces of skeletal 1,25(OH)2D3 binding protein were measured when compared with serum values. Although 1,25(OH)2D3 may act as a potential local determinant of bone remodeling, there is no evidence supporting a delayed paracrine function by matrix-derived 1,25(OH)2D3.  相似文献   

19.
Summary Calvarial bones from hypophosphatemic (Hyp) mice and normal littermates were cultured in a chemically defined medium to determine: (a) the effect of medium phosphate (Pi) concentration (1, 2, and 3 mM) on collagen synthesis; (b) the effect of 1,25-dihydroxycholecalciferol [1,25(OH)2D3] (10−12M–10−7M) on collagen synthesis; and (c) whether bone responsiveness to 1,25(OH)2D3 was affected by changes in medium Pi concentration. Bone collagen synthesis was evaluated by measuring [3H]hydroxyproline formation. The distribution of labeled hydroxyproline between bone explant and culture medium (total and dialyzable fraction) was studied. These experiments confirm that 1,25(OH)2D3 inhibits specifically bone collagen synthesis in vitro. We did not detect any effect of medium Pi concentration on basal collagen synthesis but were able to demonstrate that lowering medium Pi concentration increased the 1,25(OH)2D3-induced inhibition of collagen synthesis. Bones from both genotypes responded to 1,25(OH)2D3, but modulation of this response by changes in Pi concentration was altered in Hyp bone as, in contrast to normal bone, its response to 1,25(OH)2D3 was unaffected when medium Pi concentration was decreased from 3 to 2 mM. These findings support the hypothesis of an altered response of bone to 1,25(OH)2D3 in the Hyp mouse.  相似文献   

20.
Summary This study was undertaken to determine whether 1α-hydroxyvitamin D3 [1α(OH)D3] administration to chicks in vivo results in 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] intestinal receptor occupancy and to compare the temporal characteristics of the physiological effects of 1α(OH)D3 and 1,25(OH)2D3 for several days after a single dose of either steroid. Occupied 1,25(OH)2D3 receptors of the chick duodenal mucosa were measured by the recently developed exchange assay procedure [J Biol Chem (1980) 255:9534–9537]. Within 2 h after 1α(OH)D3 injection in rachitic chicks, there was a significant elevation of 1,25(OH)2D3 receptor occupancy in the intestinal mucosa. This observation represents the first direct confirmation that this synthetic analog exerts biological effects through occupancy of 1,25(OH)2D3 receptors. Serum 1,25(OH)2D3 levels reached a 3-fold higher peak after 1,25(OH)2D3 injection (3.25 nmol) than after 1α(OH)D3 injection (6.5 nmol); further, after 1α(OH)D3 injection the peak was delayed by 2–4 h. However, serum 1,25(OH)2D3 levels remained elevated for only 3–6 h after 1,25(OH)2D3, compared to 48 h after 1α(OH)D3 injection. Occupied 1,25(OH)2D3 receptor levels paralleled serum 1,25(OH)2D3 levels at all times after administration of either steroid. At 24 h, duodenal vitamin D-dependent calcium binding protein (CaBP) levels were similarly elevated in both treatment groups, but by 48 and 72 h after 1α(OH)D3 administration CaBP and serum Ca2+, respectively, were more significantly elevated. These data confirm that 1α(OH)D3 induces its major biological effects via intracellular 1,25(OH)2D3 receptors and reinforce the concept that 25-hydroxylation is a prerequisite for these effects. These results also suggest that 1α(OH)D3 may become useful in the therapy for sustained treatment of vitamin D deficiency diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号