首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
Granuloma formation around schistosomal eggs is induced by soluble egg antigens (SEA) and mediated by the activity of CD4(+) Th lymphocytes and their cytokines. Regulation of the inflammatory Th cell response during infection is still insufficiently understood. The hypothesis of this study was that activation-induced cell death (AICD) of CD4(+) T cells is involved in the immune inflammatory response. This study investigated the dynamics of splenic and granuloma CD4(+) Th cell apoptosis and Fas ligand (FasL) expression during the acute and chronic stages of murine schistosomal infection. Enhanced apoptosis of freshly isolated CD4(+) Th lymphocytes commenced after egg deposition and persisted during the peak and modulated phases of granuloma formation. After oviposition, CD4(+), CD8(+), and CD19(+) splenocytes and granuloma cells expressed elevated levels of FasL but FasL expression declined during the downmodulated stage of infection. In culture, SEA induced splenic and granuloma CD4(+) T-cell apoptosis and stimulated expression of FasL on splenic but not granuloma CD4(+) T cells, CD8(+) T cells, and CD19(+) B cells. SEA-stimulated splenocytes and granuloma cells preferentially lysed a Fas-transfected target cell line. Depletion of B cells from SEA-stimulated splenic cultures decreased CD4(+) T cell apoptosis. Coculture of purified splenic B cells with CD4(+) T cells and adoptive transfer of purified B cells indicated that antigen-stimulated B cells can kill CD4(+) Th cells. However, CD4(+) T cells were the dominant mediators of apoptosis in the granuloma. This study indicates that AICD is involved in the apoptosis of CD4(+) T cells during schistosomal infection.  相似文献   

5.
6.
7.
Activation-induced cell death in T cells   总被引:19,自引:0,他引:19  
Summary: A properly functioning immune system is dependent on programmed cell death at virtually every stage of lymphocyte development and activity. This review addresses the phenomenon of activation‐induced cell death (AICD) in T lymphocytes, in which activation through the T‐cell receptor results in apoptosis. AICD can occur in a cell‐autonomous manner and is influenced by the nature of the initial T‐cell activation events. It plays essential roles in both central and peripheral deletion events involved in tolerance and homeostasis, although it is likely that different forms of AICD proceed via different mechanisms. For example, while AICD in peripheral T cells is often caused by the induction of expression of the death ligand, Fas ligand (CD95 ligand, FasL), it does not appear to be involved in AICD in thymocytes. This and other mechanisms of AICD are discussed. One emerging model that may complement other forms of AICD involves the inducible expression of FasL by nonlymphoid tissues in response to activated T lymphocytes. Induction of nonlymphoid FasL in this manner may serve as a sensing mechanism for immune cell infiltration, which contributes to peripheral deletion.  相似文献   

8.
9.
Activation-induced cell death (AICD) represents a major means of peripheral tolerance induction, eliminating effector cells. NOD mice, a widely used model for autoimmune diabetes, are characterized by high levels of circulating T lymphocytes and by resistance to several apoptosis-inducing signals. The aim of this study was to analyse AICD in peripheral NOD T lymphocytes. First, we demonstrated in an in vitro AICD model that NOD T lymphocytes are more resistant to AICD (64+/-2%) compared to non-autoimmune C57BL/6 T lymphocytes (73+/-2%), but also diabetes-resistant NOR T lymphocytes (76+/-3%, P<0.05). Moreover, both CD4(+)and CD8(+)subsets were affected. Analysis of the cellular and molecular pathways revealed lower caspase 8 levels, a central caspase proximally involved in the AICD-pathway (fluorescence of 258+/-47 in NOD vs. 441+/-16 in NOR and 414+/-61 in C57BL/6 T lymphocytes, P<0.05). Gene expression analysis using real-time RT-PCR additionally revealed low expression of Fas and FasL, the death receptor system activating caspase 8 and contributing to AICD. Additionally, low IL-2 levels, together with high TGFbeta and Bclx-L levels, confirm the presence of a NOD-specific AICD-resistance profile. In conclusion, we present cellular and molecular evidence for disturbed AICD mechanisms in NOD T lymphocytes. This resistance in AICD may contribute to defective tolerance induction to autoantigens in NOD mice.  相似文献   

10.
Interleukin (IL)-2 immunotherapy is used for the treatment of metastatic melanoma and renal cell carcinoma and mediates its effects through the clonal expansion of lymphocytes. Although IL-2 remains the most effective form of therapy for these cancers, response rates are poor and dose escalation is hampered by side effects, which include vascular leak and lymphopenia. The mechanism underlying T cell loss is currently unidentified but could be the induction of activation-induced cell death (AICD) mediated by FasL. Our previous studies have shown that the amino acid taurine can attenuate apoptosis induced by a number of factors in different cell types. Here, we induced T cell AICD via CD3 and IL-2 stimulation and investigated the effect of taurine on lymphocyte apoptosis. Anti-CD3-activated Jurkat T cells treated with IL-2 significantly increased FasL expression, which was associated with increased apoptosis. Treatment with taurine prior to stimulation down-regulated FasL protein expression and partially inhibited apoptosis. Inhibition of FasL-signalling resulted in an identical reduction in apoptosis. As the kinetics of AICD are completely different in circulating T cells, we repeated these experiments in such cells to confirm our finding. Stimulation of CD4(+) circulating T cells induced apoptosis in sensitized, but not freshly isolated T cells, which was abrogated partially by taurine. In Jurkat cells it was determined that taurine-mediated down-regulation of FasL protein expression was associated with decreased FasL mRNA expression and reduced NFkappaB activation. These results reveal one possible mechanism underlying the lymphopenia observed with IL-2 immunotherapy, involving increased FasL expression leading to apoptosis. Taurine may be of use in reversing the lymphopenia associated with IL-2, thereby augmenting its immunotherapeutic potential.  相似文献   

11.
Activation induced cell death (AICD) is a major physiologic pathway that regulates T cell homeostasis. In CD4 T cells, AICD is mediated mainly through Fas/FasL interactions. Although TCR occupancy triggers AICD, the contribution of its tightly associated CD4 coreceptor to the process that leads to AICD is not known. Here we show that CD4 molecule plays an essential regulatory role of TCR dependent AICD. Loss of CD4 rendered activated 5kc T cell hybridoma resistant to AICD. The resistance of CD4 negative 5kc T cells to AICD was due to selective inhibition of FasL expression and it could be reversed by addition of recombinant FasL. Furthermore, a direct functional link between CD4 and FasL was demonstrated by induction of FasL upon CD4 crosslinking in a TCR independent fashion. The importance of CD4 interaction with MHC/peptide complex in mediating AICD was also evident in normal T cells that could survive chronic stimulation with anti-CD3 but died after short period of proliferation after stimulation with MHC/peptide. Thus it appears that AICD is controlled by the CD4 molecule via regulation of FasL expression. These findings have important implications for our understanding of mechanisms of peripheral tolerance as well as pathogenesis of autoimmune diseases.  相似文献   

12.
Activation induced cell death (AICD) is a major physiologic pathway that regulates T cell homeostasis. In CD4 T cells, AICD is mediated mainly through Fas/FasL interactions. Although TCR occupancy triggers AICD, the contribution of its tightly associated CD4 coreceptor to the process that leads to AICD is not known. Here we show that CD4 molecule plays an essential regulatory role of TCR dependent AICD. Loss of CD4 rendered activated 5kc T cell hybridoma resistant to AICD. The resistance of CD4 negative 5kc T cells to AICD was due to selective inhibition of FasL expression and it could be reversed by addition of recombinant FasL. Furthermore, a direct functional link between CD4 and FasL was demonstrated by induction of FasL upon CD4 cross-linking in a TCR independent fashion. The importance of CD4 interaction with MHC/peptide complex in mediating AICD was also evident in normal T cells that could survive chronic stimulation with anti-CD3 but died after short period of proliferation after stimulation with MHC/peptide. Thus it appears that AICD is controlled by the CD4 molecule via regulation of FasL expression. These findings have important implications for our understanding of mechanisms of peripheral tolerance as well as pathogenesis of autoimmune diseases.  相似文献   

13.
14.
15.
Glucocorticoids (GCs) and cAMP-dependent signaling pathways exert diverse and relevant immune regulatory functions, including a tight control of T cell death and homeostasis. Both of these signaling molecules inhibit TCR-induced cell death and FasL expression, but the underlying mechanisms are still poorly understood. Therefore, to address this question, we performed a comprehensive screening of signaling pathways downstream of the TCR, in order to define which of them are targets of cAMP- and GC-mediated inhibition. We found that cAMP inhibited NF-κB and ERK pathways through a PKA-dependent mechanism, while Dexamethasone blocked TCR-induced NF-κB signaling. Although GCs and cAMP inhibited the induction of endogenous FasL mRNA expression triggered by TCR activation, they potentiated TCR-mediated induction of FasL promoter activity in transient transfection assays. However, when the same FasL promoter was stably transfected, the facilitatory effect of GCs and cAMP became inhibitory, thus resembling the effects on endogenous FasL mRNA expression. Hence, the endogenous chromatinization status known to occur in integrated or genomic vs. episomic DNA might be critical for proper regulation of FasL expression by cAMP and GCs. Our results suggest that the chromatinization status of the FasL promoter may function as a molecular switch, controlling cAMP and GC responsiveness and explaining why these agents inhibit FasL expression in T cells but induce FasL in other cell types.  相似文献   

16.
Naive CD4+ T cells proliferate strongly in response to stimulation by superantigens such as staphylococcal enterotoxin B (SEB). However, when these same cells revert to a resting phenotype and are subjected to restimulation with either SEB or anti-CD3, the majority of these SEB-responsive cells undergo Fas ligand (FasL)-mediated activation-induced cell death (AICD). We investigated the impact of Fas expression on T cell AICD by utilizing B cell stimulators that lacked functional FasL and either expressed or did not express the Fas receptor. Our results indicate that B cells play an important role in modulating the level of T cell AICD via the Fas/FasL pathway. Activated B cells expressing high levels of Fas receptor can redirect the FasL expressed by T cells primed to undergo AICD away from the T cells and prevent the induction of AICD in these cells. Furthermore, B cells stimulated through both the CD40 receptor and membrane IgM appear to mediate a stronger protective effect on T cells by virtue of their resistance to FasL-mediated cytolysis. These observations suggest a mechanism by which normal B cell and T cell responses to foreign antigen are maintained, while responses to self antigen are not.  相似文献   

17.
18.
19.
NF-kappa B-dependent Fas ligand expression.   总被引:1,自引:0,他引:1  
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号