共查询到20条相似文献,搜索用时 15 毫秒
1.
Inhibitory effects of antiarrhythmic drugs on phenacetin O-deethylation catalysed by human CYP1A2 总被引:2,自引:0,他引:2 下载免费PDF全文
K. Kobayashi M. Nakajima K. Chiba T. Yamamoto M. Tani T. Ishizaki & Y. Kuroiwa 《British journal of clinical pharmacology》1998,45(4):361-368
Aims The aim of the study was to clarify whether the pharmacokinetic interaction between theophylline and mexiletine is mediated by inhibition of CYP1A2 and to assess the possible interaction potential of other antiarrhythmic drugs with drugs metabolized by CYP1A2.
Methods The inhibitory effects of mexiletine and 10 antiarrhythmic drugs on phenacetin O -deethylation, a marker reaction of CYP1A2, were studied using human liver microsomes and cDNA-expressed CYP1A2.
Results Propafenone and mexiletine inhibited phenacetin O -deethylation with I C50 values of 29 and 37 μm, respectively. Disopyramide, procainamide and pilsicainide produced negligible inhibition of phenacetin O -deethylation (I C 50 >1 mm ). Amiodarone, bepridil, aprindine, lignocaine, flecainide and quinidine inhibited phenacetin O -deethylation in a concentration-dependent manner, although the inhibitory effects were relatively weak with I C 50 values ranging from 86 to 704 μm. Propafenone and mexiletine selectively abolished the high-affinity component of phenacetin O -deethylation in human liver microsomes. In addition, propafenone and mexiletine inhibited phenacetin O -deethylation catalysed by cDNA-expressed CYP1A2.
Conclusions These data suggest that, among the antiarrhythmic drugs studied, propafenone and mexiletine are relatively potent inhibitors of CYP1A2, which may cause a drug-drug interaction with drugs metabolized by CYP1A2. 相似文献
Methods The inhibitory effects of mexiletine and 10 antiarrhythmic drugs on phenacetin O -deethylation, a marker reaction of CYP1A2, were studied using human liver microsomes and cDNA-expressed CYP1A2.
Results Propafenone and mexiletine inhibited phenacetin O -deethylation with I C
Conclusions These data suggest that, among the antiarrhythmic drugs studied, propafenone and mexiletine are relatively potent inhibitors of CYP1A2, which may cause a drug-drug interaction with drugs metabolized by CYP1A2. 相似文献
2.
OBJECTIVE: To screen the inhibitory effects of H1-antihistamines on hepatic bufuralol 1'-hydroxylation and on tolbutamide 4-methylhydroxylation in human liver microsomes. METHODS: Bufuralol 1'-hydroxylation and tolbutamide 4-methylhydroxylation were used as index reactions for CYP2D6 and CYP2C9, respectively. The metabolites of both reactions were measured using high-performance liquid chromatography and were used as indicators of whether CYP2D6 or CYP2C9 activities were inhibited or unaffected by the agents. RESULTS: All five H1-antihistamines studied showed a concentration-dependent inhibition of CYP2D6-mediated bufuralol 1'-hydroxylation with 50% inhibitory concentration (IC50) values of 32-109 microM. Cyclizine and promethazine showed inhibitory effects on tolbutamide 4-methylhydroxylation with IC20 values of 85 microM and 88 microM, respectively. Tripelennamine, chlorpheniramine, and diphenhydramine showed no inhibitory effects on CYP2C9. CONCLUSION: All five H1-antihistamines studied inhibited CYP2D6 markedly, but only cyclizine and promethazine inhibited CYP2C9 at concentrations above that usually seen in plasma. Promethazine and chlorpheniramine inhibited CYP2D6 at concentrations that are very close to their therapeutic plasma concentrations. Further studies in humans, especially in poor metabolizers of CYP2D6, will be required to confirm these findings. 相似文献
3.
Inhibitory effects of fruit juices on CYP3A activity. 总被引:3,自引:0,他引:3
Hyunmi Kim Yune-Jung Yoon Ji-Hong Shon In-June Cha Jae-Gook Shin Kwang-Hyeon Liu 《Drug metabolism and disposition》2006,34(4):521-523
There have been very limited reports on the effects of commercial fruit juices on human CYP3A activity. Therefore, the inhibitory effects of readily available commercial fruit juices on midazolam 1'-hydroxylase activity, a marker of CYP3A, were evaluated in pooled human liver microsomes. The fruit juices investigated were black raspberry, black mulberry, plum, and wild grape. White grapefruit, pomegranate, and orange juice were used as positive and negative controls. The black mulberry juice showed the most potent inhibition of CYP3A except for grapefruit juice. The inhibition depended on the amount of a fruit juice added to the incubation mixture. The inhibitory potential of human CYP3A was in the order: grapefruit > black mulberry > wild grape > pomegranate > black raspberry. The IC(50) values of all fruit juices tested were reduced after preincubation with microsomes in the presence of the NADPH-generating system, suggesting that a mechanism-based inhibitory component was present in these fruit juices, as in the case of grapefruit. The results suggest that, like grapefruit juice, commercial fruit juices also have the potential to inhibit CYP3A-catalzyed midazolam 1'-hydroxylation. Therefore, in vivo studies investigating the interactions between fruit juices such as black mulberry and wild grape and CYP3A substrates are necessary to determine whether inhibition of CYP3A activity by fruit juices is clinically relevant. 相似文献
4.
Risto O. Juvonen Mira Kuusisto Carolin Fohrgrup Mari H. Pitkänen Tapio J. Nevalainen Seppo Auriola 《Xenobiotica; the fate of foreign compounds in biological systems》2016,46(1):14-24
1.?Information about the metabolism of compounds is essential in drug discovery and development, risk assessment of chemicals and further development of predictive methods.2.?In vitro and in silico methods were applied to evaluate the metabolic and inhibitory properties of 6-methylcoumarin, 7-methylcoumarin and 7-formylcoumarin with human CYP2A6, mouse CYP2A5 and pig CYP2A19.3.?6-Methylcoumarin was oxidized to fluorescent 7-hydroxy-6-methylcoumarin by CYP2A6 (Km: 0.64–0.91?µM; Vmax: 0.81–0.89?min?1) and by CYP2A5 and CYP2A19. The reaction was almost completely inhibited at 10?µM 7-methylcoumarin in liver microsomes of human and mouse, but in pig only 40% inhibition was obtained with the anti-CYP2A5 antibody or with methoxsalen and pilocarpine. 7-Methylcoumarin was a mechanism-based inhibitor for CYP2A6, but not for the mouse and pig enzymes. 7-Formylcoumarin was a mechanism-based inhibitor for CYP2As of all species.4.?Docking and molecular dynamics simulations of 6-methylcoumarin and 7-methylcoumarin in the active sites of CYP2A6 and CYP2A5 demonstrated a favorable orientation of the 7-position of 6-methylcoumarin towards the heme moiety. Several orientations of 7-methylcoumarin were possible in CYP2A6 and CYP2A5.5.?These results indicate that the active site of CYP2A6 has unique interaction properties for ligands and differs in this respect from CYP2A5 and CYP2A19. 相似文献
5.
The in vitro metabolism of (+)-fenchone was examined in human liver microsomes and recombinant enzymes. Biotransformation of (+)-fenchone was investigated by gas chromatography-mass spectrometry. (+)-Fenchone was found to be oxidized to 6-exo-hydroxyfenchone, 6-endo-hydroxyfenchone and 10-hydroxyfenchone by human liver microsomal P450 enzymes. The formation of metabolite of (+)-fenchone was determined by relative abundance of mass fragments and retention time with GC. CYP2A6 and CYP2B6 in human liver microsomes were major enzymes involved in the hydroxylation of (+)-fenchone, based on the following lines of evidence. First, of eleven recombinant human P450 enzymes tested, CYP2A6 and CYP2B6 catalyzed oxidation of (+)-fenchone. Second, oxidation of (+)-fenchone was inhibited by thioTEPA, (+)-menthofuran anti-CYP2A6 and anti-CYP2B6 antibodies. Finally, there was a good correlation between CYP2A6, CYP2B6 contents and (+)-fenchone hydroxylation activities in liver microsomes of 8 human samples. 相似文献
6.
Hiroshi Yamazaki Kiyoshi Inoue Masafumi Hashimoto Tsutomu Shimada 《Archives of toxicology》1999,73(2):65-70
Nicotine C-oxidation by recombinant human cytochrome P450 (P450 or CYP) enzymes and by human liver microsomes was investigated
using a convenient high-performance liquid chromatographic method. Experiments with recombinant human P450 enzymes in baculovirus
systems, which co-express human nicotinamide adenine dinucleotide phosphate (reduced form) (NADPH)-P450 reductase, revealed
that CYP2A6 had the highest nicotine C-oxidation activities followed by CYP2B6 and CYP2D6; the K
m values by these three P450 enzymes were determined to be 11.0, 105, and 132 μM, respectively, and the V
max values to be 11.0, 8.2, and 8.6 nmol/min per nmol P450, respectively. CYP2E1, 2C19, 1A2, 2C8, 3A4, 2C9, and 1A1 catalysed
nicotine C-oxidation only at high (500 μM) substrate concentration. CYP1B1, 2C18, 3A5, and 4A11 had no measurable activities
even at 500 μM nicotine. In liver microsomes of 16 human samples, nicotine C-oxidation activities were correlated with CYP2A6
contents at 10 μM substrate concentration, whereas such correlation coefficients were decreased when the substrate concentration
was increased to 500 μM. Contribution of CYP2B6 (as well as CYP2A6) was demonstrated by experiments with the effects of orphenadrine
(and also coumarin and anti-CYP2A6) on the nicotine C-oxidation activities by human liver microsomes at 500 μM nicotine. CYP2D6
was found to have minor roles since quinidine did not inhibit microsomal nicotine C-oxidation at both 10 and 500 μM substrate
concentrations. These results support the view that CYP2A6 has major roles for nicotine C-oxidation at lower substrate concentration
and both CYP2A6 and 2B6 play roles at higher substrate concentrations in human liver microsomes.
Received: 27 October 1998 / Accepted: 11 January 1999 相似文献
7.
Kamiyama E Yoshigae Y Kasuya A Takei M Kurihara A Ikeda T 《Drug metabolism and pharmacokinetics》2007,22(4):267-275
We investigated the inhibitory effects of the angiotensin receptor blockers (ARBs), candesartan, irbesartan, losartan, losartan active metabolite (EXP-3174), olmesartan, telmisartan and valsartan (0.3-300 microM), on the CYP2C9 activity in human liver microsomes using (S)-(-)-warfarin as a typical CYP2C9 substrate. Except for olmesartan and valsartan, these ARBs inhibited the activity of 7-hydroxylation of (S)-(-)-warfarin with IC50 values of 39.5-116 microM. Of six synthetic derivatives of olmesartan, five compounds which possess either alkyl groups or a chloro group at the same position as that of the hydroxyisopropyl group in olmesartan inhibited CYP2C9 activity with IC50 values of 21.7-161 microM. Olmesartan and the olmesartan analogue, RNH-6272, both having a hydroxyisopropyl group, showed no inhibition, indicating that the hydrophilicity of this group greatly contributes to the lack of CYP2C9 inhibition by these two compounds. A three-dimensional model for docking between EXP-3174 and CYP2C9 indicated that the chloro group of EXP-3174 is oriented to a hydrophobic pocket in the CYP2C9 active site, indicating that the lipophilicity of the group present in ARBs at the position corresponding to that of the hydroxyisopropyl group in olmesartan is important in inhibiting CYP2C9 activity. 相似文献
8.
The capacities to inhibit coumarin 7-hydroxylase activity of human cytochrome P450 2A6 (CYP2A6) by organosulfur compounds were evaluated. Five dialkyl sulfides and five dialkyl disulfides, with alkyl chains from methyl to amyl, were examined. In addition to these chemicals, diallyl sulfide, diallyl disulfide, allyl methyl sulfide, allyl n-propyl sulfide, allyl phenyl sulfide, diphenyl sulfide, diphenyl disulfide, difurfuryl disulfide, phenyl cyclopropyl sulfide, 2,2'-dipyridyl disulfide, 4,4'-dipyridyl sulfide, and 4,4'-dipyridyl disulfide were also examined for their capacity to inhibit CYP2A6. The membrane fraction of genetically engineered Escherichia coli cells expressing CYP2A6 together with NADPH-cytochrome P450 reductase was used as an enzyme source. Dialkyl disulfides inhibited CYP2A6 more strongly than did dialkyl sulfides. Among dialkyl disulfides examined, di-n-propyl disulfide, contained in onion oil, was the most potent competitive inhibitor of CYP2A6, with a K(i) value of 1.73 microM. Diallyl disulfide, present in garlic oil, inhibited CYP2A6 activity in a competitive/noncompetitive mixed manner, with the K(i) value of 2.13 microM. Among all of the organosulfur compounds tested, 4,4'-dipyridyl disulfide was the most potent inhibitor of CYP2A6, with a K(i) value of 60 nM, followed by 4,4'-dipyridyl sulfide, with a K(i) value of 72 nM. These chemicals inhibited CYP2A6 in a competitive manner. The preincubation time did not affect the inhibitory effects of di-n-propyl disulfide, diallyl disulfide, 4,4'-dipyridyl disulfide, and 4,4'-dipyridyl sulfide on CYP2A6, indicating that these chemicals were not mechanism-based inhibitors of CYP2A6. 4,4'-Dipyridyl disulfide also inhibited midazolam 1'-hydroxylase activity of CYP3A4. We discovered 4,4'-dipyridyl disulfide to be a potent and relatively selective inhibitor of CYP2A6. 相似文献
9.
Miyazawa M Gyoubu K 《Xenobiotica; the fate of foreign compounds in biological systems》2007,37(2):194-204
The in vitro metabolism of (-)-fenchone was examined in human liver microsomes and recombinant enzymes. The biotransformation of (-)-fenchone was investigated by gas chromatography-mass spectrometry. (-)-Fenchone was found to be oxidized to 6-exo-hydroxyfenchone, 6-endo-hydroxyfenchone and 10-hydroxyfenchone by human liver microsomal P450 enzymes. The formation of metabolites was determined by the relative abundance of mass fragments and retention times on gas chromatography (GC). CYP2A6 and CYP2B6 were major enzymes involved in the hydroxylation of (-)-fenchone by human liver microsomes, based on the following lines of evidence. First, of 11 recombinant human P450 enzymes tested, CYP2A6 and CYP2B6 catalysed the oxidation of (-)-fenchone. Second, oxidation of (-)-fenchone was inhibited by thioTEPA and (+)-menthofuran. Finally, there was a good correlation between CYP2A6, CYP2B6 contents and (-)-fenchone hydroxylation activities in liver microsomes of 11 human samples. CYP2A6 may be more important than CYP2B6 in human liver microsomes. Kinetic analysis showed that the Vmax/Km values for (-)-fenchone 6-endo-, 6-exo- and 10-hydroxylation catalysed by liver microsomes of human sample HG-03 were 24.3, 44.0 and 1.3nM(-1)min(-1) , respectively. Human recombinant CYP2A6 and CYP2B6 catalysed (-)-fenchone 6-exo-hydroxylation with Vmax values of 2.7 and 12.9 nmol min(-1) nmol(-1) P450 and apparent Km values of 0.18 and 0.15 mM and (-)-fenchone 6-endo-hydroxylation with Vmax values of 1.26 and 5.33nmolmin(-l) nmol(-1) P450 with apparent Km values of 0.29 and 0.26mM. (-)-Fenchone 10-hydroxylation was catalysed by CYP2B6 with Km and Vmax values of 0.2 mM and 10.66 nmol min(-1) nmol(-1) P450, respectively. 相似文献
10.
Tatsuki Fukami Miki Nakajima Eriko Higashi Hiroyuki Yamanaka Haruko Sakai Howard L McLeod Tsuyoshi Yokoi 《Drug metabolism and disposition》2005,33(8):1202-1210
Genetic polymorphisms of CYP2A6 gene are known as a causal factor of the interindividual differences in nicotine metabolism. We found three novel CYP2A6 alleles. The CYP2A6(*)18A allele has a single nucleotide polymorphism (SNP) of A5668T (A1175T, Y392F) in exon 8. The CYP2A6(*)18B allele has synonymous SNPs of G51A (G51A), T5684C (T1191C), and T5702C (T1209C) in addition to A5668T (A1175T, Y392F). The CYP2A6(*)19 allele has the SNPs of A5668T (A1175T, Y392F), T6354C (intron 8), and T6558C (T1412C, I471T) as well as the conversion with the CYP2A7 sequence in the 3'-untranslated region, in which the latter two changes correspond to CYP2A6(*)7. Ethnic differences in the frequencies of these alleles were observed between whites, African-Americans, Japanese, and Koreans. Wild or variant CYP2A6 (CYP2A6(*)18, CYP2A6(*)19, and CYP2A6(*)7) were expressed in Escherichia coli. For coumarin 7-hydroxylation and 5-fluorouracil formation from tegafur, the K(m) values were increased, and V(max) values were decreased in CYP2A6.18 compared with those in CYP2A6.1, resulting in decreased clearance to 50 and 35% of that of the wild type, respectively. The K(m) and V(max) values for nicotine C-oxidation were both increased, resulting in no change of clearance. In CYP2A6.19, the effects on the coumarin 7-hydroxylation and 5-fluorouracil formation (increased K(m) and decreased V(max)) were prominent, resulting in decreased clearance to 8% of those of the wild type. For nicotine C-oxidation, the K(m) and V(max) values were both decreased, resulting in decreased clearance to 30% of that of the wild type. The changes of the kinetics in CYP2A6.19 were similar to those in CYP2A6.7. In vivo nicotine metabolism was evaluated in whites (n = 56) and Koreans (n = 40). Although the CYP2A6(*)18 and CYP2A6(*)19 alleles were found only heterozygously, a subject with CYP2A6(*)7/CYP2A6(*)19 showed a lower cotinine/nicotine ratio of the plasma concentration compared with homozygotes of the CYP2A6(*)1A, supporting the in vitro results that the CYP2A6(*)19 allele leads to decreased enzymatic activity. 相似文献
11.
Benjamin J Davies Janet K Coller Andrew A Somogyi Robert W Milne Benedetta C Sallustio 《Drug metabolism and disposition》2007,35(1):128-138
The cytochrome P450 (P450)-mediated 4-monohydroxylations of the individual enantiomers of the racemic antianginal agent perhexiline (PHX) were investigated in human liver microsomes (HLMs) to identify stereoselective differences in metabolism and to determine the contribution of the polymorphic enzyme CYP2D6 and other P450s to the intrinsic clearance of each enantiomer. The cis-, trans1-, and trans2-4-monohydroxylation rates of (+)- and (-)-PHX by human liver microsomes from three extensive metabolizers (EMs), two intermediate metabolizers (IMs), and two poor metabolizers (PMs) of CYP2D6 were measured with a high-performance liquid chromatography assay. P450 isoform-specific inhibitors, monoclonal antibodies directed against P450 isoforms, and recombinantly expressed human P450 enzymes were used to define the P450 isoform profile of PHX 4-monohydroxylations. The total in vitro intrinsic clearance values (mean +/- S.D.) of (+)- and (-)-PHX were 1376 +/- 330 and 2475 +/- 321, 230 +/- 225 and 482 +/- 437, and 63.4 +/- 1.6 and 54.6 +/- 1.2 microl/min/mg for the EM, IM, and PM HLMs, respectively. CYP2D6 catalyzes the formation of cis-OH-(+)-PHX and trans1-OH-(+)-PHX from (+)-PHX and cis-OH-(-)-PHX from (-)-PHX with high affinity. CYP2B6 and CYP3A4 each catalyze the trans1- and trans2-4-monohydroxylation of both (+)- and (-)-PHX with low affinity. Both enantiomers of PHX are subject to significant polymorphic metabolism by CYP2D6, although this enzyme exhibits distinct stereoselectivity with respect to the conformation of metabolites and the rate at which they are formed. CYP2B6 and CYP3A4 are minor contributors to the intrinsic P450-mediated hepatic clearance of both enantiomers of PHX, except in CYP2D6 PMs. 相似文献
12.
CYP2A5/CYP2A6 expression in mouse and human hepatocytes treated with various in vivo inducers. 总被引:3,自引:0,他引:3
M T Donato P Viitala C Rodriguez-Antona A Lindfors J V Castell H Raunio M J Gómez-Lechón O Pelkonen 《Drug metabolism and disposition》2000,28(11):1321-1326
Induction of coumarin 7-hydroxylation, catalyzed by CYP2A5 in mice and CYP2A6 in humans by various known in vivo murine inducers and modifiers, was compared in human and mouse hepatocytes in culture. Phenobarbital and rifampicin were efficient inducers (up to 10-fold induction) after 48-h treatment in murine cultured hepatocytes, whereas the enzyme activity in human hepatocytes was much more refractory to induction. However, a prolongation of incubation time to 72 h in human hepatocytes led to a modest restoration of inducibility by phenobarbital. Of the three porphyrinogenic inducers studied, griseofulvin induced the murine enzyme efficiently, but not the human enzyme, whereas aminotriazole and thioacetamide had no effect on either species. Pyrazole produced substantial induction in both human and murine hepatocytes, whereas cobalt chloride, which is also an in vivo inducer of the mouse enzyme, had no effect. Clofibric acid, an in vivo depressor of coumarin 7-hydroxylase, also depressed hepatocyte activities. In both murine and human hepatocytes, changes in CYP2A5/6 mRNA levels correlated roughly with enzyme changes, except in the case of cobalt chloride, which increased mRNA levels despite a lack of effect on enzyme activity. In general, human and mouse hepatocytes gave a similar response to CYP2A inducers. However, some differences were found, which means that, although CYP2A isozymes are probably regulated in a similar manner in both species, it is necessary to be cautious before extrapolating to human the results found in mouse models. 相似文献
13.
Veiga MI Asimus S Ferreira PE Martins JP Cavaco I Ribeiro V Hai TN Petzold MG Björkman A Ashton M Gil JP 《European journal of clinical pharmacology》2009,65(4):355-363
Aim The aim of this study was to obtain pharmacogenetic data in a Vietnamese population on genes coding for proteins involved
in the elimination of drugs currently used for the treatment of malaria and human immunodeficiency virus/acquired immunodeficiency
syndrome.
Method The main polymorphisms on the cytochrome P450 (CYP) genes, CYP2A6, CYP2B6, CYP2C19, CYP2D6, CYP3A4 and CYP3A5, and the multi-drug resistance 1 gene (MDR1) were genotyped in 78 healthy Vietnamese subjects. Pharmacokinetic metrics were available for CYP2A6 (coumarin), CYP2C19
(mephenytoin), CYP2D6 (metoprolol) and CYP3As (midazolam), allowing correlations with the determined genotype.
Results In the CYP2 family, we detected alleles CYP2A6*4 (12%) and *5 (15%); CYP2B6*4 (8%), *6 (27%); CYP2C19*2 (31%) and *3 (6%); CYP2D6*4, *5, *10 (1, 8 and 44%, respectively). In the CYP3A family, CYP3A4*1B was detected at a low frequency (2%), whereas CYP3A5 *3 was detected at a frequency of 67%. The MDR1 3435T allele was present with a prevalence of 40%. Allele proportions in our cohort were compared with those reported for
other Asian populations. CYP2C19 genotypes were associated to the S-4′-OH-mephenytoin/S-mephenytoin ratio quantified in plasma
4 h after intake of 100 mg mephenytoin. While CYP2D6 genotypes were partially reflected by the α-OH-metroprolol/metoprolol
ratio in plasma 4 h after dosing, no correlation existed between midazolam plasma concentrations 4 h post-dose and CYP3A genotypes.
Conclusions The Vietnamese subjects of our study cohort presented allele prevalences in drug-metabolising enzymes that were generally
comparable with those reported in other Asian populations. Deviations were found for CYP2A6*4 compared to a Chinese population (12 vs. 5%, respectively; P = 0.023), CYP2A6*5 compared with a Korean population (15 vs. <1%, respectively; P < 0.0001), a Malaysian population (1%; P < 0.0001) and a Chinese population (1%; P < 0.0001); CYP2B6*6 compared with a Korean population (27 vs. 12%; P = 0.002) and a Japanese population (16%; P = 0.021). Pharmacokinetic metrics versus genotype analysis reinforces the view that the predictive value of certain globally
common variants (e.g. CYP2D6 single nucleotide polymorphisms) should be evaluated in a population-specific manner. 相似文献
14.
Coumarin 7-hydroxylation is catalysed by a high-affinity CYP2A6 enzyme in human liver microsomes. CYP2A6 is the only enzyme catalysing this reaction and consequently the formation of 7-hydroxycoumarin can be used as 'an in vitro and in vivo probe' for CYP2A6. CYP2A6 is a major contributor to the oxidative metabolism of nicotine and cotinine, and it also contributes, to a larger or smaller extent, to the metabolism of a few pharmaceuticals (e.g. fadrozole), nitrosamines, other carcinogens (e.g. aflatoxin B1) and a number of coumarin-type alkaloids. CYP2A6 may be inducible by antiepileptic drugs and it is decreased in alcohol-induced severe liver cirrhosis. Several mutated or deleted CYP2A6 alleles have been characterized. Although CYP2A6 represent up to 15% of human microsomes P450 proteins, it is still one of the less well characterised cytochrome P450 enzymes. 相似文献
15.
Competitive inhibition of coumarin 7-hydroxylation by pilocarpine and its interaction with mouse CYP 2A5 and human CYP 2A6. 总被引:2,自引:0,他引:2 下载免费PDF全文
T. Kinonen M. Pasanen J. Gynther A. Poso T. Jrvinen E. Alhava R. O. Juvonen 《British journal of pharmacology》1995,116(6):2625-2630
1. We have shown earlier that pilocarpine strongly inhibits mouse and human liver coumarin 7-hydroxylase activity of CYP 2A and pentoxyresorufin O-deethylase activity of CYP 2B in vitro. Since pilocarpine, like coumarin, contains a lactone structure we have studied in more detail its inhibitory potency on mouse and human liver coumarin 7-hydroxylation. 2. Pilocarpine was a competitive inhibitor of coumarin 7-hydroxylase in vitro both in mouse and human liver microsomes although it was not a substrate for CYP 2A5. Ki values were similar, 0.52 +/- 0.22 microM in mice and 1.21 +/- 0.51 microM in human liver microsomes. 3. Pilocarpine induced a type II difference spectrum in mouse, human and recombinant CYP 2A5 yeast cell microsomes, with Ka values of 3.7 +/- 1.6, 1.6 +/- 1.1 and 1.5 +/- 0.1 microM, respectively. 4. Increase in pH of the incubation medium from pH 6 to 7.5 increased the potency of inhibition of coumarin 7-hydroxylation by pilocarpine. 5. Superimposition of pilocarpine and coumarin in such a way that their carbonyls, ring oxygens and the H-7' of coumarin and N-3 of pilocarpine overlap yielded a common molecular volume of 82%. 6. The results indicate that pilocarpine is a competitive inhibitor and has a high affinity for mouse CYP 2A5 and human CYP 2A6. In addition the immunotype nitrogen of pilocarpine is coordinated towards the haem iron in these P450s. 相似文献
16.
CF Samer Y Daali M Wagner G Hopfgartner CB Eap MC Rebsamen MF Rossier D Hochstrasser P Dayer JA Desmeules 《British journal of pharmacology》2010,160(4):907-918
Background and purpose:
There is high interindividual variability in the activity of drug-metabolizing enzymes catalysing the oxidation of oxycodone [cytochrome P450 (CYP) 2D6 and 3A], due to genetic polymorphisms and/or drug–drug interactions. The effects of CYP2D6 and/or CYP3A activity modulation on the pharmacokinetics of oxycodone remains poorly explored.Experimental approach:
A randomized crossover double-blind placebo-controlled study was performed with 10 healthy volunteers genotyped for CYP2D6 [six extensive (EM), two deficient (PM/IM) and two ultrarapid metabolizers (UM)]. The volunteers randomly received on five different occasions: oxycodone 0.2 mg·kg−1 and placebo; oxycodone and quinidine (CYP2D6 inhibitor); oxycodone and ketoconazole (CYP3A inhibitor); oxycodone and quinidine+ketoconazole; placebo. Blood samples for plasma concentrations of oxycodone and metabolites (oxymorphone, noroxycodone and noroxymorphone) were collected for 24 h after dosing. Phenotyping for CYP2D6 (with dextromethorphan) and CYP3A (with midazolam) were assessed at each session.Key results:
CYP2D6 activity was correlated with oxymorphone and noroxymorphone AUCs and Cmax (−0.71 < Spearman correlation coefficient ρs < −0.92). Oxymorphone Cmax was 62% and 75% lower in PM than EM and UM. Noroxymorphone Cmax reduction was even more pronounced (90%). In UM, oxymorphone and noroxymorphone concentrations increased whereas noroxycodone exposure was halved. Blocking CYP2D6 (with quinidine) reduced oxymorphone and noroxymorphone Cmax by 40% and 80%, and increased noroxycodone AUC∞ by 70%. Blocking CYP3A4 (with ketoconazole) tripled oxymorphone AUC∞ and reduced noroxycodone and noroxymorphone AUCs by 80%. Shunting to CYP2D6 pathway was observed after CYP3A4 inhibition.Conclusions and implications:
Drug–drug interactions via CYP2D6 and CYP3A affected oxycodone pharmacokinetics and its magnitude depended on CYP2D6 genotype. 相似文献17.
Tushar T Vinod T Rajan S Shashindran C Adithan C 《Basic & clinical pharmacology & toxicology》2007,100(4):269-272
Honey is a common food supplement but not many studies have studied honey and drug interaction. This study investigates the influence of 7 days of honey administration on the activity of CYP3A4, CYP2D6 and CYP2C19 drug-metabolizing enzymes in healthy volunteers by using appropriate biomarker and probe drugs. A within-group pharmacokinetic study was done in 12 healthy volunteers. Urine samples (0-8 hr) were collected after administration of 30 mg of oral dextromethorphan (probe drug for CYP2D6) for analysis of dextromethorphan and dextrorphan. A plasma sample (4 hr) was collected after administration of 200 mg of oral proguanil (probe drug for CYP2C19) for the analysis of proguanil and cycloguanil. Urine samples (0-24 hr) were collected for the analysis of 6beta-hydroxycortisol (biomarker for CYP3A4). The volunteers were administered honey for 7 days. Subsequently blood and urine samples were collected after drug dosing as before. These samples were analysed for drug and metabolite concentrations in urine and plasma using high performance liquid chromatography method. Seven days of honey administration resulted in statistically significant increase in 24-hr urinary excretion of 6beta-hydroxycortisol. However, the metabolic ratios of dextromethorphan and proguanil were not significantly altered after 7 days of honey administration. Honey obtained from Western Ghats of southern India may induce CYP3A4 enzyme activity but not CYP2D6 and CYP2C19 enzyme activities. 相似文献
18.
Simon E. Ball Dennis Ahern Joann Scatina & John Kao 《British journal of clinical pharmacology》1997,43(6):619-626
Aims In order to anticipate drug-interactions of potential clinical significance the ability of the novel antidepressant, venlafaxine, to inhibit CYP2D6 dependent imipramine and desipramine 2-hydroxylation was investigated in human liver microsomes. The data obtained were compared with the selective serotonin re-uptake inhibitors, fluoxetine, sertraline, fluvoxamine and paroxetine. Venlafaxine’s potential to inhibit several other major P450s was also studied (CYP3A4, CYP2D6, CYP1A2).
Methods Ki values for venlafaxine, paroxetine, fluoxetine, fluvoxamine and sertraline as inhibitors of imipramine and desipramine 2-hydroxylation were determined from Dixon plots of control and inhibited rate data in human hepatic microsomal incubations. The inhibitory effect of imipramine and desipramine on liver microsomal CYP2D6 dependent venlafaxine O-demethylation was determined similarly. Venlafaxine’s IC50 values for CYP3A4, CYP1A2 CYP2C9 were determined based on inhibition of probe substrate activities (testosterone 6β-hydroxylation, ethoxyresorufin O-dealkylase and tolbutamide 4-hydroxylation, respectively).
Results Fluoxetine, paroxetine, and fluvoxamine were potent inhibitors of imipramine 2-hydroxylase activity (Ki values of 1.6±0.8, 3.2±0.8 and 8.0±4.3 μm, respectively; mean±s.d., n=3), while sertraline was less inhibitory (Ki of 24.7±8.9 μm ). Fluoxetine also markedly inhibited desipramine 2-hydroxylation with a Ki of 1.3±0.5 μm. Venlafaxine was less potent an inhibitor of imipramine 2-hydroxylation (Ki of 41.0±9.5 μm ) than the SSRIs that were studied. Imipramine and desipramine gave marked inhibition of CYP2D6 dependent venlafaxine O-demethylase activity (Ki values of 3.9±1.7 and 1.7±0.9 μm, respectively). Venlafaxine did not inhibit ethoxyresorufin O-dealkylase (CYP1A2), tolbutamide 4-hydroxylase (CYP2C9) or testosterone 6β-hydroxylase (CYP3A4) activities at concentrations of up to 1 mm.
Conclusions It is concluded that venlafaxine has a low potential to inhibit the metabolism of substrates for CYP2D6 such as imipramine and desipramine compared with several of the most widely used SSRIs, as well as the metabolism of substrates for several of the other major human hepatic P450s. 相似文献
19.
Siberian ginseng (Eleutheroccus senticosus) effects on CYP2D6 and CYP3A4 activity in normal volunteers. 总被引:3,自引:0,他引:3
Jennifer L Donovan C Lindsay DeVane Kenneth D Chavin Robin M Taylor John S Markowitz 《Drug metabolism and disposition》2003,31(5):519-522
Siberian ginseng ([SG]; Eleutherococcus senticosus) is a commonly used herbal preparation. The objective of this study was to assess in normal volunteers (n = 12) the influence of a standardized SG extract on the activity of cytochrome P450 CYP2D6 and 3A4. Probe substrates dextromethorphan (CYP2D6 activity) and alprazolam (CYP3A4 activity) were administered orally at baseline and again following treatment with SG (1 x 485 mg twice daily) for 14 days. Urinary concentrations of dextromethorphan and dextorphan were quantified, and dextromethorphan metabolic ratios (DMRs) were determined at baseline and after SG treatment. Likewise, plasma samples were collected (0-60 h) for alprazolam pharmacokinetics at baseline and after SG treatment to assess effects on CYP3A4 activity. Validated high performance liquid chromatography methods were used to quantify all compounds and relevant metabolites. There were no statistically significant differences between pre- and post-SG treatment DMRs indicating a lack of effect on CYP2D6 (P > 0.05). For alprazolam there also were no significant differences in the pharmacokinetic parameters determined by noncompartmental modeling (C(max), T(max), area under the curve, half-life of elimination) indicating that SG does not significantly induce or inhibit CYP3A4 (P > 0.05). Our results indicate that standardized extracts of SG at generally recommended doses for over-the-counter use are unlikely to alter the disposition of coadministered medications primarily dependent on the CYP2D6 or CYP3A4 pathways for elimination. 相似文献
20.
K Kobayashi S Abe M Nakajima N Shimada M Tani K Chiba T Yamamoto 《Drug metabolism and disposition》1999,27(12):1429-1433
The role of cytochrome P-450s (CYPs) in S-mephobarbital N-demethylation was investigated by using human liver microsomes and cDNA-expressed CYPs. Among the 10 cDNA-expressed CYPs studied (CYP1A1, CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1, and CYP3A4), only CYP2B6 could catalyze S-mephobarbital N-demethylation. The apparent K(m) values of human liver microsomes for S-mephobarbital N-demethylation were close to that of cDNA-expressed CYP2B6 (about 250 microM). The N-demethylase activity of S-mephobarbital in 10 human liver microsomes was strongly correlated with immunodetectable CYP2B6 levels (r = 0.920, p<.001). Orphenadrine (300 microM), a CYP2B6 inhibitor, inhibited the N-demethylase activity of S-mephobarbital in human liver microsomes to 29% of control activity. Therefore, it appears that CYP2B6 mainly catalyzes S-mephobarbital N-demethylation in human liver microsomes. 相似文献