首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To investigate the biological role of basic fibroblast growth factor (bFGF) for the development of the spinal cord we studied the in vitro and in vivo effects of this protein on survival and choline acetyltransferase (ChAT)-activity of embryonic chick and rat spinal cord neurons. In vitro, bFGF (ED50 1-2.8 ng/ml) supported the survival of embryonic neurons from the ventral part of the rat spinal cord (ventral spinal cord, vsc), including motoneurons. Addition of bFGF (100 ng/ml) increased the ChAT-activity in embryonic chick vsc cultures to 150% as compared to untreated cultures (100%). The effect of bFGF was dose-dependent. In vivo-application of bFGF resulted in a similar increase of ChAT-activity in chick spinal cord. Since bFGF stimulates the ChAT-activity of spinal cord neurons in vivo and in vitro we therefore conclude that this protein may have a physiological function for the transmitter development of cholinergic spinal cord neurons.  相似文献   

2.
A monoclonal antibody to choline acetyltransferase (ChAT) has been used in an immunocytochemical study of the postnatal development of ChAT-containing neurons in cervical and thoracic spinal cord. Specimens from rat pups ranging in age from 1 to 28 days postnatal (dpn) were studied and compared with adult specimens (Barber et al., '84). The development of established cholinergic neurons, the somatic motoneurons and sympathetic preganglionic cells, has been described as has that of previously unidentified ChAT-positive neurons in the dorsal, intermediate, and central gray matter. Cell bodies of somatic and visceral motoneurons contained moderate amounts of ChAT-positive reaction product at birth that gradually increased in intensity until 14-21 dpn. The most intensely stained ChAT-positive neurons in 1-5-dpn specimens were named partition cells because this cell group extended from the central gray to an area dorsal to the lateral motoneurons, and thereby divided the spinal cord into dorsal and ventral halves. Partition cells were medium to large in size with 5-7 primary dendrites, and axons that, in fortuitous sections, could be traced into the ventrolateral motoneuron pools, the ventral funiculi, or the ventral commissure. Small ChAT-positive cells clustered around the central canal and scattered in laminae III-VI of the dorsal horn were detectable at birth. These neurons were moderately immunoreactive at 11-14 dpn and intensely ChAT positive by 21 dpn. The band of ChAT-positive terminal-like structures demonstrated in lamina III of adult specimens (Barber et al., '84) was first visible in 11-14-dpn specimens. By 28 dpn, both laminae I and III contained punctate bands that approximated the density of those observed in adult spinal cord. This investigation has demonstrated ChAT within individual neurons of developing spinal cord, and has identified a group of neurons, the partition cells, that exhibit intense ChAT-positive immunoreactivity earlier than any other putative cholinergic cells in spinal cord, including motoneurons. Another important observation has been that each ChAT-positive neuronal type achieves adult levels of staining intensity at different times during development. A likely explanation for this differential staining is that various groups of neurons acquire their mature concentration of ChAT molecules at different developmental stages. In turn, this may correlate with the maturation of cholinergic synaptic activity manifest by individual cells or groups of neurons.  相似文献   

3.
Guinea pig antiserum specific for purified bovine choline acetyltransferase has been shown to cross-react with rabbit enzyme. We used the peroxidase-antiperoxidase immunohistochemical method to demonstrate the localization of choline acetyltransferase in formalin-fixed and paraffin-embedded sections of rabbit spinal cord and cerebellum. In the spinal cord, in agreement with our and others' previous results using immunofluorescent techniques, choline acetyltransferase was found in the cell bodies of the ventral horn motor neurons. In the cerebellum, choline acetyltransferase was localized exclusively in the mossy fibers and the glomeruli of the cerebellar folia. The immunohistochemical findings in the cerebellum reveal the morphological detail of cholinergic axons and their terminals. The results are consistent with published biochemical data on the cerebellar distribution of choline acetyltransferase.  相似文献   

4.
Locus coeruleus (LC) explants were co-cultured with dissociated spinal neurons of mice. Nerve fibers exhibiting catecholamine fluorescence radiated from the explants and frequently invested spinal cord (SC) neurons close to the explants. Electrical stimulation of the explant and iontophoretic application of norepinephrine evoked a spectrum of slow depolarizing, hyperpolarizing, and biphasic responses in the SC cells. The responses to LC stimulation and to application of norepinephrine were usually similar in a given cell. The depolarizing responses were associated with an increase in apparent input resistance and pharmacologic tests indicated that the responses were mediated by alpha-receptors. Neurons in regions innervated by catecholamine-containing fibers usually gave depolarizing responses to LC stimulation and such neurons had a very high probability of exhibiting depolarizing responses to applied norepinephrine. It would appear that either locus coeruleus explants favored the survival of cells with alpha-receptors or expression of these receptors in SC neurons was induced by innervation of the neurons by locus coeruleus axons.  相似文献   

5.
Summary Choline acetyltransferase (CAT) activity was measured in various regions of rat spinal cord. In the ventral cord, enzyme activity was 2 to 3 times higher than in dorsal cord. In dorsal spinal cord, there was a gradient in enzyme activity, increasing CAT activity being observed in more caudal segments. In autonomic regions intermediate levels were measured. Bilateral transection of the sciatic nerve reduced CAT activity in the ventral horn of lumbar spinal cord, whereas CAT activity in the dorsal horn remained unchanged. Capsaicin pretreatment had no effect on CAT activity in any spinal cord region. Although a similar distribution of cholinergic neurones and primary afferent endings in rat dorsal spinal cord was described, no conclusive statement as to a possible functional interaction can be given.  相似文献   

6.
Dissociated 4-day (stage 23) chick embryo lumbar cord cells were cultured at low or high cell densities for 1 or 5 days in the presence or absence of added spinal neuronotrophic factor (supplied as RN22 Schwannoma conditioned medium, RCM). In low density, 1-day cultures neuronal survival was dependent on added RCM whereas by 5 days no neurons survived, even in the presence of RCM. In high density 1-day cultures a substantial neuronal population could survive even without added RCM and a large proportion of this neuronal population would survive for 5 days. When conditioned media from high density lumbar cord cultures was supplied to low density unsupplemented cultures, a similar level of 5-day neuronal survival resulted. However, no neurons survived in RCM-supplemented 5-day high density cultures, indicating the presence in RCM of a material toxic for the neurons. Both the RCM and the high density lumbar culture-conditioned medium supported considerable choline acetyltransferase activity indicating the presence within these cultures of motoneurons.  相似文献   

7.
Choline acetyltransferase (ChAT) activity in developing spinal cord explants in vitro is shown to be dependent on the presence of co-cultured immature limb tissue. Frog tadpole spinal cord explants grown on collagen or polylysine expressed stage-appropriate levels of ChAT activity only when in the presence of the limb mesenchyme target. Neither skeletal muscle nor polylysine, both of which enhance neurite growth accompanied by increases in cord protein, were capable of maintaining the level of ChAT activity characteristic of these spinal cords in vivo. The results demonstrate that developmentally significant levels of ChAT can be maintained in vitro under appropriate conditions that may act in part through the maintenance of cholinergic motor neurons.  相似文献   

8.
The topography of choline acetyltransferase immunoreactivity was studied in the rat spinal cord with a monoclonal antibody. Cholinergic fibers were most prominent in lamina III of the dorsal horn and originated from cholinergic neurons within the spinal cord. Lamina X, which was rich in cholinergic neurons and fibers, provided cholinergic interconnections between the dorsal, intermediate and ventral gray. Within the ventral gray, choline acetyltransferase immunoreactive boutons were found on motor neurons. This study suggests that the cholinergic innervation of the spinal cord arises from neurons intrinsic to the spinal cord. The cholinergic neurons within the spinal cord may provide several, overlapping levels of regulation of spinal cord neurons.  相似文献   

9.
10.
11.
A comparative study on the changes of the acetylcholinesterase activity (AChE) and of choline acetyltransferase (ChAT)- and GABA-like immunoreactivity (LI) has been performed in the ventral horn cells of the spinal cord of white rats 1, 2 and 3 weeks after transection of the right sciatic nerve. For the visualization of the AChE the method of Karnovsky and Roots (1964) was used. ChAT-LI was demonstrated by means of the avidin-biotin-peroxidase complex method (Hsu et al., 1981), whereas GABA-LI was localized using the PAP-method of Sternberger et al. (1970). In the control rats AChE-activity was observed on the cellular membrane, weaker in the cytoplasm of the perikarya and the proximal processes of the motoneurons; a pericellular localization of the reaction product was also established. ChAT-like immunoreactivity was mainly observed in the cytoplasm of the perikarya and the cellular processes, whereas GABA-like was most intensive in the nuclei of a number of motoneurons and in the more distal parts of their dendrites; the staining intensity of the perikaryal cytoplasm was weaker. During chromatolysis a progressive decrease of the staining intensity of the reactions for all the 3 substances was observed. In some neurons there was a total loss of the immunoreactivity. These results suggest that during chromatolysis: 1. the production of acetylcholine and GABA decreases; 2. the GABA which coexists within some cholinergic motoneurons may be expressed by these cells and 3. the AChE activity may also in the future be used as a marker of the cholinergic system of the anterior horn cells of the spinal cord.  相似文献   

12.
13.
We report that choline acetyltransferase (ChAT) activity and neuronal survival were enhanced in rat septal neurons cocultured with hippocampal neurons. The enhancement of ChAT activity also occurred as a result of the addition of hippocampal conditioned medium (HpCM). When septal neurons from embryonic day 17 (E17) rats were cocultured with hippocampal neurons, ChAT activity was increased 2-fold compared with homogeneous culture of septal neurons. By contrast, no increase in ChAT activity was observed in coculture of septal and neocortical neurons. Treatment with HpCM obtained from cultured E19 rat hippocampal neurons enhanced the ChAT activity of E17 rat septal neurons. The enhancement of ChAT activity caused by coculture with hippocampal neurons and that caused by the addition of HpCM were not blocked by the addition of anti-nerve growth factor (NGF) antibody, suggesting that NGF, which is known to increase the ChAT activity of septal neurons both in vivo and in vitro, did not participate in the increase of ChAT activity. These findings indicate that possible target-derived neurotrophic factor(s), other than NGF, from hippocampal neurons enhance(s) the ChAT activity of septal neurons.  相似文献   

14.
The cellular distribution of choline acetyltransferase (ChAT) mRNA within the adult rat central nervous system was evaluated using in situ hybridization. In forebrain, hybridization of a 35S-labeled rat ChAT cRNA densely labeled neurons in the well-characterized basal forebrain cholinergic system including the medial septal nucleus, diagonal bands of Broca, nucleus basalis of Meynert and substantia innominata, as well as in the striatum, ventral pallidum, and olfactory tubercle. A small number of lightly labeled neurons were distributed throughout neocortex, primarily in superficial layers. No cellular labeling was detected in hippocampus. In the diencephalon, dense hybridization labeled neurons in the ventral aspect of the medial habenular nucleus whereas cells in the lateral hypothalamic area and supramammillary region were more lightly labeled. Hybridization was most dense in neurons of the motor and autonomic cranial nerve nuclei including the oculomotor, Edinger-Westphal, and trochlear nuclei of the midbrain, the abducens, superior salivatory, trigeminal, facial and accessory facial nuclei of the pons, and the hypoglossal, vagus, and solitary nuclei and nucleus ambiguus of the medulla. In addition, numerous cells in the pedunculopontine and laterodorsal tegmental nuclei, the ventral nucleus of the lateral lemniscus, the medial and lateral divisions of the parabrachial nucleus, and the medial and lateral superior olive were labeled. Occasional labeled neurons were distributed in the giantocellular, intermediate, and parvocellular reticular nuclei, and the raphe magnus nucleus. In the medulla, light to moderately densely labeled cells were scattered in the nucleus of Probst's bundle, the medial vestibular nucleus, the lateral reticular nucleus, and the raphe obscurus nucleus. In spinal cord, the cRNA densely labeled motor neurons of the ventral horn, and cells in the intermediolateral column, surrounding the central canal, and in the spinal accessory nucleus. These results are in good agreement with reports of the immunohistochemical localization of ChAT and provide further evidence that cholinergic neurons are present within neocortex but not hippocampus.  相似文献   

15.
Neurotransmitter L-norepinephrine increased up to 8-fold the activity of choline acetyltransferase (CAT), the enzyme responsible for the synthesis of acetylcholine, in mouse spinal cord cells in culture grown for several days. The increase of CAT activity by L-norepinephrine was mediated by a beta-adrenergic receptor in the same manner as the response of intracellular cyclic AMP. Derivatives of cyclic AMP caused an increase of CAT activity to the level similar to that of L-norepinephrine. A cyclic AMP phosphodiesterase inhibitor, 3-isobutyl-1-methyl xanthine (IBMX), enhanced the elevation of CAT activity by L-norepinephrine. These results indicate that L-norepinephrine stimulated the synthesis of CAT molecules via the action of cyclic AMP. The pretreatment of cells with 5-fluoro-2'-deoxyuridine (FdU) markedly diminished the numbers of satellite cells and, in parallel, the responses of CAT activity to L-norepinephrine. The increase of cyclic AMP by L-norepinephrine was also reduced by pretreatment of the cells with FdU. In contrast, co-cultures of spinal cord with heart muscle markedly (30-fold) stimulated CAT activity both with and without pretreatment of FdU. The addition of L-norepinephrine and co-cultures with heart muscle showed an additive effect. These observations indicate that the stimulatory effect of L-norepinephrine on CAT activity is mostly, if not only, mediated via the interaction with satellite cells, and that the increase of CAT activity by L-norepinephrine is based on a mechanism different from that of co-cultures with heart muscle cells.  相似文献   

16.
We have studied the effects of ciliary neuronotrophic factor (CNTF) and nerve growth factor (NGF) on cultures of E14 rat spinal cord cells maintained for 7 days. The trophic factors were supplied at the day of seeding and every other day thereafter. Treatments with CNTF (human recombinant or purified from rat sciatic nerve, 100 TU/ml) resulted after 7 days in an increase, relative to control cultures, of: (i) the total number of neurons (identified by neurofilament protein and neuron-specific enolase immunostaining) that were not stained with choline, acetyltransferase (ChAT) and low affinity nerve growth factor receptor (LNGFR) antibodies; (ii) the number of motoneurons (0.5% of the neuronal population) as identified by size (greater than 25 microns), morphology and immunostaining for ChAT and LNGFR; and (iii) a population of small- to medium-sized (less than 25 microns), ChAT- and LNGFR-positive neurons, representing 5-10% of the total neuronal population. NGF treatments (mouse submaxillary beta NGF; 10-3000 TU/ml) were without effect on all 3 neuronal populations. Experiments in which CNTF administration was delayed revealed that the population of ChAT- and LNGFR-negative neurons and the population of motoneurons, were both dependent on CNTF for their survival. The third population, small ChAT and LNGFR-positive neurons, was not dependent on CNTF for survival but was induced by CNTF to express its two markers. These observations indicate that CNTF is a neuronotrophic factor for motoneurons, but that the effect of CNTF is not restricted to that cell population. In addition to its survival promoting effect, CNTF has also a regulatory role on the expression of ChAT and LNGFR for some spinal cord neurons.  相似文献   

17.
Rabies virus multiplication was investigated in cultured primary rat myotubes and neurons. The susceptibility of these two cell types to fixed rabies challenge virus strain (CVS) was monitored by fluorescence and virus titration. Differentiated rat myotubes were susceptible to rabies virus infection, and showed an increasing accumulation of viral material from day one to day four. However, these cells did not release infective viral particles, nor did they accumulate infectious virions in the cytoplasm. In contrast, infected neurons released large amounts of infectious particles. Electron microscopy observation of infected myotubes showed minor alterations and the presence of typical viral inclusions in the cytoplasm without mature virions assembling viral membranes. Competition binding experiments show that alpha-bungarotoxin inhibits rabies virus infection from 10(-5) to 10(-7) M, whereas lower toxin concentrations failed to have any effect. These data do not confirm the hypothesis of a fixed rabies virus amplification step at the site of the viral entry. On the other hand, the high susceptibility of peripheral neurons to rabies virus infection is an argument for the direct uptake of virions by these cells. The restrictive viral multiplication in the myotubes is an alternative explanation for the local persistence of rabies virus at the site of inoculation.  相似文献   

18.
Nerve growth factor (NGF) is a neuronotrophic protein. Its effects on developing peripheral sensory and sympathetic neurons have been extensively characterized, but it is not clear whether NGF plays a role during the development of central nervous system neurons. To address this point, we examined the effect of NGF on the activity of neurotransmitter enzymes in several brain regions. Intracerebroventricular injections of highly purified mouse NGF had a marked effect on the activity of choline acetyltransferase (ChAT), a selective marker of cholinergic neurons. NGF elicited prominent increases in ChAT activity in the basal forebrain of neonatal rats, including the septum and a region which contains neurons of the nucleus basalis and substantia innominata. NGF also increased ChAT activity in the hippocampus and neocortex, terminal regions for the fibers of basal forebrain cholinergic neurons. In analogy with the response of developing peripheral neurons, the NGF effect was shown to be selective for basal forebrain cholinergic cells and to be dose-dependent. Furthermore, septal neurons closely resembled sympathetic neurons in the time course of their response to NGF. These observations suggest that endogenous NGF does play a role in the development of basal forebrain cholinergic neurons.  相似文献   

19.
Activities of choline acetyltransferase (ChAT) and acetylcholinesterase (AChE) were measured in the dorsal spinal ganglia, the dorsal spinal root and the spinal cord of the normal adult dogs and following one side transection of the sciatic nerve in the intervals 5, 10, 15 and 21 days respectively. In the spinal ganglia of normal dogs very low ChAT activity was found; it was three orders lower than AChE activity. Within 5-10 days after the nerve section ChAT activity increased almost five times in the spinal ganglia while AChE activity remained without any changes. The elevation of ChAT activity correlated with that in the dorsal roots at 15th day and in the dorsal spinal cord at 21st day after the nerve section. Histochemical "direct-colouring" thiocholine method showed AChE-positive cells were distributed mainly in the peripheral area of the spinal ganglia. The spinal ganglion cells ranged from intensely AChE-positive to AChE-negative without correlation between cell size and AChE activity. The ChAT activity changes were evaluated in correlation to the cholinergic function in the spinal ganglion neurons.  相似文献   

20.
We have previously described a graded spinal cord injury model in the rat. Mild contusive injury results in an initially severe functional deficit that is attenuated over time to reveal the mild chronic deficits that characterize this injury. In this study, we have shown that mild contusive injury also results in a significant decrease in choline acetyltransferase (ChAT) activity during the first week after injury. At 1 week ChAT activity is maximally reduced at the site of the contusion and is also significantly lowered throughout the spinal cord. ChAT activity then rebounds during the following 3 weeks, partially at the injury site where there is considerable loss of gray and white matter, and completely in rostral and caudal cord segments. The rebound in ChAT activity is temporally associated with the partial recovery of function. Further, the changes in ChAT activity after injury are mirrored by changes in nerve growth factor-like immunoreactivity (NGF-LI) as determined by a specific two-site ELISA. NGF-LI increases significantly after injury, reaching a maximum at 7 days after contusion and at the injury site. However, levels of NGF-LI are also significantly increased throughout the spinal cord. NGF-LI then decreases at 2 and 4 weeks as ChAT activity rebounds. Further experiments will be needed to examine the possibility of a role for NGF in promoting the recovery of function after spinal cord injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号