首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Linear plasmid lp54 is one of the most highly conserved and differentially expressed elements of the segmented genome of the Lyme disease spirochete Borrelia burgdorferi. We previously reported that deletion of a 4.1-kb region of lp54 (bba01 to bba07 [bba01-bba07]) led to a slight attenuation of tick-transmitted infection in mice following challenge with a large number of infected ticks. In the current study, we reduced the number of ticks in the challenge to more closely mimic the natural dose and found a profound defect in tick-transmitted infection of the bba01-bba07 mutant relative to wild-type B. burgdorferi. We next focused on deletion of bba03 as the most likely cause of this mutant phenotype, as previous studies have shown that expression of bba03 is increased by culture conditions that simulate tick feeding. Consistent with this hypothesis, we demonstrated increased expression of bba03 by spirochetes in fed relative to unfed ticks. We also observed that a bba03 deletion mutant, although fully competent by itself, did not efficiently infect mice when transmitted by ticks that were simultaneously coinfected with wild-type B. burgdorferi. These results suggest that BBA03 provides a competitive advantage to spirochetes carrying this protein during tick transmission to a mammalian host in the natural infectious cycle.  相似文献   

2.
Borrelia burgdorferi preferentially induces selected genes in mice or ticks, and studies suggest that ospD is down-regulated in response to host-specific signals. We now directly show that ospD expression is generally elevated within Ixodes scapularis compared with mice. We then assessed the importance of OspD throughout the spirochete life cycle by generating OspD-deficient B. burgdorferi and examining the mutant in the murine model of tick-transmitted Lyme borreliosis. The lack of OspD did not influence B. burgdorferi infectivity in mice or the acquisition of spirochetes by I. scapularis. OspD adhered to tick gut extracts in vitro, and the OspD-deficient B. burgdorferi strain had a threefold decrease in colonization of the tick gut in vivo. This decrease, however, did not alter subsequent spirochete transmission during a second blood meal. These data suggest that B. burgdorferi can compensate for the lack of OspD in both ticks and mice and that OspD may have a nonessential, secondary, role in B. burgdorferi persistence within I. scapularis.  相似文献   

3.
Borrelia burgdorferi, the agent of Lyme disease, causes a multisystemic illness that can affect the skin, heart, joints, and nervous system and is capable of attachment to diverse cell types. Among the host components recognized by this spirochete are fibronectin and glycosaminoglycans (GAGs). Three surface-localized GAG-binding bacterial ligands, Bgp, DbpA, and DbpB, have been previously identified, but recent studies suggested that at least one additional GAG-binding ligand is expressed on the spirochetal surface when the spirochete is adapted to the mammalian host environment. BBK32 is a surface lipoprotein that is produced during infection and that has been shown to bind to fibronectin. In this study, we show that, when BBK32 was produced from a shuttle vector in an otherwise nonadherent high-passage B. burgdorferi strain, the protein localized on the bacterial surface and conferred attachment to fibronectin and to mammalian cell monolayers. In addition, the high-passage strain producing BBK32 bound to purified preparations of the GAGs dermatan sulfate and heparin, as well as to these GAGs on the surfaces of cultured mammalian cells. Recombinant BBK32 recognized purified heparin, indicating that the bacterial attachment to GAGs was due to direct binding by BBK32. This GAG-binding activity of BBK32 is apparently independent of fibronectin recognition, because exogenous heparin had no effect on BBK32-mediated bacterial binding to fibronectin.  相似文献   

4.
The Lyme disease spirochete, Borrelia burgdorferi, is an extracellular microbe that causes persistent infection despite the development of strong immune responses against the bacterium. B. burgdorferi expresses several ligand-binding lipoproteins, including the decorin-binding proteins (Dbps) A and B, which may mediate attachment to decorin, a major component of the host extracellular matrix during murine infection. We show that B. burgdorferi was better protected in the joints and skin, two tissues with a higher decorin expression, than in the urinary bladder and heart, two tissues with a lower decorin expression, during chronic infection of wild-type mice. Targeted disruption of decorin alone completely abolished the protective niche in chronically infected decorin-deficient mice but did not affect the spirochete burden during early infection. The nature of protection appeared to be specific because the spirochetes with higher outer surface protein C expression were not protected while the protective niche seemed to favor the spirochetes with a higher dbpA expression during chronic infection. These data suggest that spirochetal DbpA may interact with host decorin during infection and such interactions could be a mechanism that B. burgdorferi uses to evade humoral immunity and establish chronic infection.  相似文献   

5.
This study demonstrates a strict temporal requirement for a virulence determinant of the Lyme disease spirochete Borrelia burgdorferi during a unique point in its natural infection cycle, which alternates between ticks and small mammals. OspC is a major surface protein produced by B. burgdorferi when infected ticks feed but whose synthesis decreases after transmission to a mammalian host. We have previously shown that spirochetes lacking OspC are competent to replicate in and migrate to the salivary glands of the tick vector but do not infect mice. Here we assessed the timing of the requirement for OspC by using an ospC mutant complemented with an unstable copy of the ospC gene and show that B. burgdorferi's requirement for OspC is specific to the mammal and limited to a critical early stage of mammalian infection. By using this unique system, we found that most bacterial reisolates from mice persistently infected with the initially complemented ospC mutant strain no longer carried the wild-type copy of ospC. Such spirochetes were acquired by feeding ticks and migrated to the tick salivary glands during subsequent feeding. Despite normal behavior in ticks, these ospC mutant spirochetes did not infect naive mice. ospC mutant spirochetes from persistently infected mice also failed to infect naive mice by tissue transplantation. We conclude that OspC is indispensable for establishing infection by B. burgdorferi in mammals but is not required at any other point of the mouse-tick infection cycle.  相似文献   

6.
Borrelia burgdorferi, a tick-borne bacterial pathogen, causes a disseminated infection involving multiple organs known as Lyme disease. Surface proteins can directly participate in microbial virulence by facilitating pathogen dissemination via interaction with host factors. We show here that a fraction of the B. burgdorferi chromosomal gene product BB0337, annotated as enolase or phosphopyruvate dehydratase, is associated with spirochete outer membrane and is surface exposed. B. burgdorferi enolase, either in a recombinant form or as a membrane-bound native antigen, displays enzymatic activities intrinsic to the glycolytic pathway. However, the protein also interacts with host plasminogen, potentially leading to its activation and resulting in B. burgdorferi-induced fibrinolysis. As expected, enolase displayed consistent expression in vivo, however, with a variable temporal and spatial expression during spirochete infection in mice and ticks. Despite an extracellular exposure of the antigen and a potential role in host-pathogen interaction, active immunization of mice with recombinant enolase failed to evoke protective immunity against subsequent B. burgdorferi infection. In contrast, enolase immunization of murine hosts significantly reduced the acquisition of spirochetes by feeding ticks, suggesting that the protein could have a stage-specific role in B. burgdorferi survival in the feeding vector. Strategies to interfere with the function of surface enolase could contribute to the development of novel preventive measures to interrupt the spirochete infection cycle and reduce the incidences of Lyme disease.  相似文献   

7.
8.
The Lyme disease spirochete, Borrelia burgdorferi, occupies both a tick vector and mammalian host in nature. Considering the unique enzootic life cycle of B. burgdorferi, it is not surprising that a large proportion of its genome is composed of hypothetical proteins not found in other bacterial pathogens. bb0238 encodes a conserved hypothetical protein of unknown function that is predicted to contain a tetratricopeptide repeat (TPR) domain, a structural motif responsible for mediating protein-protein interactions. To evaluate the role of bb0238 during mammalian infection, a bb0238-deficient mutant was constructed. The bb0238 mutant was attenuated in mice infected via needle inoculation, and complementation of bb0238 expression restored infectivity to wild-type levels. bb0238 expression does not change in response to varying culture conditions, and thus, it appears to be constitutively expressed under in vitro conditions. bb0238 is expressed in murine tissues during infection, though there was no significant change in expression levels among different tissue types. Localization studies indicate that BB0238 is associated with the inner membrane of the spirochete and is therefore unlikely to promote interaction with host ligands during infection. B. burgdorferi clones containing point mutations in conserved residues of the putative TPR motif of BB0238 demonstrated attenuation in mice that was comparable to that in the bb0238 deletion mutant, suggesting that BB0238 may contain a functional TPR domain.  相似文献   

9.
The causative agent of Lyme disease, Borrelia burgdorferi, is naturally resistant to its host's alternative pathway of complement-mediated killing. Several different borrelial outer surface proteins have been identified as being able to bind host factor H, a regulator of the alternative pathway, leading to a hypothesis that such binding is important for borrelial resistance to complement. To test this hypothesis, the development of B. burgdorferi infection was compared between factor H-deficient and wild-type mice. Factor B- and C3-deficient mice were also studied to determine the relative roles of the alternative and classical/lectin pathways in B. burgdorferi survival during mammalian infection. While it was predicted that B. burgdorferi should be impaired in its ability to infect factor H-deficient animals, quantitative analyses of bacterial loads indicated that those mice were infected at levels similar to those of wild-type and factor B- and C3-deficient mice. Ticks fed on infected factor H-deficient or wild-type mice all acquired similar numbers of bacteria. Indirect immunofluorescence analysis of B. burgdorferi acquired by feeding ticks from the blood of infected mice indicated that none of the bacteria had detectable levels of factor H on their outer surfaces, even though such bacteria express high levels of surface proteins capable of binding factor H. These findings demonstrate that the acquisition of host factor H is not essential for mammalian infection by B. burgdorferi and indicate that additional mechanisms are employed by the Lyme disease spirochete to evade complement-mediated killing.  相似文献   

10.
Previous immunological studies indicated that the Lyme disease spirochete, Borrelia burgdorferi, expresses Erp outer surface proteins during mammalian infection. We conducted analyses of Erp expression throughout the entire tick-mammal infectious cycle, which revealed that the bacteria regulate Erp production in vivo. Bacteria within unfed nymphal ticks expressed little to no Erp proteins. However, as infected ticks fed on mice, B. burgdorferi increased production of Erp proteins, with essentially all transmitted bacteria expressing these proteins. Mice infected with B. burgdorferi mounted rapid IgM responses to all tested Erp proteins, followed by strong immunoglobulin G responses that generally increased in intensity throughout 11 months of infection, suggesting continued exposure of Erp proteins to the host immune system throughout chronic infection. As naive tick larvae acquired B. burgdorferi by feeding on infected mice, essentially all transmitted bacteria produced Erp proteins, also suggestive of continual Erp expression during mammalian infection. Shortly after the larvae acquired bacteria, Erp production was drastically downregulated. The expression of Erp proteins on B. burgdorferi throughout mammalian infection is consistent with their hypothesized function as factor H-binding proteins that protect the bacteria from host innate immune responses.  相似文献   

11.
The Lyme disease spirochete Borrelia burgdorferi reduces the expression of outer surface protein C (OspC) in response to the development of an anti-OspC humoral response, leading to the hypothesis that the ability to repress OspC expression is critical for the pathogen to proceed to chronic infection. B. burgdorferi was genetically modified to constitutively express OspC by introducing an extra ospC copy fused with the borrelial flagellar gene (flaB) promoter. Such a genetic modification did not reduce infectivity or pathogenicity in severe combined immunodeficiency mice but resulted in clearance of infection by passively transferred OspC antibody. Spirochetes with constitutive ospC expression were unable to establish chronic infections in immunocompetent mice unless they had undergone very destructive mutations in the introduced ospC copy. Two escape mutants were identified; one had all 7 bp deleted between the putative ribosome-binding site and the start codon, ATG, causing a failure in translational initiation, and the other mutant had an insertion of 2 bp between nucleotides 315 and 316, resulting in a nonsense mutation at codon 108. Thus, the ability of B. burgdorferi to repress ospC expression during mammalian infection allows the pathogen to avoid clearance and to preserve the integrity of the important gene for subsequent utilization during its enzootic life cycle.  相似文献   

12.
Lyme disease is caused by the spirochete Borrelia burgdorferi. The enzootic cycle of this pathogen requires that Ixodes spp. acquire B. burgdorferi from infected wildlife reservoirs and transmit it to other uninfected wildlife. At present, there are no effective measures to control B. burgdorferi; there is no human vaccine available, and existing vector control measures are generally not acceptable to the public. However, if B. burgdorferi could be eliminated from its reservoir hosts or from the ticks that feed on them, the enzootic cycle would be broken, and the incidence of Lyme disease would decrease. We developed OspA-RTV, a reservoir targeted bait vaccine (RTV) based on the immunogenic outer surface protein A (OspA) of B. burgdorferi aimed at breaking the natural cycle of this spirochete. White-footed mice, the major reservoir species for this spirochete in nature developed a systemic OspA-specific IgG response as a result of ingestion of the bait formulation. This immune response protected white-footed mice against B. burgdorferi infection upon tick challenge and cleared B. burgdorferi from the tick vector. In performing extensive studies to optimize the OspA-RTV for field deployment, we determined that mice that consumed the vaccine over periods of 1 or 4 months developed a yearlong, neutralizing anti-OspA systemic IgG response. Furthermore, we defined the minimum number of OspA-RTV units needed to induce a protective immune response.  相似文献   

13.
14.
The establishment of Borrelia burgdorferi infection involves numerous interactions between the bacteria and a variety of vertebrate host and arthropod vector tissues. This complex process requires regulated synthesis of many bacterial proteins. We now demonstrate that these spirochetes utilize a LuxS/autoinducer-2 (AI-2)-based quorum-sensing mechanism to regulate protein expression, the first system of cell-cell communication to be described in a spirochete. The luxS gene of B. burgdorferi was identified and demonstrated to encode a functional enzyme by complementation of an Escherichia coli luxS mutant. Cultured B. burgdorferi responded to AI-2 by altering the expression levels of a large number of proteins, including the complement regulator factor H-binding Erp proteins. Through this mechanism, a population of Lyme disease spirochetes may synchronize production of specific proteins needed for infection processes.  相似文献   

15.
Borrelia burgdorferi is the tick-borne bacterium that causes the multistage inflammatory disease Lyme disease. B. burgdorferi has a reduced genome and lacks the enzymes required for de novo synthesis of purines for synthesis of RNA and DNA. Therefore, this obligate pathogen is dependent upon the tick vector and mammalian host environments for salvage of purine bases for nucleic acid biosynthesis. This pathway is vital for B. burgdorferi survival throughout its infectious cycle, as key enzymes in the purine salvage pathway are essential for the ability of the spirochete to infect mice and critical for spirochete replication in the tick. The transport of preformed purines into the spirochete is the first step in the purine salvage pathway and may represent a novel therapeutic target and/or means to deliver antispirochete molecules to the pathogen. However, the transport systems critical for purine salvage by B. burgdorferi have yet to be identified. Herein, we demonstrate that the genes bbb22 and bbb23, present on B. burgdorferi's essential plasmid circular plasmid 26 (cp26), encode key purine transport proteins. BBB22 and/or BBB23 is essential for hypoxanthine transport and contributes to the transport of adenine and guanine. Furthermore, B. burgdorferi lacking bbb22-23 was noninfectious in mice up to a dose of 1 × 10(7) spirochetes. Together, our data establish that bbb22-23 encode purine permeases critical for B. burgdorferi mammalian infectivity, suggesting that this transport system may serve as a novel antimicrobial target for the treatment of Lyme disease.  相似文献   

16.
Infection of C57BL/6 (B6) mice with the Lyme disease spirochete Borrelia burgdorferi can result in development of arthritis and carditis. B. burgdorferi induces expression of beta2/CD18 integrins, adhesion molecules that mediate the firm adhesion of leukocytes to the endothelium necessary for cellular extravasation during inflammation. The important role of beta2/CD18 integrins during extravasation suggests that these molecules play a role in the development of Lyme arthritis and carditis. The dependency of these inflammatory processes on the beta2 integrins was investigated in CD18 hypomorph mice, which express low levels of CD18. The results indicate that CD18 deficiency did not abrogate development of Lyme arthritis or carditis. Moreover, it resulted in increased severity of Lyme carditis. B. burgdorferi-infected CD18 hypomorph mice showed an increased macrophage infiltration of the heart, while they produced lower levels of borreliacidal anti-B. burgdorferi antibodies compared to wild-type mice. In accordance with these results, we demonstrate that dendritic cells from CD18 hypomorph mice secrete higher levels of monocyte/macrophage chemoattractant protein 1 (MCP-1/CCL2) in response to B. burgdorferi. Similarly, we show by real-time PCR that B. burgdorferi-infected hearts from CD18 hypomorph mice express increased levels of MCP-1 RNA compared to wild-type mice. Overall, our results indicate that beta2 integrin deficiency does not abrogate B. burgdorferi-induced inflammation; rather, it results in increased recruitment of macrophages into the B. burgdorferi-infected heart, likely due to the increased expression of MCP-1 in this tissue. Thus, beta2 integrins may play a regulatory role in B. burgdorferi-induced inflammation beyond mediating adhesion of leukocytes to the endothelium.  相似文献   

17.
The murine model of Lyme disease was used to determine the role of inflammatory induced nitric oxide (NO) during infection by the spirochete Borrelia burgdorferi. The outer surface lipoproteins of B. burgdorferi are potent stimulators of inflammatory cytokines and NO production by cultured macrophages in vitro. The addition of NO to cultures of B. burgdorferi prevents growth, suggesting a protective role of NO for the infected host. NO is also a crucial effector in some models of arthritis. Therefore, the involvement of NO in controlling B. burgdorferi infection and its participation in pathological development of arthritis were investigated. Both mildly arthritic (BALB/c) and severely arthritic (C3H/HeJ) strains of mice systemically produced high levels of NO 1 week after infection with B. burgdorferi, as determined by urinary nitrate. NO production remained high throughout the infection in BALB/c mice, while in C3H/HeJ mice NO production returned rapidly to uninfected levels. The in vivo inhibitor of the NO synthase enzyme NG-L-monomethyl arginine (LMMA) was given to mice to investigate whether decreasing NO production would alter the course of disease. LMMA effectively blocked NO production in infected mice; however, there was no significant difference in arthritis development, spirochete infection of tissues, or production of specific antibody in LMMA-treated mice. These results indicate that B. burgdorferi is able to persist in the host even in the presence of high levels of NO. Furthermore, NO is not involved in the control of spirochete infection of tissues, nor is it involved in the development of arthritis. The potent activity of NO against intracellular pathogens and the in vivo resistance of B. burgdorferi to NO suggest that this organism is not located in an intracellular compartment during an essential portion of its infection of the mammalian host.  相似文献   

18.
Borrelial protein BBK32 was evaluated as an antigen in the serodiagnosis of early and disseminated Lyme borreliosis (LB). bbk32 was cloned and sequenced from eight isolates of the three pathogenic Borrelia species. The identities between the amino acid sequences of the BBK32 proteins from Borrelia burgdorferi sensu stricto, B. garinii, and B. afzelii isolates were 71 to 100%. By immunoglobulin G (IgG) Western blotting (WB) or enzyme-linked immunosorbent assay (ELISA), up to 74 and 100% of acute- and convalescent-phase samples, respectively, from 23 patients with erythema migrans (EM) were positive for recombinant BBK32 protein from B. afzelii. In the serology of disseminated LB, the three variant BBK32 antigens cross-reacted. In total, 14 of 14 samples from patients with neuroborreliosis and 15 of 15 samples from patients with Lyme arthritis were positive. The specificities of the IgG ELISA with the variant BBK32 antigens for EM and disseminated borreliosis were 81 to 92% and 89 to 95%, respectively. Our findings indicate that the BBK32 proteins are promising serodiagnostic antigens for the detection of early and disseminated LB but that variant BBK32 proteins may be needed either in parallel or in combination with an immunoassay for LB to cover all the relevant borrelial species that cause the disease.  相似文献   

19.
Bgp, one of the surface-localized glycosaminoglycan-binding proteins of the Lyme disease spirochete, Borrelia burgdorferi, exhibited nucleosidase activity. Infection of SCID mice with B. burgdorferi strain N40 mutants harboring a targeted insertion in bgp and apparently retaining all endogenous plasmids revealed that Bgp is not essential for colonization of immunocompromised mice.  相似文献   

20.
VlsE is a surface exposed lipoprotein of the Lyme disease spirochete, Borrelia burgdorferi. Spirochetes are able to generate many antigenic variants of VlsE by DNA recombination at the vlsE locus. Novel VlsE antigenic variants are readily observed in mice infected with B. burgdorferi. We followed a clonal population of spirochetes through a tick transmission cycle and report that unlike in vertebrates, the vlsE locus is stable in ticks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号