首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
Different cortical organization of visceral and somatic sensation in humans   总被引:1,自引:0,他引:1  
Sensory stimuli from the visceral domain exhibit perceptual characteristics different from stimuli applied to the body surface. Compared with somatosensation there is not much known about the cortical projection and functional organization of visceral sensation in humans. In this study, we determined the cortical areas activated by non-painful electrical stimulation of visceral afferents in the distal oesophagus, and somatosensory afferents in the median nerve and the lip in seven healthy volunteers using whole-head magnetoencephalography. Stimulation of somatosensory afferents elicited short-latency responses (≈ 20–60 ms) in the primary somatosensory cortex (SI) contralateral (median nerve) or bilateral (lip) to the stimulated side, and long-latency responses (≈ 60–160 ms) bilaterally in the second somatosensory cortex (SII). In contrast, stimulation of visceral oesophageal afferents did not evoke discernible responses in SI but well reproducible bilateral SII responses (≈ 70–190 ms) in close vicinity to long-latency SII responses following median nerve and lip stimuli. Psychophysically, temporal discrimination of successive stimuli became worse with increasing stimulus repetition rates (0.25 Hz, 0.5 Hz, 1 Hz, 2 Hz) only for visceral oesophageal, but not for somatosensory median nerve stimuli. Correspondingly, amplitudes of the first cortical response to oesophageal stimulation emerging in the SII cortex declined with increasing stimulus repetition rates whereas the earliest cortical response elicited by median nerve stimuli (20 ms SI response) remained unaffected by the stimulus frequency. Our results indicate that visceral afferents from the oesophagus primarily project to the SII cortex and, unlike somatosensory afferents, lack a significant SI representation. We propose that this cortical projection pattern forms the neurophysiological basis of the low temporal and spatial resolution of conscious visceral sensation.  相似文献   

2.
Visceral hypersensitivity in gastric fundus is a possible pathogenesis for functional dyspepsia. The cortical representation of gastric fundus is still unclear. Growing evidence shows that the insula, but not the primary or secondary somatosensory region (SI or SII), may be the cortical target for visceral pain. Animal studies have also demonstrated that amygdala plays an important role in processing visceral pain. We used fMRI to study central projection of stomach pain from fundus balloon distension. We also tested the hypothesis that there will be neither S1 nor S2 activation, but amygdala activation with the fundus distension. A 3T-fMRI was performed on 10 healthy subjects during baseline, fullness (12.7 +/- 0.6 mmHg) and moderate gastric pain (17.0 +/- 0.8 mmHg). fMRI signal was modelled by convolving the predetermined psychophysical response. Statistical comparisons were performed between conditions on a group level. Gastric pain activated a wide range of cortical and subcortical structures, including thalamus and insula, anterior and posterior cingulate cortices, basal ganglia, caudate nuclei, amygdala, brain stem, cerebellum and prefrontal cortex (P < 0.001). A subset of these neuronal substrates was engaged in the central processing of fullness sensation. SI and SII were not activated during the fundus stimulation. In conclusion, the constellation of neuronal structures activated by fundus distension overlaps the pain matrices induced musculocutaneous pain, with the exception of the absence of SI or SII activation. This may account for the vague nature of visceral sensation/pain. Our data also confirms that the insula and amygdala may act as the central role in visceral sensation/pain, as well as in the proposed sensory-limbic model of learning and memory of pain.  相似文献   

3.
OBJECTIVES: The aim of this study was to localize and to investigate response properties of the primary (SI) and the secondary (SII) somatosensory cortex upon median nerve electrical stimulation. METHODS: Functional magnetic resonance imaging (fMRI) was used to quantify brain activation under different paradigms using electrical median nerve stimulation in healthy right-handed volunteers. In total 11 subjects were studied using two different stimulus current values in the right hand: at motor threshold (I(max)) and at I(min) (1/2 I(max)). In 7 of these 11 subjects a parametric study was then conducted using 4 stimulus intensities (6/6, 5/6, 4/6 and 3/6 I(max)). Finally, in 10 subjects an attention paradigm in which they had to perform a counting task during stimulation with I(min) was done. RESULTS: SI activation increased with current amplitude. SI did not show significant activation during stimulation at I(min). SII activation did not depend on current amplitude. Also the posterior parietal cortex appeared to be activated at I(min). The I(min) response in SII significantly increased by selective attention compared to I(min) without attention. At I(max) significant SI activity was observed only in the contralateral hemisphere, the ipsilateral cerebellum, while other areas possibly showed bilateral activation. CONCLUSIONS: Distributed activation in the human somatosensory cortical system due to median nerve stimulation was observed using fMRI. SI, in contrast to SII, appears to be exclusively activated on the contralateral side of the stimulated hand at I(max), in agreement with the concept of SI's important role in processing of proprioceptive input. Only SII remains significantly activated in case of lower current values, which are likely to exclusively stimulate the sensible fibres mediating cutaneous receptor input. Selective attention only enhances SII activity, indicating a higher-order role for SII in the processing of somatosensory input.  相似文献   

4.
Thermoreception is an important cutaneous sense, which plays a role in the maintenance of our body temperature and in the detection of potential noxious heat stimulation. In this study, we investigated event‐related fields (ERFs) and neural oscillatory activities, which were modulated by warmth stimulation. We developed a warmth stimulator that could elicit a warmth sensation, without pain or tactile sensation, by using a deep‐penetrating 980‐nm diode laser. The index finger of each participant (n = 24) was irradiated with the laser warmth stimulus, and the cortical responses were measured using magnetoencephalography (MEG). The ERFs and oscillatory responses had late latencies (~1.3 s and 1.0–1.5 s for ERFs and oscillatory responses, respectively), which could be explained by a slow conduction velocity of warmth‐specific C‐fibers. Cortical sources of warmth‐related ERFs were seen in the bilateral primary and secondary somatosensory cortices (SI and SII), posterior part of the anterior cingulate cortex (pACC), ipsilateral primary motor, and premotor cortex. Thus, we suggested that SI, SII, and pACC play a role in processing the warmth sensation. Time–frequency analysis demonstrated the suppression of the alpha (8–13 Hz) and beta (18–23 Hz) band power in the bilateral sensorimotor cortex. We proposed that the suppressions in alpha and beta band power are involved in the automatic response to the input of warmth stimulation and sensorimotor interactions. The delta band power (1–4 Hz) increased in the frontal, temporal, and cingulate cortices. The power changes in delta band might be related with the attentional processes during the warmth stimulation.  相似文献   

5.
Previous findings have shown that the human somatosensory cortical systems that are activated by passive nonpainful electrical stimulation include the contralateral primary somatosensory area (SI), bilateral secondary somatosensory area (SII), and bilateral insula. The present study tested the hypothesis that these areas have different sensitivities to stimulation frequency in the condition of passive stimulation. Functional MRI (fMRI) was recorded in 24 normal volunteers during nonpainful electrical median nerve stimulations at 0.5, 1, 2, and 4 Hz repetition rates in separate recording blocks in pseudorandom order. Results of the blood oxygen level-dependent (BOLD) effect showed that the contralateral SI, the bilateral SII, and the bilateral insula were active during these stimulations. As a major finding, only the contralateral SI increased its activation with the increase of the stimulus frequency at the mentioned range. The fact that nonpainful median-nerve electrical stimuli at 4 Hz induces a larger BOLD response is of interest both for basic research and clinical applications in subjects unable to perform cognitive tasks in the fMRI scanner.  相似文献   

6.
OBJECTIVES: After electrical stimulation of the esophagus cerebral responses are recordable, their cortical source is under discussion. Brain mapping using electroencephalography recordings demonstrated partially controversial results. Sources of evoked responses can be localized more easily using magnetoencephalography than electroencephalography. METHODS: We examined 22 volunteers by recording electrical somatosensory potentials after electrical stimulation of the esophagus. In 9 of these 22 subjects additional recording of magnetic fields was performed and the sources of the evoked magnetic fields were computed. RESULTS: The evoked potentials after electrical stimulation of the esophagus had a similar latency as the previously published data. The source localization done by magnetoencephalography suggest that first a region of the postcentral gyrus is activated which is temporo-lateral to the primary somatosensory cortex of the pharynx. This region is suggested to be the primary somatosensory region of the esophagus. This source was followed by a source in the parietal operculum thought being part of the secondary somatosensory cortex. Simultaneously the insular cortex was activated pointing to a parallel neuronal pathway to the central autonomic nervous system. CONCLUSION: After electrical stimulation of the esophagus somatosensory cortical areas of the temporal postcentral gyrus and the operculum are activated. In parallel activation of the insular cortex as part of the central autonomic network was found.  相似文献   

7.
Luo W  Li P  Chen S  Zeng S  Luo Q 《Brain research》2007,1133(1):67-77
Nociception in the primary somatosensory (S1) cortex remains in need of further elucidation. The spatiotemporal comparison on changes of the cerebral blood volume evoked by graded peripheral electrical stimulation was performed in rat contralateral somatosensory cortex with optical intrinsic signal imaging (OISI, optical reflectance at 550 nm). Non-noxious electrical stimulus was applied with 5 Hz pulses (0.5 ms peak duration) for 2 s at the threshold current for muscle twitch, while noxious stimulus was delivered at currents of 10x and 20x amplitude of the predetermined threshold. Although the dimensions of peak response defined in the spatial domain (cerebral blood volume increase) in the S1 cortex presented no significant difference under non-/noxious stimuli, its early response component (about 1 s after stimulation onset) revealed by OISI technique was suggested to differentiate the loci of activated cortical region due to different stimulation in this study. The magnitude and duration of the optical intrinsic signal (OIS) response was found increasing with the varying stimulus intensity. Regions activated by the delivery of a noxious stimulus were surrounded by a ring of inverted optical intrinsic signal, the amplitude of that was inversely proportional to the strength of the optical signal attributable to activation. Intense stimuli significantly augmented the inverted optical signal in magnitude and spatial extent. These results indicated that noxious stimulation evoked different response patterns in the contralateral S1 cortex. The magnitude-dependent inverted optical signal might contribute to the differentiation of nociceptive input in the S1 cortex.  相似文献   

8.
Abstract  Painful gastric distension is processed in a network consisting of brainstem, thalamus, insula, anterior cingulate cortex, (lateral) orbitofrontal and prefrontal cortex, superior temporal cortex and cerebellum. However, the role of primary and secondary somatosensory cortical regions (SI/SII) in the processing of visceral sensation or pain in general and gastric sensation in particular remains unclear. The aim of this study was to localize activations in the SI/SII area from our previously published functional brain imaging studies on gastric distension more precisely, using newly available cytoarchitectonic probability maps of SI/SII, implemented in the SPM Anatomy toolbox. In healthy volunteers, we found two clusters to be overlapping with SII (mainly the OP4 subregion) and, to a lesser extent, SI, although this overlap was small in size. In functional dyspepsia patients, we found two clusters to be overlapping with SII (mainly OP4), of which the cluster in the right hemisphere also overlapped with SI. These findings were confirmed in a conjunction analysis of both groups. Activation in right SI/SII was significantly higher in healthy volunteers when formally compared to patients. These results provide more detailed information on the brain processing of gastric sensation, supporting the hypothesis that SI/SII are involved. This is in line with some previously published studies on visceral sensation, but at variance with some other studies. Methodological differences between the brain imaging studies on gastric distension may account for these somewhat discrepant findings.  相似文献   

9.
Cats were trained to indicate, by bar pressing for food rewards, their detection of stimulation of the ventrobasal (VB) complex delivered through implanted bipolar electrodes. By varying stimulus intensity it was possible to determine thresholds for detection. Scaling stimulus intensity relative to the appearance of a minimal evoked potential allowed comparisons between animals and also comparisons with results obtained by stimulation of peripheral nerve. Animals could detect VB stimulation, but only at stimulus intensities consistently stronger than those required for minimal appearance of an evoked response in ipsilateral primary somatosensory cortex. Results of VB activation differed from cutaneous nerve effects in that VB detection thresholds were markedly influenced by stimulus frequency. They were lowest at frequencies above 30 Hz and increased greatly at lower frequencies. Discomfort or pain did not seem to result even from relatively high stimulus intensities. The results compare well with observations obtained from stimulation of VB in humans. The appearance of an evoked cortical response is not necessarily correlated with behavior. Under appropriate conditions, behavior can be elicited predictably with minimal electrocortical activity; under other conditions detection may be absent even when large numbers of cortical neurons are activated. We suggest that regions of the cerebral cortex receiving thalamocortical projections from VB may not be essential in the detection process.  相似文献   

10.
Survivors of prolonged cerebral anoxia often remain in the persistent vegetative state (PVS). In this study, long-term PVS patients were investigated by 15O-H(2)O PET to analyze their central processing of pain. The study was approved by the local Ethics Committee, the experiments were performed in accordance with the Helsinki Declaration of 2000. Seven patients remaining in PVS of anoxic origin for a mean of 1.6 years (range 0.25-4 years) were investigated. We performed functional PET of the brain using 15O-labelled water during electrical nociceptive stimulation. Additionally, a brain metabolism study using 18F-fluorodeoxyglucose (FDG) PET and multi-sequence MRI (including a 3-D data set) were acquired in all patients. PET data were analyzed by means of Statistical Parametric Mapping (SPM99) and coregistered to a study-specific brain template. MRI and FDG PET showed severe cortical impairment at the structural and the functional level, that is, general atrophy of various degrees and a widespread significant hypometabolism, respectively. Pain-induced activation (hyperperfusion) was found in the posterior insula/secondary somatosensory cortex (SII), postcentral gyrus/primary somatosensory cortex (SI), and the cingulate cortex contralateral to the stimulus and in the posterior insula ipsilateral to the stimulus (P<0.05, small-volume-corrected). No additional areas of the complex pain-processing matrix were significantly activated. In conclusion, the regional activity found at the cortical level indicates that a residual pain-related cerebral network remains active in long-term PVS patients.  相似文献   

11.
Visceral hypersensitivity in irritable bowel syndrome (IBS) has been associated with altered cerebral activations in response to visceral stimuli. It is unclear whether these processing alterations are specific for visceral sensation. In this study we aimed to determine by functional magnetic resonance imaging (fMRI) whether cerebral processing of supraliminal and subliminal rectal stimuli and of auditory stimuli is altered in IBS. In eight IBS patients and eight healthy controls, fMRI activations were recorded during auditory and rectal stimulation. Intensities of rectal balloon distension were adapted to the individual threshold of first perception (IPT): subliminal (IPT -10 mmHg), liminal (IPT), or supraliminal (IPT +10 mmHg). IBS patients relative to controls responded with lower activations of the prefrontal cortex (PFC) and anterior cingulate cortex (ACC) to both subliminal and supraliminal stimulation and with higher activation of the hippocampus (HC) to supraliminal stimulation. In IBS patients, not in controls, ACC and HC were also activated by auditory stimulation. In IBS patients, decreased ACC and PFC activation with subliminal and supraliminal rectal stimuli and increased HC activation with supraliminal stimuli suggest disturbances of the associative and emotional processing of visceral sensation. Hyperreactivity to auditory stimuli suggests that altered sensory processing in IBS may not be restricted to visceral sensation.  相似文献   

12.
R Baron  Y Baron  E Disbrow  T P Roberts 《Neurology》1999,53(3):548-557
OBJECTIVE: To investigate, using functional MRI (fMRI), the neural network that is activated by the pain component of capsaicin-induced secondary mechanical hyperalgesia. BACKGROUND: Mechanical hyperalgesia (i.e., pain to innocuous tactile stimuli) is a distressing symptom of neuropathic pain syndromes. Animal experiments suggest that alterations in central pain processing occur that render tactile stimuli capable of activating central pain-signaling neurons. A similar central sensitization can be produced experimentally with capsaicin. METHODS: In nine healthy individuals the cerebral activation pattern resulting from cutaneous nonpainful mechanical stimulation at the dominant forearm was imaged using fMRI. Capsaicin was injected adjacent to the stimulation site to induce secondary mechanical hyperalgesia. The identical mechanical stimulation was then perceived as painful without changing the stimulus intensity and location. Both activation patterns were compared to isolate the specific pain-related component of mechanical hyperalgesia from the tactile component. RESULTS: The pattern during nonpainful mechanical stimulation included contralateral primary sensory cortex (SI) and bilateral secondary sensory cortex (SII) activity. During hyperalgesia, significantly higher activation was found in the contralateral prefrontal cortex: the middle (Brodmann areas [BAs] 6, 8, and 9) and inferior frontal gyrus (BAs 44 and 45). No change was present within SI, SII, and the anterior cingulate cortex. CONCLUSIONS: Prefrontal activation is interpreted as a consequence of attention, cognitive evaluation, and planning of motor behavior in response to pain. The lack of activation of the anterior cingulate contrasts with physiologic pain after C-nociceptor stimulation. It might indicate differences in the processing of hyperalgesia and C-nociceptor pain or it might be due to habituation of affective sensations during hyperalgesia compared with acute capsaicin pain.  相似文献   

13.
Background It has been reported that different brain activation areas are demonstrated during somatosensory and visceral stimulation. However, no study thus far has investigated how activated patterns in the human brain differ during visceral stimulation of different sites of the digestive tracts. The aim of this study was to determine possible site‐specific differences in brain responses and perceptions during visceral stimulation of two different sites, the intraluminal distentions of the rectum and descending colon. Methods Regional cerebral blood flow was assessed in 32 healthy right‐handed male subjects using H215O positron emission tomography during distention of the rectum (R group, n = 16) or descending colon (DC group, n = 16) at 40 or 20 mmHg. Key Results R group reported significantly higher scores of abdominal pain (P < 0.05) and urge to defecate (P < 0.001) during the application of stimulus at 40 mmHg compared with DC group but not of abdominal bloating or anxiety. In comparisons of response to the 40‐mmHg stimulus, R group showed significantly greater activation in posterior midcingulate cortex (MCC) and right anterior and posterior insula, whereas DC group showed greater activation in subgenual anterior cingulate cortex (ACC), perigenual ACC and left orbitofrontal and superior temporal cortices. Conclusions & Inferences These findings suggest that central projections of painful visceral stimulation from the rectum and descending colon differ in affective, cognitive and nociceptive processing in the brain, which may result in different perceptions of visceral stimulation from different sites.  相似文献   

14.
Effects of tetanic bursts (200 Hz, 10 pulses) on field potentials elicited by ventral posterolateral thalamic nucleus (VPL) stimulation were investigated in the feline somatosensory cortex. In the first experiments, field potentials elicited by VPL stimulation (test pulse) were simultaneously recorded in the primary (SI) and the secondary (SII) somatosensory cortex in six animals. Potentiation of field potentials recorded in SII was induced by tetanic stimulation of VPL in all six animals, whereas the same tetanic bursts failed to produce significant changes in SI in four of the six animals. The results suggest that plastic changes in somatosensory processing take place in SII rather than SI. In subsequent experiments, features of the potentiation observed in SII were examined in 20 animals. The field potentials were simultaneously recorded at 16 points placed vertically at 150-μm intervals from the cortical surface. The potentiation of field potentials (to 110–170% of control values) observed at depths between 600 and 1350 μm lasted more than 90 min after tetanic stimulation. Poststimulus histograms of multiple-unit activities revealed a long-lasting increase in the number of unit discharges evoked by VPL stimulation. This change in the number of activated cellsis regarded as a cause of potentiation of SII field potentials. In the last session, the effects of N-methyl-d-aspartate (NMDA) receptor antagonists on the potentiation of SII field potentials were investigated. Cortical intraventricular injection ofd-2-amino-5-phosphonovalerate (APV) anddl-2-amino-7-phosphonoheptanoic acid (APH) prevented induction of the potentiation in SII. NMDA receptor activation participates in forming this SII potentiation.  相似文献   

15.
Repetitive electrical stimulation of wrist extensor muscles in rat was combined with quantitative 14C-deoxyglucose autoradiography to study sensory systems functionally activated during forelimb movement. Metabolism increased ipsilaterally in the wrist extensors, the dorsal horn of the cervical spinal cord, the cuneate nucleus and cerebellar hemisphere. The metabolic activation in cerebellum occurred in cortex surrounding the primary fissure anteriorly (lobules simplex and V), and the prepyramidal fissure posteriorly (lobules paramedian and copula pyramis). Metabolism was increased in both granule cell and molecular layers and was uniform throughout the zone of activation. Hindlimb stimulation primarily activated the medial aspect of copula pyramis, demonstrating the somatotopic specificity of changes. Forelimb stimulation also activated contralateral sites in the dorsal accessory nucleus of the inferior olive, ventrobasal thalamus, and SI and SII in cortex. Studies of the relationship between the magnitude of the response and the frequency of the stimulation revealed a positive correlation in muscle, dorsal horn and cuneate nucleus. Other activated sites only showed a significant change at the highest rates of stimulation. Comparison of the pattern of metabolic activation during forelimb movements induced centrally (Collins et al., 1986) with the pattern induced peripherally revealed overlap primarily in the paramedian zone of anterior and posterior cerebellum, and the granular cortex of SI and SII. These studies suggest that forelimb movement initiated centrally would have considerable influence on feedback sensation from the moving limb in these sites.  相似文献   

16.
We investigated the neuromagnetic responses to mechanical stimulation of the oesophagus. In six healthy right-handed volunteers (mean age 31.6 years) the proximal and distal oesophagus were stimulated by electronically controlled pump-inflation of a silicone balloon once every 4.5-5.5 sec (dwell time 145 msec). The balloon volume was adjusted to induce different sensation levels (i) just above threshold of perception, (ii) strong sensation and (iii) painful sensation. Evoked magnetic brain responses were recorded time-locked to stimulus onset with a Neuromag-122TM whole-head neuromagnetometer and modelled as equivalent current diploe (ECD) sources. ECDs were superimposed on individual magnetic resonance imaging (MRI) scans. Magnetic brain responses following distal oesophageal stimulation were adequately explained by a time-varying 2-4 dipole model with unilateral or bilateral sources in second somatosensory cortex and later sources in the frontal cortex. With increasing stimulus intensities, latencies of the sources decreased and amplitudes increased. Proximal oesophageal stimulation led to activation of source areas spatially similar to those of distal oesophageal stimulation but with shorter response latencies. Both painful and nonpainful mechanical stimulation of the oesophagus activate the second somatosensory cortex (SII). Evidence for topographic organization of oesophageal afferents in SII is poor.  相似文献   

17.
Neural response to flickering stimuli has been shown to be frequency dependent in the primary visual cortex. Controversial gender differences in blood oxygen level dependent (BOLD) amplitude upon 6 and 8 Hz visual stimulation have been reported. In order to analyze frequency and gender effects in early visual processing we employed a passive graded task paradigm with a dartboard stimulus combining eight temporal frequencies from 0 to 22 Hz in one run. Activation maps were calculated within Statistical Parametric Mapping, and BOLD amplitudes were estimated for each frequency within the striate and extrastriate visual cortex. The BOLD amplitude was found to steadily rise up to 8 Hz in BA 17 and 18 with an activation plateau at higher frequencies. In addition, we observed a laterality effect in the striate cortex with higher BOLD contrasts in the right hemisphere in men and in women. BOLD response rises similarly in men and women up to 8 Hz but with lower amplitudes in women at 4, 8, and 12 Hz (30% lower). No frequency effect above 1 Hz was found in the extrastriate visual cortex. There was also a regional specific gender difference. Men activated more in the right lingual gyrus (BA 18) and the right cerebellum compared with women, whereas women showed more activation in the right inferior temporal gyrus (BA 17). The study indicates that frequency dependent processing at the cortical level is limited to the striate cortex and may be associated with a more global information processing (right hemisphere dominance), particularly in men. The finding of significantly lower BOLD amplitudes in women despite previously shown larger VEP (visual evoked potential) amplitudes might suggest gender differences in cerebral hemodynamics (baseline rCBV, rCBF, or neurovascular coupling). The regional distinction points at additional differences in psychological processing even when using a simple visual stimulus.  相似文献   

18.
OBJECTIVE: To investigate whether tactile extinction alters the cortical somatosensory activations induced by hand vibration. BACKGROUND: Tactile extinction occurs mainly after right-brain lesions and consists of the inability to perceive a contralesional cutaneous stimulation when a similar stimulus is applied to the mirror region of the ipsilesional hemibody. The pathophysiology of tactile extinction is poorly understood, but it is considered to be a deficit of selective attention of somatosensory stimuli. Although other theories have been proposed, our understanding of the pathophysiology of tactile extinction may benefit from functional imaging studies. METHODS: We selected three patients with pure tactile extinction and a mainly subcortical right-brain lesion that spared the primary sensorimotor cortex (SM1). We used PET to investigate the responses to unilateral and bilateral hand vibration in SM1 and the secondary somatosensory cortical area (SII). RESULTS: During bilateral hand vibration, activation was normal in the left SM1, suppressed in the right SM1, and markedly decreased in both SII, which was consistent with the extinction of the left-hand stimulus. During unilateral left-hand vibration, the activation of the right SM1 was still markedly impaired, but the activation of both SII was normal. CONCLUSIONS: We found marked changes in the activation of cortical somatosensory areas induced by hand vibration in patients with tactile extinction. The role of selective attention in cortical activation is also examined.  相似文献   

19.
We recorded somatosensory evoked magnetic fields (SEFs) by a whole head magnetometer to elucidate cortical receptive areas involved in pain processing, focusing on the primary somatosensory cortex (SI), following painful CO(2) laser stimulation of the dorsum of the left hand in 12 healthy human subjects. In seven subjects, three spatially segregated cortical areas (contralateral SI and bilateral second (SII) somatosensory cortices) were simultaneously activated at around 210 ms after the stimulus, suggesting parallel processing of pain information in SI and SII. Equivalent current dipole (ECD) in SI pointed anteriorly in three subjects whereas posteriorly in the remaining four. We also recorded SEFs following electric stimulation of the left median nerve at wrist in three subjects. ECD of CO(2) laser stimulation was located medial-superior to that of electric stimulation in all three subjects. In addition, by direct recording of somatosensory evoked potentials (SEPs) from peri-Rolandic cortex by subdural electrodes in an epilepsy patient, we identified a response to the laser stimulation over the contralateral SI with the peak latency of 220 ms. Its distribution was similar to, but slightly wider than, that of P25 of electric SEPs. Taken together, it is postulated that the pain impulse is received in the crown of the postcentral gyrus in human.  相似文献   

20.
Penile sensory information is essential for reproduction, but almost nothing is known about how sexually salient inputs from the penis are processed in the brain. We used positron emission tomography to measure regional cerebral blood flow (rCBF) during various stages of male sexual performance. Compared to a passive resting condition (without penile erection), sexual stimulation of the penis increased rCBF in an area of the right hemisphere encompassing the posterior insula and adjacent posterior part of the secondary somatosensory cortex (SII) and decreased rCBF in the right amygdala. No activation was observed in either the thalamus, genital part of primary somatosensory cortex (SI), or hypothalamus. Based on these results we put forward the concept that during sexual performance the salience of the stimulus, represented by activation of the insula and SII, is of greater significance than the exact location of the stimulus, encoded in SI. The absence of activation in the hypothalamus indicates that this region is more important for the onset of sexual arousal than for the resulting sexual performance. Deactivation of the amygdala during sexual stimulation of the penis corresponds with a decrease of vigilance during sexual performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号