首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The underlying mechanisms controlling food intake and satiety are thoroughly controlled, but seem to be insufficient under conditions of almost unlimited food supply. Hence, overweight and obesity are serious problems especially in industrialized countries. To assess the possible influence of CD26, exerting a dipeptidyl peptidase activity (DPP4) cleaving several energy homeostasis-relevant peptides, we investigated wild type and DPP4-deficient dark agouti rats in a model of diet-induced obesity and found a reduced weight gain in DPP4-deficient rats. When investigating the specific increase of whole body fat volume by MRI to assess the distribution pattern (subcutaneous vs. intraabdominal), there was an altered ratio under dietary conditions only in DPP4-deficient rats, which was due to lower intraabdominal fat amounts. Furthermore, we investigated the number of cells immunopositive for the leptin receptor (OB-R), the orexigenic leptin antagonist neuropeptide Y (NPY), as well as of the NPY receptors Y1, Y2, and Y5 within hypothalamic nuclei. Independent from the body weight, higher levels of NPY and all receptors were expressed in DPP4-deficent rats. Under obese conditions, hypothalamic Y2-levels were reduced in both strains. Concerning NPY and Y1, there were partly oppositional effects, with reduced hypothalamic Y1 levels only in wild types, and increased NPY levels only in DPP4-deficient rats. These effects might be responsible for unaltered food intake in DPP4-deficent rats compared to wild types, despite reduced weight gain. However, since the food intake remained unaffected, these effects suggest that DPP4 exerts its effects on intraabdominal fat also via peripheral actions.  相似文献   

3.
Electrolytic lesions placed in the ventromedial hypothalamus (VMH) of rats induce instant hyperphagia and excessive weight gain. Since neuropeptide Y (NPY) is a potent hypothalamic orexigenic signal, and leptin secreted by adipocytes regulates NPY output, we tested the hypothesis that altered NPYergic-leptin signaling may underlie hyperphagia in VMH-lesioned rats. VMH-lesioned rats exhibiting hyperphagia and excessive weight gain in a time-related fashion were sacrificed on days 2, 7, and 21 post-surgery. Quite unexpectedly, NPY concentrations in the hypothalamic paraventricular nucleus (PVN), a major site of NPY release for stimulation of feeding, and in other sites, such as the dorsomedial nucleus, lateral hypothalamic area and median eminence-arcuate nucleus decreased, with the earliest diminution occurring on day 2 in the PVN only. In vitro basal and K+-evoked NPY release from the PVN of VMH-lesioned rats was significantly lower than that of controls. Analysis of hypothalamic NPY gene expression showed that although the daily decrease in NPY mRNA from 0800 to 2200 h occurred as in control rats, NPY mRNA concentrations were markedly reduced at these times in the hypothalami of VMH-lesioned rats. Leptin synthesis in adipocytes as indicated by leptin mRNA levels was also profoundly altered in VMH-lesioned rats. The daily pattern of increase in adipocyte leptin mRNA at 2200 h from 0800 h seen in controls was abolished, higher levels of leptin gene expression at 2200 h were maintained at 0800 h. The pattern of increase in serum leptin and insulin levels diverged in VMH-lesioned rats. Serum insulin concentration increased to maximal on day 2 and remained at that level on day 21-post-lesion; serum leptin levels on the other hand, increased slowly in a time-related fashion during this period. These results demonstrate that hyperphagia and excessive weight gain in VMH-lesioned rats are associated with an overall decrease in hypothalamic NPY and augmented leptin signaling to the hypothalamus. The divergent time course of increases in serum leptin and insulin levels suggest independent mechanisms responsible for their augmented secretion, and neither these hormones nor VMH lesions altered the daily rhythm in NPY gene expression. These observations underscore the existence of an independent mechanism controlling the daily rhythm in hypothalamic NPY gene expression and suggest that leptin feedback action requires an intact VMH.  相似文献   

4.
We evaluated the role of neuropeptide Y (NPY), a potent endogenous orexigenic signal, in the ventromedial hypothalamic (VMH) lesion-induced hyperphagia in rats. To produce hyperphagia and excessive weight gain, adult female rats received bilateral electrolytic or sham lesions in the VMH. Concurrently, a permanent intracerebroventricular cannula was implanted in the third ventricle of the brain. After a recovery period, these rats were passively immunized against NPY to evaluate the role of endogenous NPY on hyperphagia. The results showed that intraventricular administration of NPY antibodies abolished the hyperphagia in VMH-lesioned rats. These revelations are in agreement with the notion that altered hypothalamic NPY release or action may underlie the hyperphagia and excessive weight gain seen in response to structural damage in the VMH.  相似文献   

5.
Neuropeptide Y (NPY) is the most potent endogenous orexigenic signal. Several lines of evidence indicate that the site of NPY action in transducing feeding signal may reside in the paraventricular nucleus (PVN) and neighboring sites in the hypothalamus. To test the hypothesis that an increase in NPY activity in the ARC-PVN pathway precedes the onset of diabetic hyperphagia, we evaluated NPY levels in seven hypothalamic nuclei and NPY gene expression in the hypothalamus at 48, 72 or 96 h after streptozotocin (STZ) treatment in rat. In STZ-treated diabetic rats, NPY gene expression in the hypothalamus and NPY levels only in the PVN significantly elevated at 48 h, while hyperphagia occurred sometimes after 48 h post-injection. These results show that augmentation in NPY neuronal activity in the ARC-PVN axis precedes the onset of increased food intake produced by STZ-induced insulinopenia. These findings affirm the hypothesis that increased NPY neurosecretion in the PVN may underlie the diabetes-induced hyperphagia.  相似文献   

6.
Rats on different free‐choice (fc) diets for 1 week of either chow, saturated fat and liquid sugar (fcHFHS), chow and saturated fat (fcHF), or chow and liquid sugar (fcHS) have differential levels of neuropeptide Y (NPY) mRNA in the arcuate nucleus. Because these differences were not explained by plasma leptin levels but did predict subsequent feeding behaviour, in the present study, we first examined whether leptin sensitivity could explain these differences. Second, we focused on the role of NPY on feeding behaviour, and measured NPY mRNA levels and sensitivity to NPY after 4 weeks on the different choice diets. To determine leptin sensitivity, we measured food intake after i.p. leptin or vehicle injections in male Wistar rats subjected to the fcHFHS, fcHS, fcHF or Chow diets for 7 days. Next, we measured levels of arcuate nucleus NPY mRNA with in situ hybridisation in rats subjected to the choice diets for 4 weeks. Finally, we studied NPY sensitivity in rats subjected to the fcHFHS, fcHS, fcHF or Chow diet for 4 weeks by measuring food intake after administration of NPY or vehicle in the lateral ventricle. Leptin decreased caloric intake in rats on Chow, fcHS and fcHF but not in rats on the fcHFHS diet. After 4 weeks, rats on the fcHFHS diet remained hyperphagic, whereas fcHS and fcHF rats decreased caloric intake to levels similar to rats on Chow. By contrast to 1 week, after 4 weeks, levels of NPY mRNA were not different between the diet groups. Lateral ventricle administration of NPY resulted in higher caloric intake in fcHFHS rats compared to rats on the other choice diets or rats on Chow. Our data show that consuming a combination of saturated fat and liquid sugar results in leptin resistance and increased NPY sensitivity that is associated with persistent hyperphagia.  相似文献   

7.
Maternal low-protein malnutrition during gestation and lactation (LP) is an animal model frequently used for the investigation of long-term deleterious consequences of perinatal growth retardation. Hypothalamic neuropeptides are decisively involved in the central nervous regulation of body weight and metabolism. We investigated neuropeptide Y (NPY) in distinct hypothalamic nuclei in the offspring of LP mother rats at the end of the critical hypothalamic differentiation period (20th day of life). Weanling LP offspring were underweight (P< 0.001) and hypoinsulinaemic (P< 0.05), while leptin levels were unchanged. NPY was significantly increased in the paraventricular hypothalamic nucleus (PVN) (P< 0.01) and lateral hypothalamic area (P< 0.05) in LP offspring. In contrast, NPY was unchanged in the ventromedial hypothalamic nucleus (VMN). These observations indicate a leptin-independent stimulation of the orexigenic ARC-PVN axis in undernourished LP rats at weaning. Furthermore a disturbed NPYergic regulation of the VMN is suggested, possibly contributing to alterations of the hypothalamic regulation of body weight and metabolism in LP offspring during life.  相似文献   

8.
Leptin regulates food intake and body weight by acting primarily in the hypothalamus. In humans and rodents, obesity is associated with hyperleptinaemia, suggesting a possible state of leptin resistance. Thus, to begin to examine the mechanisms of leptin resistance, we developed a rat model in which chronic central leptin infusion results in the development of resistance to leptin's satiety action. Adult male rats were infused chronically into the lateral cerebroventricle with leptin (160 ng/h) or phosphate-buffered saline via Alzet pumps for 28 days, followed by artificial cerebrospinal fluid infusion for 3 weeks. After the initial decrease in food intake, rats developed resistance to the satiety action of leptin, and withdrawal of the chronic leptin infusion resulted in hyperphagia. During leptin infusion, body weight was gradually decreased to reach a nadir on day 12, and thereafter, body weight was sustained at a reduced level throughout the entire 28-day infusion, despite normalization in food intake. Body weight was mostly normalized by day 22 postleptin. Since neuropeptide Y (NPY) neurones are one of the targets of leptin signalling in the hypothalamus, we next examined whether the development of resistance to the satiety action of leptin was due to altered NPY gene expression. On day 3-4 of infusion, hypothalamic NPY mRNA levels, as determined by RNAse protection assay (RPA), were significantly decreased in leptin treated rats compared to controls. By contrast, on day 16 of infusion, NPY mRNA levels in the leptin treated group had returned to control levels. In situ hybridization study confirmed the results obtained with RPA and showed further that the effect of chronic leptin infusion on NPY mRNA levels was restricted to the rostral and middle parts of the arcuate nucleus. Overall, the finding that the action of continuous leptin exposure on NPY neurones was not sustained suggests that NPY neurones may be involved in the development of leptin resistance to the satiety action of leptin in the hypothalamus.  相似文献   

9.
Hypothalamic neuropeptide Y (NPY) and superoxide dismutase (SOD) have been reported to participate in the regulation of appetite-suppressing effect of phenylpropanolamine (PPA), a sympathomimetic agent. This study explored whether Y1 receptor (Y1R) and/or Y5 receptor (Y5R) was involved in this regulation. Wistar rats were treated with PPA for 24 h. Changes in food intake and hypothalamic NPY, Y1R, Y5R, and SOD contents were assessed and compared. Results showed that food intake and NPY contents were decreased following PPA treatment, while Y1R and SOD contents were increased and Y5R contents remained unchanged. Moreover, although Y1R or Y5R knockdown by themselves could modify the food intake, Y1R but not Y5R knockdown could modify PPA-induced anorexia as well as NPY and SOD contents. In addition, selective inhibition of Y1R but not Y5R could modulate PPA-induced anorexia. It is suggested that Y1R but not Y5R participates in the anorectic response of PPA via the modulation of NPY and SOD. Results provide molecular mechanism of NPY-mediated PPA anorexia and may aid the understanding of the toxicology of PPA.  相似文献   

10.
Central administration of neuropeptide Y (NPY) produces a robust feeding response in the rat. It is still unclear how, and in response to what endogenous stimuli NPY is released. We have developed a radioimmunoassay-linked microdialysis procedure for measuring hypothalamic NPY release in both the anaesthetised and freely moving rat. We have used the procedure to show that anesthesia dramatically decreased NPY release, while a 48 h period of food deprivation significantly increased extracellular NPY concentrations. Streptozotocin-induced diabetic rats also showed increased hypothalamic NPY release compared to controls. These results provide more evidence that NPY may be involved in mediating the hyperphagia associated with starvation and diabetes mellitus. The development of a sensitive microdialysis procedure to measure NPY will allow further detailed investigation of the hypothalamic NPY system.  相似文献   

11.
Neuropeptide Y (NPY) is an important orexigenic peptide that acts in the brain. The increase in hypothalamic NPY mRNA expression induced by fasting is mainly caused by a decrease in the effects of leptin. We investigated the developmental changes in the sensitivities of leptin and hypothalamic neuropeptide Y to fasting. Hypothalamic NPY mRNA levels were increased by fasting in postnatal days 15 and 25 rats, but not in postnatal day 5 rats. Serum leptin levels were decreased by fasting in rats at all ages (days 5, 15, and 25). In addition, hypothalamic OB-Rb mRNA levels were decreased by fasting in postnatal day 25 rats, but not in postnatal day 5 or 15 rats. Although the percentage of fating-induced decrease in the serum leptin level was larger in the postnatal day 15 rats than in the postnatal day 25 rats, the percentage of increase in the hypothalamic NPY mRNA level in the postnatal day 15 rats was smaller than that in the postnatal day 25 rats. There was a strong inverse correlation between serum leptin levels and hypothalamic NPY mRNA levels in the postnatal day 25 rats, whereas no significant correlation was found between these parameters in the postnatal day 5 or 15 rats. These findings indicate that the sensitivity of hypothalamic NPY mRNA expression to food deprivation and hypoleptinemia has developed by postnatal day 25.  相似文献   

12.
The hypothesis that treatment with neuropeptide Y (NPY) can increase running activity and decrease food intake and body weight was tested. Female rats with a running wheel lost more weight than sedentary rats and ran progressively more as the availability of food was gradually reduced. When food was available for only 1h/day, the rats lost control over body weight. Correlatively, the level of NPY mRNA was increased in the hypothalamic arcuate nucleus. This phenomenon, activity-based-anorexia, was enhanced by intracerebroventricular infusion of NPY in rats which had food available during 2h/day. By contrast, NPY stimulated food intake but not wheel running in rats which had food available continuously. These findings are inconsistent with the prevailing theory of the role of the hypothalamus in the regulation of body weight according to which food intake is a homeostatic process controlled by "orexigenic" and "anorexigenic" neural networks. However, the finding that treatment with NPY, generally considered an "orexigen", can increase physical activity and decrease food intake and cause a loss of body weight is in line with the clinical observation that patients with anorexia nervosa are physically hyperactive and eat only little food despite having depleted body fat and up-regulated hypothalamic "orexigenic" peptides.  相似文献   

13.
Neuropeptide Y (NPY), acting through various medial hypothalamic nuclei, is found to have potent effects on a variety of endocrine, physiological and behavioral systems that modulate energy balance. This peptide affects the release of various hormones, such as corticosterone, insulin, aldosterone and vasopressin, which modulate energy metabolism, as well as food intake. It also has direct impact on energy metabolism through an effect on substrate utilization and lipogenesis. Finally, NPY has a remarkably potent stimulatory effect on feeding behavior, which is characterized by a selective increase in carbohydrate ingestion that is strongest at the beginning of the active feeding cycle and is dependent upon circulating levels of corticosterone. This evidence has led to the proposal that NPY exerts anabolic effects to restore energy balance at specific times of energy depletion. Increased NPY activity may occur at the beginning of the active cycle or after a period of food deprivation. Further evidence, that chronic NPY stimulation produces profound hyperphagia and obesity and that endogenous NPY concentration is increased in genetically obese animals, strongly suggests that hypothalamic NPY may contribute to the development of eating disorders and obesity.  相似文献   

14.
Ciliary neurotrophic factor (CNTF), a cytokine of the interleukin-6 superfamily, has been shown to induce hypophagia and weight loss. Neuropeptide Y (NPY) and orexin are potent orexigenic signals in the hypothalamus. Anorexia, normally seen in response to infection, injury and inflammation, may result from diminished hypothalamic orexigenic signalling caused by persistently elevated cytokines, including CNTF. To test this hypothesis, we first examined the effects of chronic intracerebroventricular (i.c.v.) infusion of CNTF for 6-7 days on food intake and body weight as well as hypothalamic NPY and orexin gene expression in male rats. Subsequently, the effectiveness of NPY replacement to counteract the effects of CNTF by coinfusion of NPY and CNTF was evaluated. Chronic i.c.v. infusion of CNTF (2.5 microg/day) reduced body weight (14.3% vs control) at the end of 7 days. Food intake remained suppressed for 5 days postinfusion and subsequently gradually returned to the control range by day 7. Serum leptin concentrations in these rats were in the same range seen in control rats. Chronic i.c.v. infusion of higher doses of CNTF (5.0 microg/day) produced sustained anorexia and body weight loss (29% vs controls) through the entire duration of the experiment. This severe anorexia was accompanied by markedly suppressed serum leptin concentrations. Furthermore, CNTF infusion alone significantly reduced hypothalamic NPY gene expression (P < 0. 05) without affecting orexin gene expression. As expected, in fusion of NPY alone (18 microg/day) augmented food intake (191.6% over the initial control, P < 0.05) and produced a 25.1% weight gain in conjunction with a 10-fold increase in serum leptin concentrations at the end of the 7-day period. Interestingly, coinfusion of this regimen of NPY with the highly effective anorectic and body reducing effects of CNTF (5.0 microg/day) not only prevented the CNTF-induced anorexia and weight loss, but also normalized serum leptin concentrations and hypothalamic NPY gene expression. These results demonstrate that chronic central infusion to produce a persistent elevation of the cytokine at pathophysiological levels (a situation that may normally manifest during infection, injury and inflammation) produced severe anorexia and weight loss in conjunction with reduction in both serum leptin concentrations and hypothalamic NPY gene expression. Reinstatement of hypothalamic NPY signalling by coinfusion of NPY counteracted these CNTF-induced responses.  相似文献   

15.
Neuropeptide Y (NPY) preferentially stimulates carbohydrate intake rather than fat intake but there is no information on the effects of food choice on the concentration of NPY in the brain. We measured brain NPY concentrations in male adult rats that had to choose between a high fat and a high carbohydrate diet or were fed a control diet for 2 weeks. In rats with food choice, energy intake increased (+17%). NPY levels increased in the parvocellular part (PVNp) of the PVN and decreased in the lateral hypothalamus and were significantly correlated with the carbohydrate-to-fat energy ratio but not with total energy intake. This suggests that hypothalamic NPY might be involved in food choice and that PVNp is important in the regulation of feeding behaviour by NPY.  相似文献   

16.
Obese individuals often suffer from depression. The olfactory bulbectomy (OBX) model is an animal model of depression that produces behavioral, physiological, and neurochemical alterations resembling clinical depression. The OBX model was employed to assess depression-related changes in food intake in obesity-prone, Osborne–Mendel (OM) rats and obesity-resistant, S5B/Pl rats. OBX increased food intake in OM rats beginning 7 days following surgery, however, OBX did not alter food intake in S5B/Pl rats at any time point. Fourteen days following surgery, OBX significantly increased locomotor activity (total lines crossed and rears) in the openfield test in OM and S5B/Pl rats. Fifteen days following surgery, prepro-neuropeptide Y (NPY) mRNA levels were significantly increased in the hypothalamus of bulbectomized OM rats and in the medial nucleus of the amygdala of bulbectomized OM and S5B/Pl rats. OBX decreased NPY Y2 receptor mRNA levels in the hypothalamus and medial nucleus of the amygdala in OM rats, while increasing NPY Y2 receptor mRNA levels in the medial nucleus of the amygdala of S5B/Pl rats. These data indicate that though both obesity-prone and obesity-resistant strains were susceptible to the locomotor effects of OBX, food intake and hypothalamic prepro-NPY mRNA were only increased in OM rats. Therefore, strain specific alterations in hypothalamic NPY may account for increased food intake in the obesity-prone rats following OBX, and suggests a potential mechanism to explain the comorbidity of obesity and depression.  相似文献   

17.
The anorexia (anx) mutation causes reduced food intake in preweanling mice, resulting in death from starvation within 3–4 weeks. In wild-type rodents, starvation induces increased neuropeptide Y (NPY) mRNA levels in the arcuate nucleus that promotes compensatory hyperphagia. Despite severely decreased body weight and food intake at 3-weeks age, anx/anx mice do not show elevated NPY mRNA levels in the hypothalamic arcuate nucleus compared to wild-type/heterozygous littermates. The NPY mRNA levels can be upregulated in normal mice at this chronological age, because 24-h food deprivation increased arcuate NPY mRNA in wild-type littermates. The unresponsiveness of NPY expression in the arcuate of anx/anx mice was paralleled by serotonergic hyperinnervation of the arcuate nucleus, comparable to the serotonergic hyperinnervation previously reported in the rest of the anx/anx brain. This result is consistent with the hypothesis that wasting disorders are accompanied by disregulation of NPY mRNA expression in the arcuate nucleus, and suggests that reduced food intake, the primary behavioral phenotype of the anx/anx mouse, may be the result of altered hypothalamic mechanisms that normally regulate feeding.  相似文献   

18.
Morris MJ  Pavia JM 《Brain research》2004,1006(1):100-106
Noradrenaline and neuropeptide Y (NPY) in the hypothalamus regulate a number of important endocrine and autonomic functions. Alterations in brain neurotransmitter content have been described in type 1 diabetes but there is little understanding of whether these changes affect neurotransmitter release. This study examined for the first time, region-specific co-release of NPY and noradrenaline from the hypothalamus of male Sprague-Dawley rats treated intravenously with 48 mg/kg streptozotocin (STZ) or vehicle. Five weeks later, the release of endogenous noradrenaline and NPY was monitored by in vitro superfusion of ventral and dorsal hypothalamus slices under basal and potassium-stimulated conditions. STZ-diabetes induced significant increases in basal noradrenaline and NPY overflow from the ventral hypothalamus (P<0.05); only NPY overflow was increased in the dorsal hypothalamus (P<0.05). Noradrenaline overflow increased similarly to potassium depolarisation in vehicle and STZ-diabetic rats, whereas diabetic rats showed a significantly increased NPY overflow response to potassium depolarisation compared to vehicle rats. These region-specific increases in endogenous noradrenaline and NPY overflow from the hypothalamus in diabetes suggest increased neuronal activity at rest and enhanced responses under some conditions. Increased hypothalamic NPY and noradrenaline overflow most likely contributes to diabetic hyperphagia.  相似文献   

19.
Lactation is a physiological model for studying how the hypothalamus integrates peripheral signals, such as sensory signals (suckling stimulus) and those denoting energy balance (leptin), to alter hypothalamic function regulating food intake/energy balance and reproduction. The characteristics of food intake/energy balance during lactation are extreme hyperphagia, coupled with negative energy balance. The arcuate nucleus Neuropeptide Y (ARH-NPY) system is activated by: (1) brainstem projections specifically activated by the suckling stimulus, and (2) the decrease in leptin in response to the metabolic drain of milk production. NPY neurons from the ARH make direct contact with GnRH neurons and with CRH neurons in the PVH. NPY neurons also make contact with orexin and MCH neurons in the LHA, which, in turn, make contacts with GnRH neurons. Thus, the ARH-NPY system provides a neuroanatomical framework by which to integrate changes in food intake/energy with the regulation of cyclic reproductive function.  相似文献   

20.
Paul MJ  Freeman DA  Park JH  Dark J 《Brain research》2005,1055(1-2):83-92
Intracerebroventricular (ICV) injections of neuropeptide Y (NPY) are known to decrease body temperature (Tb) of laboratory rats by 1-3 degrees C. Several NPY pathways in the brain terminate in hypothalamic structures involved in energy balance and thermoregulation. Laboratory rats are homeothermic, maintaining Tb within a narrow range. We examined the effect of ICV injected NPY on Tb in the heterothermic Siberian hamster (Phodopus sungorus), a species that naturally undergoes daily torpor in which Tb decreases by as much as 15-20 degrees C. Minimum effective dose was determined in preliminary testing then various doses of NPY were tested in cold-acclimated Siberian hamsters while food was withheld. NPY markedly reduced Tb in the heterothermic Siberian hamster. In addition, the reduction in Tb in 63% of the observations was sufficient to reach the criterion for daily torpor (Tb < 32 degrees C for at least 30 min). Neither the incidence of torpor nor its depth or duration was related to NPY dose. Both likelihood and magnitude of response varied within animals on different test days. NPY decreased 24-h food intake and this was exaggerated in the animals reaching criterion for torpor; the decrease in food intake was positively correlated with the magnitude of the decrease in Tb. The mild hypothermia seen in homeothermic laboratory rats after NPY injected ICV is exaggerated, often greatly, in the heterothermic Siberian hamster. NPY treatment may be activating hypothalamic systems that normally integrate endogenous torpor-producing signals and initiate torpor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号