首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Chicken gonadotropin-releasing hormone-I (GnRH-I) and the avian prolactin-releasing hormone, vasoactive intestinal polypeptide (VIP), were measured in the basal hypothalamus in male starlings during photo-induced gonadal growth and the subsequent development and maintenance of reproductive photorefractoriness. Comparisons were made with thyroidectomized birds, which maintain breeding condition irrespective of changes in photoperiod. In intact birds, basal hypothalamic GnRH-I increased four-fold after photostimulation and then decreased 115-fold over 12 weeks to values characteristic of long-term photorefractoriness. Pituitary and plasma prolactin increased after photostimulation, reaching peak values when the testes were regressing, and returned to low values in long-term photorefractory birds. Basal hypothalamic VIP did not change after photostimulation in intact birds. In photostimulated thyroidectomized birds, values for basal hypothalamic GnRH-I and VIP, and for pituitary and plasma prolactin, remained no different to those of nonphotostimulated intact birds. These observations confirm that reproductive photorefractoriness is related to a decrease in hypothalamic GnRH-I. However, photorefractoriness in terms of prolactin secretion is not similarly related to a decrease in basal hypothalamic VIP. The mechanisms responsible for the decrease in prolactin in long-term photorefractory birds and for the total lack of photoperiodic responses in thyroidectomized birds remain unresolved.  相似文献   

2.
The objective of this study was to establish, for a short-day breeding bird, the male emu, whether the breeding season is principally controlled by changes in photoperiod, and to investigate the endocrine mechanisms involved. Two groups of adult males were subjected to three alternating periods of 150-185 days of 14 h light/day (LD) and 10 h light/day (SD) terminating in a 360-day period of LD or SD. Transfer from LD to SD led to increases in plasma concentrations of luteinizing hormone (LH) and testosterone, after 82 +/- 8 and 73 +/- 3 (SEM) days, and an increase in prolactin concentrations after 115 +/- 12 days. Concentrations of LH and testosterone began to decrease before transfer back to LD, at a time when prolactin concentrations were approaching peak values. Transfer from LD to 360 days of SD resulted in increases in LH and testosterone concentrations, and these terminated after an increase in prolactin concentrations. After transfer from SD to 360 days of LD, plasma concentrations of LH and testosterone began to increase, after delays of 222 +/- 24 and 225 +/- 13 days, and were high at the end of the study, while prolactin values remained depressed throughout. These observations clearly show that seasonal breeding in the emu is directly controlled by changes in photoperiod. The dynamics of the hormonal responses to change of photoperiod suggest that, despite being short-day breeders, the photoregulation of breeding in emus involves mechanisms that are currently accepted for birds, rather than mechanisms that have been proposed for short-day breeding mammals. The initiation of breeding in emus is due to dissipation of photorefractoriness by short days which leads to an increase in the secretion of gonadotrophins to levels that are sufficient to support full reproductive condition. The termination of breeding, while days are still short, is due to the antigonadotrophic action of prolactin which, unusually for birds, increases while the days are still short. In conclusion, breeding activity in male emus is strongly controlled by photoperiod. Emus are short-day breeders, but the central mechanisms that regulate the secretion of reproductive hormones seem to be similar to those previously proposed for long-day breeding birds. The pattern of prolactin secretion in emus suggests an important role for this hormone in the termination of the breeding cycle.  相似文献   

3.
Gambel's white-crowned sparrow is a long distance migrant that undergoes spontaneous gonadal regression as a result of long day exposure. This termination of breeding is caused by the development of photorefractoriness and the birds become insensitive to long days, including continuous light. The present study investigated its possible mechanisms by examining the activity of the gonadotrophin-releasing hormone (GnRH) system under different photoperiodic regimes. We investigated the localisation and distribution of GnRH-I, its precursor pro-GnRH-GAP and GnRH-II in Gambel's white-crowned sparrow brain using immunocytochemistry with specific antibodies during photostimulation and the development of photorefractoriness. The study revealed that photoperiodic treatment, including the onset of photorefractoriness, had no significant effect on the size or number of GnRH-I, pro-GnRH-GAP or GnRH II immunoreactive cells, or the density of the GnRH-I, pro-GnRH-GAP immunoreactive fibres at the median eminence. GnRH-II was not found in the median eminence, suggesting that it does not regulate pituitary gonadotrophin secretion. GnRH-I measurement in hypothalamic extracts by radioimmunoassay did not reveal any significant difference between birds that were photostimulated or in the early stages of photorefractoriness. Furthermore, the action of the excitatory amino acid glutamate agonist N-methyl-D-aspartate on GnRH neurones in photorefractory birds was demonstrated by the significant blockade of luteinising hormone release with a specific GnRH antagonist. Taken together, these results suggest that, in Gambel's white-crowned sparrow, a decrease in GnRH-I secretion is the initial step for the onset of photorefractoriness and not a decrease in GnRH-I biosynthesis.  相似文献   

4.
5.
In birds, unlike mammals, seasonal changes in reproductive function are associated with marked changes in the amount of gonadotrophin-releasing hormone (GnRH) stored in the hypothalamus. Prolonged exposure to long photoperiods leads to photorefractoriness after the breeding season. Photorefractory birds have low hypothalamic concentrations of chicken GnRH-I (cGnRH-I). Exposure to short photoperiods results in renewed cGnRH-I synthesis and increased hypothalamic stores. Birds are then photosensitive and subsequent exposure to an increase in photoperiod results in increased cGnRH-I secretion and gonadal maturation. However, it is unclear whether the reverse is true at the time of gonadal regression during long photoperiods (i.e. that a decrease in GnRH-I synthesis precedes regression). Hypothalamic stores of cGnRH-I, and possibly therefore of releasable GnRH-I, decrease after regression. Single injections of the glutamate agonist N-methyl-DL-aspartate (NMA) were used as a probe to assess releasable stores of cGnRH-I in male starlings at four physiologically different reproductive stages. Treatment induced the greatest increase in luteinising hormone (LH) in photosensitive birds in January, and a slight increase in sexually mature birds in April. There was a slight but significant increase in June, immediately after testicular regression, but no increase in fully photorefractory birds in September. These data confirm that photorefractoriness is associated with a lack of releasable cGnRH-I, but that decreased synthesis of cGnRH-I is not the proximate cause of regression. There was an increase in prolactin in response to NMA at all times. The magnitude of the response was proportional to pre-treatment concentrations, with the greatest response in June. It is suggested that high circulating prolactin may fine-tune the timing of gonadal regression in advance of the inhibition of cGnRH-I synthesis.  相似文献   

6.
Daylength regulates neuroendocrine function in male golden hamsters. Exposure to short days triggers gonadal regression and decreases serum luteinizing hormone (LH), prolactin and testosterone concentrations. Inhibitory photoperiods also amplify the negative feedback actions of androgens upon gonadotropin secretion. To examine whether these changes arise from altered adenohypophyseal gene expression, we measured the abundance of the messenger ribonucleic acids (mRNAs) encoding β-LH, prolactin and proopiomelanocortin in anterior pituitaries of male golden hamsters which were either left intact, castrated, castrated and implanted with testosterone, or pinealectomized and maintained in either long (14 h light/10 h dark) or short (5 h light/19 h dark) days. Short days caused testicular atrophy in intact male hamsters and reduced serum LH in intact and castrated, testosterone-replaced hamsters. The relative abundance of β-LH mRNA was suppressed by exposure to short days only in castrated hamsters. Serum prolactin was decreased by short days regardless of circulating testosterone concentrations. Prolactin mRNA abundance was decreased by short days in all pineal-intact groups. Castration reduced proopiomelanocortin mRNA abundance in long days and testosterone replacement reversed this effect. In the presence of testosterone, photoperiod influenced serum LH concentrations without altering hypophyseal abundance of β-LH mRNA. In contrast, photoperiodic influences on prolactin secretion were correlated with alterations in steady-state mRNA abundance.  相似文献   

7.
Short days induce multiple changes in reproductive and immune function in Siberian hamsters. Short-day reproductive inhibition in this species is regulated by an endogenous timing mechanism; after approximately 20 weeks in short days, neuroendocrine refractoriness to short-day patterns of melatonin develops, triggering spontaneous recrudescence of the reproductive system. It is unknown whether analogous mechanisms control immune function, or if photoperiodic changes in immune function are masked by prevailing photoperiod. In Experiment 1, 3 weeks of exposure to long days was not sufficient to induce long-day-like enhancement of in vitro lymphocyte proliferation in short-day adapted male Siberian hamsters. Experiment 2 tested the hypothesis that immunological photorefractoriness is induced by prolonged exposure to short days. Adult male hamsters were gonadectomized or sham-gonadectomized and housed in long (14 h light/day) or short (10 h light/day) photoperiods for 12, 32 or 40 weeks. Somatic and reproductive regression occurred after 12 weeks in short days, and spontaneous recrudescence was complete after 32-40 weeks in short days, indicative of somatic and reproductive photorefractoriness. In gonad-intact hamsters, 12 weeks of exposure to short days decreased the number of circulating granulocytes and increased the number of B-like lymphocytes. After 32 weeks in short days, these measures were restored to long-day values, indicative of photorefractoriness; castration eliminated these effects of photoperiod. In both intact and castrated hamsters, in vitro proliferation of splenic lymphocytes was inhibited by 12 weeks of exposure to short days. After 40 weeks in short days lymphocyte proliferation was restored to long-day values in intact hamsters, but remained suppressed in castrated hamsters. These results suggest that short-day-induced inhibition of lymphocyte function does not depend on gonadal regression, but that spontaneous recrudescence of this measure is dependent on gonadal recrudescence. In Experiment 3, in vitro treatment with melatonin enhanced basal proliferation of lymphocytes from male hamsters exposed to short days for 12 weeks, but had no effect on lymphocytes of photorefractory hamsters or long-day control hamsters. Lymphocytes of castrated hamsters were unresponsive to in vitro melatonin, suggesting that photoperiodic changes in gonadal hormone secretion may be required to activate mechanisms which permit differential responsiveness to melatonin depending on phase in the annual reproductive cycle. Together, these data indicate that, similar to the reproductive system, the immune system of male Siberian hamsters exhibits refractoriness to short days.  相似文献   

8.
Thyroid hormone and long days interact to programme American tree sparrows (Spizella arborea) for seasonality (i.e. thyroid hormone-dependent photoperiodic gonadal growth, photorefractoriness, and postnuptial moult). This study explored in radiothyroidectomized (THX) males given thyroid hormone replacement therapy whether thyroid hormone acts within the brain and, additionally, the identity of the putative tissue-active thyroid hormone. The minimum dose (30 ng) of L-thyroxine (T4) that restored all components of seasonality when given i.c.v. daily during the first 21 days of photostimulation restored no component of seasonality when given s.c. The same dose of L-triiodothyronine (T3) also was ineffective when administered s.c., but restored photoperiodic testicular growth (though neither photorefractoriness nor postnuptial moult) when admiministered i.c.v. Three of seven birds given a 10-fold lower dose of T4 (3 ng) exhibited thyroid hormone-dependent photoperiodic testicular growth, albeit damped. The other four birds given 3 ng T4 and all birds given 3 ng T3 responded like THX controls, exhibiting only slight thyroid hormone-independent photoperiodic testicular growth. The highest dose (300 ng) of T3 restored all components of seasonality only when administered i.c.v. daily during the first 49 days of photostimulation. This demonstration in American tree sparrows is the first in any species that the thyroid-dependent transition from the breeding season to the non-breeding season can be effected by T3. The same dose of reverse T3 administered daily over the same 49 days restored photoperiodic testicular growth in only half of 10 subjects and photorefractoriness and moult in none. Collectively, the data support the hypothesis that thyroid hormone acts centrally to programme photostimulated male American tree sparrows for all components of seasonality. The most parsimonious interpretation of the data, including the threshold-like effect of 3 ng T4, favours T4 as the tissue-active thyroid hormone for vernal as well as autumnal events, but does not entirely exclude T3.  相似文献   

9.
Changes in response to photoperiod are of fundamental importance to seasonal cycles in avian reproductive development. In this study we present data on photo-induced changes in gonadotropin-releasing hormone (GnRH) immunoreactivity associated with the development of photorefractoriness in males of 3 closely related species of cardueline finch: common redpoll (Carduelis flammea), pine siskin (C. pinus) and white-winged crossbill (Loxia leucoptera). All are nomadic, mid- to high-latitude breeders with varying levels of reproductive flexibility: redpolls are typically seasonal, pine siskins more flexibly seasonal and white-winged crossbills temporally opportunistic. Males were exposed to either long (20L:4D) or short days (5L:19D), beginning in January, and GnRH was assessed via immunocytochemistry 4.5 months later. Plasma LH, testis size, and molt score were also measured. Significant reductions in the number of irGnRH cells detected, cross-sectional cell area and optical density of these cells occurred in both redpolls and siskins on long, as compared with short, days. These decreases in irGnRH, coupled with spontaneous testicular regression and onset of molt were consistent with the development of absolute photorefractoriness on constant long days. In contrast, the tendency for numbers of GnRH immunopositive cells and mean measures of GnRH immunoreactivity (cell area, optical density and axonal fiber density) to decrease were much more moderate in white-winged crossbills held on long versus short days. Although none of the four measures of GnRH immunoreactivity differed significantly between treatments in crossbills, significant shifts in the frequency distribution of irGnRH neurons to include greater numbers of less immunoreactive cells suggested that antigenic GnRH content was reduced in many cells. These photo-induced shifts in optical densities of GnRH cells in long-day, as compared with short-day crossbills followed, to a lesser extent, the pattern in pine siskins and common redpolls. For all three species, patterns of decrease in GnRH immunoreactivity, gonadal regression and molt suggest that some form of refractoriness to photostimulation develops on constant long days. However, more moderate tendencies for GnRH immunoreactivity to decrease in white-winged crossbills, coupled with limited gonadal regression and molt on long days suggest that absolute photorefractoriness might develop more slowly in this taxon than in others, or alternatively, a condition arises that is more similar to relative photorefractoriness. These data indicate that relatively small differences in the response of the neuroendocrine system to stimulatory cues such as day length may lead to remarkably different capabilities for reproductive flexibility even within a closely related family of birds.  相似文献   

10.
Long term changes in the secretion of prolactin were monitored in groups of hypothalamo-pituitary disconnected rams (HPD rams, n = 8) and control rams (HPD sham-operated and unoperated, n = 8) while exposed to an artificial lighting regimen of alternating 16-weekly periods of long days (16L : 8D) and short days (8L : 16D) for 72 weeks, and during a treatment with subcutaneous constant-release implants of melatonin under long days. The HPD rams showed all the clinical characteristics of complete pituitary disconnection (diabetes insipidus, gonadal regression and slight obesity), and were unresponsive to a range of provocation tests (exposure to a barking sheep dog, cannulation of the jugular vein, injection of serotonin and NMDA) which caused acute changes in the blood plasma concentrations of prolactin in the controls. Nevertheless, there was a clearly defined cycle in the blood concentrations of prolactin in the HPD rams related to the imposed lighting regimen with values 10-fold higher under long days compared to short days (HPD mean ± SEM: 90.1 ± 24.7 vs 9.4 ± 2.0 μl, long vs short day respectively, P < 0.001). The temporal pattern was very similar to that observed in the controls, although the concentrations of prolactin were higher in the HPD rams and more variable (control mean ± SEM: 55.6 ± 3.6 vs 3.0±0.5 μl, long vs short day, P < 0.001). There was a corresponding cycle in the growth and moulting of the wool in the HPD rams consistent with a biological response to the photoperiodically-induced changes in the secretion of prolactin. The diurnal rhythm in the blood concentrations of prolactin was absent in the HPD rams, but there was a normal rhythm in the secretion of melatonin. The treatment of the animals with constant-release implants of melatonin under long days caused a marked decrease in the blood concentrations of prolactin in both the HPD and control rams. The overall conclusion is that the endogenously generated daily melatonin signal which encodes daylength acts directly in the pituitary gland to mediate the effects of photo-period on the secretion of prolactin. The photo-period transduction pathway thus by-passes the hypothalamus.  相似文献   

11.
12.
In the ewe, plasma luteinizing hormone and prolactin concentrations exhibit seasonal variations. During long days, inhibition of pulsatile luteinizing hormone secretion is mediated by monoamines. In a model of ovariectomized ewes bearing a subcutaneous oestradiol implant, we previously showed that the steroid-dependent inhibition of luteinizing hormone involves the A15 dopaminergic nucleus of the retrochiasmatic area. In the present work, we compared the aminergic activities of tele-diencephalic structures in groups of ovariectomized ewes under artificial illumination for short versus long days (8 versus 16 h/day of light, respectively). Half the animals in each group were bearing a subcutaneous oestradiol implant. Using high-performance liquid chromatography and electrochemical detection, we measured the levels of amines and amine metabolites in ‘punches’ of tissues from regions containing luteinizing hormone-releasing hormone axon terminals or cell bodies and catecholaminergic structures. Concurrently, we checked the pulsatile luteinizing hormone release and plasma prolactin concentration to assess the ability of our model to mimic seasonal changes in the hormonal status. As expected, ovariectomized ewes with a subcutaneous oestradiol implant showed an inhibition of the pulsatile luteinizing hormone release under long days. A higher concentration of plasma prolactin was also observed under long days, without any effect of the steroid treatment. Under this light regimen, statistically significant higher contents of dopamine than under short days were found in the stalk-median eminence. Larger contents of homovanillic acid, a dopamine metabolite, and 4-hydroxy-3-methoxyphenylethyleneglycol (MHPG), a noradrenaline metabolite were observed in the infundibular nucleus, while the catechola-mines themselves remained unchanged. Furthermore, oestradiol also significantly increased the content of MHPG in the latter structure. During long days, animals without oestradiol treatment exhibited a significant lower content of noradrenaline in the A15 nucleus, without any alteration of the dopamine content. Daylength or oestradiol treatment had no significant effects on the levels of amines or amine metabolites in the preoptic or septal areas. Thus, our results in the ewe underline the role played by the medial basal hypothalamus in the catecholaminergic regulation of seasonal changes in hormone release and suggest modifications in the turnover of the neurotransmitters in some structures.  相似文献   

13.
Summary Photosensitivity of the quail subcommissural organ (SCO) is demonstrated. When the birds are submitted to continuous light the SCO cells appear depleted in secretory material and the enzyme activities investigated are of greater intensity. Such a diminished secretory content is observed in birds exposed to short daylength when they are injected with testosterone derivatives.Besides, injections of antiandrogenic compounds in continuously illuminated quails abolish the decrease of the secretory material induced by photostimulation. These results indicate that the SCO responsiveness to light appears to be mediated by some hormonal mechanism. Moreover it is more than a generalized metabolic effect: the response to antiandrogen injections suggests indeed that the SCO is a likely target organ for hormonal action.  相似文献   

14.
To assess whether the mediobasal hypothalamus (MBH) is necessary for photoperiodic control of oestrous cycles and prolactin secretion, we tested intact female Syrian hamsters (controls) and those that had sustained unilateral or bilateral lesions of the MBH. All hamsters displayed 4-day oestrous cycles postoperatively in the long-day photoperiod (14 h light/day); control females and those with unilateral MBH damage ceased to undergo oestrous cycles approximately 8 weeks after transfer to a short-day photocycle (10 h light/day), whereas 12 of 15 females with bilateral MBH lesions continued to generate 4-day oestrous cycles throughout 22 weeks in short days. Serum prolactin concentrations were either undetectable or low in all hamsters 8 or 14 weeks after the transfer to short-day lengths, but increased above long-day baseline values by week 22. We conclude that melatonin-binding sites in the MBH mediate suppression of oestrous cycles but not prolactin secretion by short-day lengths; recovery of prolactin secretion in females during prolonged exposure to short-day lengths reflects development of refractoriness to melatonin in a substrate distinct from the MBH. These findings suggest that separate neural pathways mediate photoperiodic control of gonadotropin and prolactin secretion in female hamsters.  相似文献   

15.
Siberian hamsters (Phodopus sungorus) undergo reproductive involution following exposure to short winter day lengths. Following approximately 20 weeks of exposure to short day (SD) lengths, hamsters become refractory to the inhibitory effects of SD, and reproductive competence is restored in anticipation of spring. The extent to which changes in gonadal steroid-dependent and -independent regulation of gonadotrophin secretion participate in this vernal reactivation of the gonads is not known. This experiment tested whether tonic and gonadotrophin-releasing hormone (GnRH)-stimulated regulation of lutenising hormone (LH) secretion differs between photoresponsive and photorefractory Siberian hamsters. Male hamsters born into long day (LD) lengths were castrated or subjected to a sham-castration surgery at 17 days of age, implanted s.c. with blank or testosterone-filled capsules, and housed in LD or SD thereafter. Baseline LH and LH responses to GnRH (200 ng/kg, s.c) were measured at 14 (photoresponsive) and 40 (photorefractory) weeks of age. Despite lower circulating testosterone concentrations in gonadally regressed SD hamsters on week 14, tonic LH concentrations were comparable among all groups of gonad-intact hamsters on weeks 14 and 40; however, week 14 SD hamsters exhibited significantly higher GnRH-stimulated LH responses. Tonic LH concentrations were indistinguishable among all groups of castrated hamsters bearing empty implants on week 14, but prolonged exposure to LD led to a decrease in resting LH, whereas prolonged exposure to SD resulted in an increase in LH. In castrated hamsters bearing testosterone implants, baseline LH concentrations were comparable in all groups, but GnRH treatment resulted in significantly higher LH concentrations in photorefractory (week 40, SD) hamsters relative to all other groups. The data suggest that the development of photorefractoriness in Siberian hamsters is characterised by enhanced gonadal hormone-independent stimulation of LH secretion, and diminished sensitivity to inhibitory negative-feedback effects of testosterone on LH secretion. Decreases in responsiveness of gonadotrophin secretion to gonadal hormone negative feedback may contribute to the process of photorefractoriness and assist in maintaining the growth of reproductive organs during the process of gonadal recrudescence.  相似文献   

16.
A previous study provided evidence that melatonin acts in the pituitary gland to mediate the effects of daylength on the secretion of prolactin in sheep. This was based on the observation that hypothalamo-pituitary disconnected (HPD) Soay rams showed normal patterns in the changes in the peripheral blood concentrations of prolactin in response to alterations in photoperiod (10-fold higher concentrations under long than short days), and in response to exogenous melatonin (rapid decline following the administration of a constant-release implant of melatonin). The purpose of this study was to establish whether dopamine (DA) might be involved in mediating the effects of melatonin on the secretion of prolactin. Groups of HPD (n = 7) and control Soay rams (n = 8) were treated with vehicle (control, 2.0 ml 0.1 M tartaric acid/saline sc), bromocriptine (DA agonist, 0.06 mg/kg sc) or sulpiride (DA antagonist, 0.6 mg/kg sc), and the acute prolactin responses were measured over the next 4 h. Treatments were carried out under short days (8L:16D, low prolactin), long days (16L:8D, high prolactin), and under long days in the presence of a constant-release implant of melatonin (low prolactin). The prolactin response to TRH (1.25μg/kg iv) was also measured. Bromocriptine caused a decrease in the plasma concentrations of prolactin in both HPD and control rams under short and long days. Sulpiride had no effect in the HPD rams on any occasion, but caused a very marked increase in the plasma concentrations of prolactin in the control rams under short days, long days, and under long days + melatonin. TRH caused an acute increase in the plasma concentrations of prolactin in the HPD rams under both long and short days although the responses were notably reduced compared with the controls especially under long days + melatonin. Overall, the inhibitory response to the DA agonist in HPD rams indicates the presence of DA D2 receptors linked to functional lactotrophs in the isolated pituitary gland. However, the total lack of a response to the DA antagonist indicates the absence of endogenous DA mechanisms regulating the secretion of prolactin in the HPD rams. The conclusion is that melatonin acts directly on the pituitary gland to mediate effects of photoperiod through a DA-independent mechanism.  相似文献   

17.
Two experiments examined the expression of gonadotrophin‐releasing and inhibiting hormones (GnRH‐I, GnRH‐II and GnIH), neuropeptide Y (NPY) and vasoactive intestinal peptide (VIP) in subtropical Indian weaver birds, which demonstrate relative photorefractoriness. Experiment 1 measured peptide expression levels in the form of immunoreactive (‐IR) cells, percentage cell area and cell optical density in the preoptic area (GnRH‐I), midbrain (GnRH‐II), paraventricular nucleus (GnIH), mediobasal hypothalamus [dorsomedial hypothalamus (DMH), infundibular complex (INc), NPY and VIP] and lateral septal organ (VIP) during the progressive, breeding, regressive and nonbreeding phases of the annual reproductive cycle. GnRH‐I was decreased in the nonbreeding and VIP was increased in INc in the breeding and regressive states. GnRH‐II and NPY levels did not differ between the testicular phases. Double‐labelled immunohistochemistry (IHC) revealed a close association between the GnRH/GnIH, GnRH/NPY, GnRH/VIP and GnIH/NPY peptide systems, implicating them interacting and playing roles in the reproductive regulation in weaver birds. Experiment 2 further measured these peptide levels in the middle of day and night in weaver birds that were maintained under short days (8 : 16 h light /dark cycle; photosensitive), exposed to ten long days (16 : 8 h light /dark cycle; photostimulated) or maintained for approximately 2 years on a 16 : 8 h light /dark cycle (photorefractory). Reproductively immature testes in these groups precluded the possible effect of an enhanced gonadal feedback on the hypothalamic peptide expression. There were group differences in the GnRH‐I (not GnRH‐II), GnIH, NPY and VIP immunoreactivity, albeit with variations in immunoreactivity measures in the present study. These results, which are consistent with those reported in birds with relative photorefractoriness, show the distribution and possibly a complex interaction of key neuropeptides in the regulation of the annual reproductive cycle in Indian weaver birds.  相似文献   

18.
Bilateral lesions were placed in the sexually dimorphic nucleus of the preoptic area (SDN-POA) in castrated adult male rats in an attempt to determine a physiologic role for this nucleus. These lesions significantly attenuated the increase in plasma FSH and LH due to simultaneous castration at 24 hr, and at 7 and 14 days following surgery, and significantly decreased the levels of plasma prolactin on comparison with pre-operative values and those of castrated controls. When rats were castrated and lesions placed at 14 days following castration, plasma levels of FSH, LH and prolactin were significantly decreased at 24 hr and at 7 days following surgery. Lesions which were placed lateral or caudal to the SDN-POA simulated the effects of lesions placed within the SDN-POA upon plasma LH, FSH and prolactin, with lateral lesions being most effective. However, lesions which were placed dorsal or rostral to the SDN-POA had no effect. The results of these studies suggest that the SDN-POA may be involved in the regulation of LH, FSH, and prolactin release.  相似文献   

19.
Siberian hamsters born into short daylengths near the end of the breeding season are reproductively inhibited from birth and delay gonadal maturation until the following spring. This vernal transition to a reproductive phenotype coincides with an abrupt increase in body weight, and both processes are triggered by an interval timing mechanism that becomes insensitive, or refractory, to short-day inhibition. It was previously demonstrated that hamsters born into simulated natural photoperiods in early August became photorefractory at later ages than hamsters born into September photoperiods. As a consequence of flexibility in the duration programmed by the interval timer, development of seasonal birth cohorts was synchronous with respect to the calendar date simulated by laboratory photoperiod. In the present study, hamsters were born into simulated August or September photoperiods. Hamsters from each cohort were given removable constant release melatonin implants to reversibly obscure the neuroendocrine representation of daylength between 3 and 9 weeks or 9-15 weeks of age. When control hamsters were given beeswax capsules throughout, August-born males were approximately 6 weeks older than September males at the onset of photorefractoriness as assessed by accelerated increases in body weight and testicular size. Females exhibited the same pattern in body weight. These measures were synchronized with respect to calendar date. Synchronization of cohorts was disrupted by melatonin capsules from 3-9 weeks of age but not by later implants. Melatonin implants altered synchronization by influencing the developmental trajectory of September-born hamsters without influencing the August cohort. These results demonstrate that the function of the interval timer underlying photorefractoriness is influenced by photoperiod and by melatonin. The endogenous pattern of melatonin signals adjusts the duration measured by the interval timer to insure that developmental milestones of seasonal cohorts are synchronized with environmental conditions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号