首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The magnetic resonance absorption spectrum, T1 and T2 relaxation time distributions, and magnetization transfer properties of ex vivo breast tissue have been characterized at 1.5 T and 37°C. The fraction of fibroglandular tissue within individual tissue samples (n = 31) was inferred from the tissue volumetric water content obtained by integration of resolvable broad-line fat and water resonances. The spectroscopically estimated water content was strongly correlated with that extracted enzymatically (Pearson correlation coefficient 0.98, P « 0.01), which enabled the assignment of principal relaxation components for fibroglandular tissue (T2 = 0.04 ± 0.01, T1 = 1.33 ± 0.24 s), and for adipose tissue (T2 = 0.13 ± 0.01, T1 = 0.23 ± 0.01 s, and T2 = 0.38 ± 0.03, T1 = 0.62 ± 0.16 s). The relaxation components for fibroglandular tissue exhibited strong magnetization transfer, whereas those for adipose tissue showed little magnetization transfer effect. These results ultimately have applicability to the optimization of clinical magnetic resonance imaging and research investigations of the breast.  相似文献   

2.
Fatty liver is thought to have a shorter T1 relaxation time than normal liver tissue, due to the accumulation of triglyceride. Previous studies regarding T1 and T2 relaxation times, however, show widely different results. In order to elucidate the mechanism responsible for the changes and diversity of relaxation times in fatty liver, we created two animal models in 14 rabbits, one acute form (N = 6) and the other chronic form (N = 8). Four rabbits were taken as a control group. Tissue relaxation times and the magnetization transfer (MT) effect of the liver tissue in these two models were measured. The results were correlated with biochemical analysis of water and fat content and histological examination, including findings in light microscopy and electron microscopy. Although the fatty ratio in both forms of fatty liver was similar, their tissue relaxation rate and MT effect were significantly different. The acute form showed prolongation of both T1 and T2 relaxation times (512 +/- 51 msec vs. 710 +/- 95 msec and 39 +/- 1.8 msec vs. 48 +/- 3.7 msec, respectively) and a decrease of the MT effect (50 +/- 5.1% vs. 38 +/- 6.3%), compared to those of the control group and preinduction liver. The chronic form showed shorter T1 and T2 values (526 +/- 36 msec vs. 406 +/- 56 msec and 36 +/- 1.6 msec vs. 33 +/- 2.3 msec, respectively) and a stronger MT effect (21 +/- 0.9% vs. 26 +/- 2.3%). In acute form fatty liver, electron microscopic examination revealed dramatic subcellular changes, such as vesicular transformation, a markedly increased amount of smooth endoplasmic reticulum (SER), and disruption of the crista. These changes were not found in the chronic form fatty liver. From this study, we concluded that the ultrastructural alteration in the subcellular organelles of hepatocyte might play a crucial role for the chameleonic presentation of MR tissue parameters in fatty liver.  相似文献   

3.
It has been shown that quantitative MRI thermometry using the proton resonance frequency (PRF) method can be used to noninvasively monitor the evolution of tissue temperature, and to guide minimally-invasive tumor ablation based on local hyperthermia. Although hepatic tumors are among the main targets for thermal ablation, PRF-based temperature MRI of the liver is difficult to perform because of motion artifacts, fat content, and low T(*) (2). In this study the stability of real-time thermometry was tested on a clinical 1.5 T scanner for rabbit liver in vivo. The fast segmented EPI principle was used together with respiratory gating to limit respiratory motion artifacts. Lipid signal suppression was achieved with a binomial excitation pulse. Saturation slabs were applied to suppress artifacts due to flowing blood. The respiratory-gated MR thermometry in the rabbit liver in vivo showed a standard deviation (SD) of 1-3 degrees C with a temporal resolution of 3 s per slice and 1.4 mm x 1.9 mm spatial resolution in plane (slice thickness = 5 mm). The method was used to guide thermal ablation experiments with a clinical infrared laser. The estimated size of the necrotic area, based on the thermal dose calculated from MR temperature maps, corresponded well with the actual lesion size determined by histology and conventional MR images obtained 5 days posttreatment. These results show that quantitative MR temperature mapping can be obtained in the liver in vivo, and can be used for real-time control of thermal ablation and for lesion size prediction.  相似文献   

4.
Analysis of changes in MR properties of tissues after heat treatment.   总被引:2,自引:0,他引:2  
To characterize changes in the MR parameters of tissues due to thermal coagulation, a series of T(1), T(2), diffusion, and magnetization transfer measurements were performed on a variety of ex vivo tissues: murine slow twitch skeletal muscle, murine cardiac muscle, murine cerebral hemisphere, bovine white matter, murine liver tissue, bovine retroperitoneal adipose tissue, hen egg white, human prostate and human blood. Standardized heat treatments were performed for each tissue type, over the temperature range from 37 degrees C to 90 degrees C. For all tissues, changes in each MR measurement resulting from thermal coagulation were observed above a threshold temperature of approximately 60 degrees C. These changes are explained based on biophysical knowledge of thermal damage mechanisms and the MR properties of normal tissues, and are particularly relevant for interpreting the changes in image contrast that are observed when MRI is used to guide and monitor thermal coagulation therapy procedures. Magn Reson Med 42:1061-1071, 1999.  相似文献   

5.

Purpose

To measure temperature change and magnetization transfer ratio (MTR) simultaneously during high‐intensity focused ultrasound (HIFU) treatment.

Materials and Methods

This study proposed an interleaved dual gradient‐echo technique to monitor the heat and tissue damage brought to the heated tissue. The technique was applied to tissue samples to test its efficacy.

Results

Ex vivo experiments on the porcine muscle demonstrated that both temperature changes and MTR exhibited high consistency in localizing the heated regions. As the heat dissipated after the treatment, the temperature of the heated regions decreased rapidly but MTR continued to be elevated. Moreover, thermal dose (TD) maps derived from the temperature curves demonstrated a sharp margin in the heated regions, but MTR maps may show a spatial gradient of tissue damage, suggesting complimentary information provided by these two measures.

Conclusion

In a protocol of spot‐by‐spot heating over a large volume of tissue, MTR provides additional values to mark the locations of previously heated regions. By continuously recording the locations of heated spots, MTR maps could help plan the next target spots appropriately, potentially improving the efficiency of HIFU treatment and reducing undesirable damage to the normal tissue. J. Magn. Reson. Imaging 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

6.
7.
A new NMR parameter is suggested as a sensitive tool for monitoring thermal coagulation of liver tissue. That parameter is the proton magnetization exchange time (tau(MEX)) between water and the proteins. tau(MEX) was very sensitive to coagulation and insensitive to temperature, therefore representing only damage to the tissue, independent of effects caused by temperature fluctuations. The measurement of tau(MEX) by two different methods revealed the existence of two or more groups of proteins, characterized by their different transverse relaxation time, and tau(MEX).  相似文献   

8.
9.
The value of quantitative MR methods as potential biomarkers in neuromuscular disease is being increasingly recognized. Previous studies of the magnetization transfer ratio have demonstrated sensitivity to muscle disease. The aim of this work was to investigate quantitative magnetization transfer imaging of skeletal muscle in healthy subjects at 3 T to evaluate its potential use in pathological muscle. The lower limb of 10 subjects was imaged using a 3D fast low‐angle shot acquisition with variable magnetization transfer saturation pulse frequencies and amplitudes. The data were analyzed with an established quantitative two‐pool model of magnetization transfer. T1 and B1 amplitude of excitation radiofrequency field maps were acquired and used as inputs to the quantitative magnetization transfer model, allowing properties of the free and restricted proton pools in muscle to be evaluated in seven different muscles in a region of interest analysis. The average restricted pool T2 relaxation time was found to be 5.9 ± 0.2μs in the soleus muscle and the restricted proton pool fraction was 8 ± 1%. Quantitative magnetization transfer imaging of muscle offers potential new biomarkers in muscle disease within a clinically feasible scan time. Magn Reson Med, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

10.

Purpose

To measure the proton density (PD), the T1 and T2 relaxation time, and magnetization transfer (MT) effects in human median nerve at 3 T and to compare them with the corresponding values in muscle.

Materials and Methods

Measurements of the T1 and T2 relaxation time were performed with an inversion recovery and a Carr‐Purcell‐Meiboom‐Gill (CPMG) imaging sequence, respectively. The MT ratio was measured by acquiring two sets of 3D spoiled gradient‐echo images, with and without a Gaussian saturation pulse.

Results

The median nerve T1 was 1410 ± 70 msec. The T2 decay consisted of two components, with average T2 values of 26 ± 2 msec and 96 ± 3 msec and normalized amplitudes of 78 ± 4% and 22 ± 4%, respectively. The dominant component is likely to reflect myelin water and connective tissue, and the less abundant component originates possibly from intra‐axonal water protons. The value of proton density of MRI‐visible protons in median nerve was 81 ± 3% that of muscle. The MT ratio in median nerve (40.3 ± 2.0%) was smaller than in muscle (45.4 ± 0.5%).

Conclusion

MRI‐relevant properties, such as PD, T1 and T2 relaxation time, and MT ratio were measured in human median nerve at 3 T and were in many respects similar to those of muscle. J. Magn. Reson. Imaging 2009;29:982–986. © 2009 Wiley‐Liss, Inc.  相似文献   

11.
12.
The temperature-dependent water proton frequency shift was investigated for temperature monitoring of interstitial thermal coagulation. A procedure for online temperature calculation was developed, and errors due to temperature-dependent susceptibility were investigated by finite element analysis and reference measurements. The temperature coefficient of magnetic susceptibility and proton chemical shift were determined for brain tissue and other substances. With the proposed procedure, the location of isotherms could be well visualized during laser-induced interstitial coagulation in vitro and in vivo. Systematic errors caused by magnetic susceptibility changes with temperature depend strongly on the characteristics of the heat source and can exceed susceptibility effects caused by physiologic tissue changes. For the laser applicators discussed here, however, a first order compensation for this effect was found to be satisfactory, because it reduces the absolute error to the range of ± 1°C. The proposed method represents a very promising approach for monitoring of the interstitial thermal coagulation.  相似文献   

13.
Water proton spin-lattice relaxation times are commonly used as a guide in establishing the off-resonance irradiation time as well as the repetition time of the magnetization transfer experiment. T1 discrimination effects occur if the motionally restricted spin bath longitudinal magnetization does not reach thermal equilibrium. In this study we developed the formalism necessary for the evaluation of T1 discrimination contributions to proton magnetization transfer arising from the use of a short repetition time relative to the spin-lattice relaxation time of the motionally restricted spin bath. The results of computer simulation indicate that T1, discrimination contributions occur when the repetition time is small relative to the spin-lattice relaxation time of the motionally restricted spin bath, and when the off-resonance irradiation is weak and far off-resonance. For somewhat longer repetition times, T1 discrimination contributions become important only when the cross relaxation rate is small, and the fractional amount of motionally restricted component large. The occurrence of T1 discrimination effects results in distortion of water proton intensity ratio dispersion curves thereby resulting in the estimation of erroneous magnetization transfer parameters, whereas in magnetization transfer contrast enhanced imaging, such contributions are manifested by a decrease in image contrast.  相似文献   

14.
T1 and T2 relaxation, and magnetization transfer (MT) of the rat brain were measured during experimentally induced spreading depression (SD). All measured MR parameters changed during SD: T1 relaxation increased by approximately 13%, whereas the T2 increase was substantially larger (88%). MT results showed an MT ratio (MTR) decrease of 9%. The lack of change in the MT exchange rate indicated that the MT processes between water and macromolecular protons are not affected by neuronal depolarization. The observed decrease in MTR was only caused by changes in T1 and T2 relaxation.  相似文献   

15.
T2 relaxation makes an important contribution to tissue contrast in magnetic resonance (MR) imaging. Many tissues are known to exhibit multicomponent T2 relaxation that suggests some compartmental segregation of mobile protons on a T2 timescale. Magnetization transfer (MT) is another relaxation mechanism that can be used to produce tissue contrast in MR imaging. The MT process depends strongly on water-macromolecular interactions. To investigate the relationship between multicomponent T2 relaxation and the MT process, multiecho T2 measurements have been combined with MT measurements for freshly excised samples of cardiac muscle, striated muscle, and white matter. For muscle, short T2 components show greater MT than long T2 components, consistent with the belief that they represent distinct water environments. For white matter, quantitative MT measurements were identical for the two major T2 components, apparently because of exchange between the T2 compartments on a timescale characteristic of the MT experiment. Implications for accurate modeling of MT in tissue and the use of MT for MR image contrast are discussed.  相似文献   

16.
PURPOSE: The aim of this study was to investigate the effect of magnetization transfer on multislice T1 and T2 measurements of articular cartilage. MATERIALS AND METHODS: A set of phantoms with different concentrations of collagen and contrast agent (Gd-DTPA2-) were used for the in vitro study. A total of 20 healthy knees were used for the in vivo study. T1 and T2 measurements were performed using fast-spin-echo inversion-recovery (FSE-IR) sequence and multi-spin-echo (MSE) sequence, respectively, in both in vitro and in vivo studies. We investigated the difference in T1 and T2 values between that measured by single-slice acquisition and that measured by multislice acquisition. RESULTS: Regarding T1 measurement, a large drop of T1 in all slices and also a large interslice variation in T1 were observed when multislice acquisition was used. Regarding T2 measurement, a substantial drop of T2 in all slices was observed; however, there was no apparent interslice variation when multislice acquisition was used. CONCLUSION: This study demonstrated that the adaptation of multislice acquisition technique for T1 measurement using FSE-IR methodology is difficult and its use for clinical evaluation is problematic. In contrast, multislice acquisition for T2 measurement using MSE was clinically applicable if inaccuracies caused by multislice acquisition were taken into account.  相似文献   

17.
18.
19.
20.
Comprehensive and quantitative measurements of T1 and T2 relaxation times of water, metabolites, and macromolecules in rat brain under similar experimental conditions at three high magnetic field strengths (4.0 T, 9.4 T, and 11.7 T) are presented. Water relaxation showed a highly significant increase (T1) and decrease (T2) with increasing field strength for all nine analyzed brain structures. Similar but less pronounced effects were observed for all metabolites. Macromolecules displayed field-independent T2 relaxation and a strong increase of T1 with field strength. Among other features, these data show that while spectral resolution continues to increase with field strength, the absolute signal-to-noise ratio (SNR) in T1/T2-based anatomical MRI quickly levels off beyond approximately 7 T and may actually decrease at higher magnetic fields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号