首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 645 毫秒
1.
We previously demonstrated that the combination of a farnesyltransferase inhibitor, manumycin A, and paclitaxel had a synergistic antineoplastic effect on anaplastic thyroid cancer. In this study we investigated the apoptosis pathway involved. In ARO and KAT-4 cells, manumycin- plus paclitaxel-induced DNA fragmentation was blocked by the inhibitors of caspase-9, caspase-8, and caspase-3. The drug combination enhanced the activation of caspase-9, caspase-8, and caspase-3 and cytochrome c release into the cytosol. Cytochrome c release was not affected by the inhibitors of caspase-9, caspase-8 and caspase-3. In a cell-free reconstitution assay, DNA fragmentation occurred after incubating nuclei purified from untreated KAT-4 cells with deoxy-ATP, exogenous cytochrome c and S-100 extracts from control KAT-4 cells, and also after incubation of purified KAT-4 nuclei with S-100 extracts from KAT-4 cells treated with manumycin-plus-paclitaxel. In both cases, the DNA fragmentation was blocked by the inhibitors of caspase-9, caspase-8 and caspase-3. We concluded that the cytochrome c release was upstream of the activation of caspase-9, caspase-8, and caspase-3 in the enhanced apoptosis of anaplastic thyroid cancer cells treated with manumycin plus paclitaxel, and that the interaction between manumycin and paclitaxel occurred at or upstream of cytochrome c in the apoptosis regulatory pathway in anaplastic thyroid cancer cells.  相似文献   

2.
3.
In this study, flow cytometry was used to evaluate interleukin-6 (IL-6) production by bone marrow mononuclear cells from 47 patients with multiple myeloma (MM) in different clinical stages and 15 patients with monoclonal gammopathy of undetermined significance. In patients with MM, autocrine IL-6 production paralleled the clinical disease stage. The largest proportion of syndecan-1(+)/IL-6(+) cells was detected in patients with resistant relapse or primary refractory disease, suggesting that tumor progression involves expansion of myeloma cells producing IL-6. The authors assessed autocrine IL-6 production and in vitro proliferation and apoptosis of myeloma cells in 6 myeloma cell clones (MCCs) and in 2 myeloma cell lines, namely IM-9 and U-266-1970, which showed different sensitivities to the addition of exogenous IL-6. Autocrine IL-6 production was observed in IL-6-independent MCC-2, MCC-3, and MCC-5 cloned from patients with aggressive disease and in the IM-9 cell line. In contrast, IL-6-dependent MCC-1, MCC-4, and MCC-6 were syndecan-1(+) and IL-6(-). Blocking experiments with anti-IL-6 monoclonal antibody from clone AH65, which binds IL-6-IL-6Ralpha complexes, prevented cell proliferation of IL-6(+) MCCs. Flow cytometry evaluations after propidium iodide staining revealed different susceptibilities of MCCs to cell death. IL-6-producing MCCs showed minimal spontaneous and dexamethasone-induced apoptosis, whereas a regular amplitude of apoptosis occurred in the IL-6(-) MCCs. These data provide evidence that autocrine IL-6 reflects a highly malignant phenotype of myeloma cells. In fact, autocrine IL-6 production and deregulated apoptosis may induce expansion of selective IL-6(+) myeloma cells resistant to spontaneous and drug-induced cell death.  相似文献   

4.
Liu Q  Gazitt Y 《Blood》2003,101(10):4105-4114
Overexpression of Bcl-2 in myeloma cells results in resistance to drugs such as dexamethasone (DEX), adenovirus-mediated delivery of p53 (Ad-p53), and paclitaxel (TAX), which work through the intrinsic apoptotic pathway. Bcl-2 antisense oligodeoxynucleotides (Bcl-2-ASO) have been shown to induce apoptosis in cancer cells, as a single agent or, better, in combination with chemotherapy. We hypothesized that down-regulation of Bcl-2 by Bcl-2-ASO will sensitize drug-resistant myeloma cells to undergo apoptosis. In this paper we report a detailed time/dose study of the effect of Bcl-2-ASO on myeloma cells with varying levels of Bcl-2. Treatment of myeloma cells expressing relatively low levels of Bcl-2 with Bcl-2-ASO resulted in a substantial apoptosis concomitant with a substantial depletion of Bcl-2 protein. Maximal apoptosis was observed at 5 to 10 microg/mL Bcl-2-ASO, following 4 days of treatment. Down-regulation of Bcl-2 and apoptosis were time and dose dependent and were sequence specific. In these cell lines, apoptosis was accompanied by activation of caspase-9 and caspase-3 and by release of cytochrome c to the cytosol. In contrast, high Bcl-2-expressing myeloma cells were practically resistant to Bcl-2-ASO. Most important, however, pretreatment of myeloma cells expressing high levels of Bcl-2 with Bcl-2-ASO increased the extent of DEX-, TAX-, and Ad-p53-induced apoptosis from 10%-20% to 70%-90%. Increased apoptosis was accompanied by additional decrease in Bcl-2 protein. Similar results for down-regulation of Bcl-2 and apoptosis were obtained with freshly isolated myeloma cells. These data support development of clinical trials with combinations of Bcl-2-ASO and DEX, TAX, or Ad-p53 in the treatment of refractory myeloma patients.  相似文献   

5.
Ma Z  Otsuyama K  Liu S  Abroun S  Ishikawa H  Tsuyama N  Obata M  Li FJ  Zheng X  Maki Y  Miyamoto K  Kawano MM 《Blood》2005,105(8):3312-3318
In the search for a more effective adjuvant therapy to treat multiple myeloma (MM), we investigated the effects of the traditional Chinese herbal medicines Huang-Lian-Jie-Du-Tang (HLJDT), Gui-Zhi-Fu-Ling-Wan (GZFLW), and Huang-Lian-Tang (HLT) on the proliferation and apoptosis of myeloma cells. HLJDT inhibited the proliferation of myeloma cell lines and the survival of primary myeloma cells, especially MPC-1- immature myeloma cells, and induced apoptosis in myeloma cell lines via a mitochondria-mediated pathway by reducing mitochondrial membrane potential and activating caspase-9 and caspase-3. Further experiments confirmed that Scutellaria radix was responsible for the suppressive effect of HLJDT on myeloma cell proliferation, and the baicalein in Scutellaria radix showed strong growth inhibition and induction of apoptosis in comparison with baicalin or wogonin. Baicalein as well as baicalin suppressed the survival in vitro of MPC-1- immature myeloma cells rather than MPC-1+ myeloma cells from myeloma patients. Baicalein inhibited the phosphorylation of IkB-alpha, which was followed by decreased expression of the IL-6 and XIAP genes and activation of caspase-9 and caspase-3. Therefore, HLJDT and Scutellaria radix have an antiproliferative effect on myeloma cells, especially MPC-1- immature myeloma cells, and baicalein may be responsible for the suppressive effect of Scutellaria radix by blocking IkB-alpha degradation.  相似文献   

6.
Our previous studies demonstrated that manumycin (a farnesyltransferase inhibitor) enhanced the antineoplastic activity and induction of apoptosis when combined with paclitaxel against anaplastic thyroid cancer cells. We found that manumycin induces endogenous expression of p21 Waf-1 in anaplastic thyroid cancer cells. Manumycin increased the activity of the p21promoter, the level of p21mRNA, and the amount of p21 protein. We hypothesized that p21 had a proapoptotic effect in cells treated with manumycin, or paclitaxel, or both agents. By measuring viability and caspase-3 activity, we found that stably transfected KAT-4 cells with p21 cDNA under the control of a metallothionein promoter were more sensitive to manumycin alone, paclitaxel alone, and manumycin plus paclitaxel when p21was induced. The increased sensitivity of the cells with induced p21 was associated with an increase in caspase-3 activity (i.e. apoptosis). We also found that cells with both p21 alleles deleted were less sensitive to manumycin plus paclitaxel than its wild-type parent cells. Expression of p21 per se did not induce apoptosis but enhanced the cytotoxic effects of manumycin and paclitaxel. These findings suggested that p21 might be required to maintain cell sensitivity to the cytotoxic effects of manumycin and paclitaxel.  相似文献   

7.
OBJECTIVE: Interleukin-6 (IL-6) is a multifunctional cytokine affecting growth and survival of normal B cell lineage and multiple myeloma cells. To test the hypothesis that IL-6, as well as other hematopoietic growth factors, may enhance apoptosis of target cells, we investigated the effect of IL-6 on myeloma cells in the presence of IFN-alpha, which is prescribed for patients with multiple myeloma. MATERIALS AND METHODS: Four myeloma cell lines, PCM6, NOP-2, U266, RPMI8226 were tested. We determined the induction of apoptosis by flow cytometry, using an FITC-Annexin V. RESULTS: IFN-alpha induced apoptosis on myeloma cell lines, and this apoptosis was further enhanced in the presence of IL-6, via activation of caspase 3. During induction of this apoptosis, the expression of c-Myc and Fas increased. The addition of IL-6 further increased the expression of Fas, but not that of c-Myc. Bcl-2, Bcl-x, and p53 were not affected by the addition of IL-6 and/or IFN-alpha. Addition of a PI-3-K inhibitor interfered with the enhancing effect of IL-6 on the apoptosis induced by IFN-alpha. CONCLUSION: We propose that IL-6 has the death signal, as well as growth promoting effects, and that PI-3-K may play a key role in the induction of apoptosis by IL-6.  相似文献   

8.
We previously demonstrated that the combination of paclitaxel and manumycin A, a farnesyltransferase inhibitor, enhanced apoptosis of anaplastic thyroid cancer (ATC) cells. However, the mechanism of the manumycin-induced apoptosis is not fully understood. In this study, we discovered that mitochondrial ultrastructure condensation occurred after treatment with manumycin or manumycin plus paclitaxel. Bongkrekic acid and cyclosporin A, which are known inhibitors of the voltage-dependent anion channel, failed to inhibit cytochrome c release induced by manumycin or manumycin plus paclitaxel, suggesting that mitochondrial permeability transition pores were not involved. We also found that manumycin induced translocation of Bcl-2-associated X protein (Bax), another possible mediator of cytochrome c release, from the cytosol to the mitochondria. Silencing Bax with a specific small interfering RNA blocked manumycin-induced mitochondrial condensation and cytochrome c release, arguing the dependence of manumycin-induced apoptosis on Bax. Using a binary adenoviral vector system, we found that overexpression of Bax enhanced manumycin-induced apoptosis of ATC cells, and the combination of manumycin and overexpression of Bax increased inhibition of ATC xenograft growth in nude mice. Thus, we concluded that manumycin-induced apoptosis in ATC cells was primarily mediated by Bax and that increasing Bax expression may sensitize ATC cells to manumycin.  相似文献   

9.
10.
11.
Multiple myeloma (MM) is a plasma cell malignancy that occurs mainly in bone marrow. As MM cells proliferate slowly, it would seem essential to find means of preventing their growth and accumulation inside bone marrow. The present study used an antisense strategy to elucidate the respective roles of Bcl-2, Bcl-x(L), and Mcl-1 proteins in myeloma cell survival. Each antisense oligonucleotide (ASO; Bcl-2, Bcl-x(L), or Mcl-1 ASO) introduced into human myeloma cell lines by electroporation induced a marked reduction in the level of the corresponding protein. Mcl-1 ASO triggers an important decrease of viability in all myeloma cell lines tested and in 2 primary myeloma cells, whereas neither Bcl-2 nor Bcl-x(L) ASO affected the viability of myeloma cells. The decrease of cell viability induced by Mcl-1 ASO treatment was associated with an induction of apoptosis that occurred through the disruption of mitochondrial membrane potential Delta Psi m and the activation of executioner caspase-3. Furthermore, we have shown that interleukin 6 cannot prevent the Mcl-1 ASO-induced apoptosis. Finally, although Bcl-2 ASO treatment alone has no effect, it can sensitize myeloma cell lines to dexamethasone (Dex), whereas Bcl-x(L) ASO in combination with Dex still had no effect. As MM remains an incurable disease despite intensive chemotherapy, these results suggest that Mcl-1 antisense strategy rather than Bcl-2 antisense strategy could be of considerable importance in the treatment of MM.  相似文献   

12.
David E  Sun SY  Waller EK  Chen J  Khuri FR  Lonial S 《Blood》2005,106(13):4322-4329
The identification of signaling pathways critical to myeloma growth and progression has yielded an array of novel agents with clinical activity. Multiple myeloma (MM) growth is IL-6 dependent, and IL-6 is secreted in an autocrine/paracrine fashion with signaling via the Ras/Raf/mitogen-activated protein kinase (MAPK) pathway. We hypothesized that combining a Ras pathway inhibitor (lonafarnib, SCH66336) with a proteasome inhibitor (bortezomib, Velcade, PS-341) would enhance myeloma-cell killing. MM cell lines and primary human cells were used to test either single agent bortezomib, lonafarnib, or the combination on MM signaling and apoptosis. Combination therapy induced synergistic tumor-cell death in MM cell lines and primary MM plasma cells. Cell death was rapid and associated with increased caspase 3, 8, and 9 cleavage and concomitant down-regulation of p-AKT. Down-regulation of p-AKT was seen only in combination therapy and not seen with either single agent. Cells transfected with constitutively active p-AKT, wild-type AKT, or Bcl-2 continued to demonstrate synergistic cell death in response to the combination. The order of addition was critically important, supporting bortezomib followed by lonafarnib as the optimal schedule. The combination of a proteasome inhibitor and farnesyl transferase inhibitor demonstrates synergistic myeloma-cell death and warrants further preclinical and clinical studies.  相似文献   

13.
Multifunctional role of Erk5 in multiple myeloma   总被引:2,自引:0,他引:2       下载免费PDF全文
Multiple myeloma is characterized by the accumulation of terminally differentiated B cells in the bone marrow, due to increased proliferation and restricted apoptosis of the myelomatous clone. Here we have studied the participation of a novel mitogen-activated protein kinase (MAPK) route, the extracellular signal-regulated kinase 5 (Erk5) pathway, in the regulation of myeloma cell proliferation and apoptosis. Erk5 was expressed in cells isolated from patients and in myeloma cell lines. The myeloma growth factor interleukin 6 (IL-6) activated Erk5, and this activation was independent of Ras and Src. Expression of a dominant-negative form of Erk5 restricted the proliferation of myeloma cells and inhibited IL-6-dependent cell duplication. This dominant-negative form also sensitized myeloma cells to the proapoptotic action of dexamethasone and PS341. The latter compound caused a profound decrease in the amount of endogenous Erk5 and was less effective in inducing apoptosis when the level of Erk5 was increased by transfection of Erk5. These results place the Erk5 route as a new regulatory signaling pathway that affects multiple myeloma proliferation and apoptosis.  相似文献   

14.
Mcl-1 and Bcl-xL are co-regulated by IL-6 in human myeloma cells   总被引:3,自引:0,他引:3  
Multiple myeloma (MM) is a slowly proliferative malignancy in which malignant plasma cells accumulate within the bone marrow. The expression of several anti-apoptotic proteins was evaluated by immunoblotting in human myeloma cell lines and in highly purified native myeloma cells. Expression of Bcl-xL, Mcl-1 and Bcl-2 was found in most of the samples; expression of Bcl-xL and Mcl-1 seemed to be related on myeloma cells. In a system of apoptosis by growth factor deprivation on myeloma cells, we showed that the effect of Bcl-2 seemed minimal whereas Mcl-1 and Bcl-xL were tightly regulated by interleukin (IL)-6. These findings underline the important role of Mcl-1 and Bcl-xL instead of Bcl-2 in IL-6-induced survival of myeloma cells.  相似文献   

15.
A novel small molecule inhibitor, 4-(3-methoxy-phenylsulfannyl)-7-nitro-benzofurazan-3-oxide (MNB), competes with the Bak BH3 peptide to bind Bcl-2 protein with a binding affinity of IC50 = 0.70 μM, as assessed by a fluorescence polarization based binding assay. HL-60 cells express the highest levels of Bcl-2 among the cell lines examined. Treated with 5 μM of MNB only for 6 h, 85% of HL-60 cells were detected to undergo apoptosis. Pan-caspase inhibitor, Z-VAD-FMK, blocks MNB-induced apoptosis in HL-60 cells. Caspase-2, caspase-3, caspase-7, caspase-8, caspase-9, and PARP activation were observed at as early as 4 to 6 h of MNB treatment. In addition, it has been confirmed that the caspase-3 specific inhibitor, Z-DEVD-FMK, blocks the activation of caspase-8 in MNB-treated HL-60 cells. MNB treatment does not change Bcl-2 or Bax expression level in HL-60 cells, but causes Bid cleavage. Further experiments have illustrated that MNB inhibits the heterodimerization of Bcl-2 with Bax or Bid, reduces the mitochondrial membrane potential (ΔΨmt), and induces cytochrome c release from mitochondria in HL-60 cells. These results suggest that MNB induces apoptosis in HL-60 by inhibiting the heterodimerization of Bcl-2 with pro-apoptosis Bcl-2 members, resulting in a decrease in the mitochondrial membrane potential and cytochrome c release, activation of caspases and PARP; it is a caspase-dependent process in which the activation of caspase-8 is dependent on the mitochondrial apoptosis signal transduction pathway. MNB prolongs the life spans of HL-60 bearing mice, potently kills fresh AML and ALL cells, indicating that it has the potential to be developed to treat leukemia.  相似文献   

16.
Interleukin-21 is a growth and survival factor for human myeloma cells   总被引:20,自引:3,他引:17       下载免费PDF全文
Brenne AT  Ro TB  Waage A  Sundan A  Borset M  Hjorth-Hansen H 《Blood》2002,99(10):3756-3762
Interleukin-21 (IL-21) is a recently cloned cytokine with homology to IL-2, IL-4, and IL-15. In this study we examined the effects of IL-21 on human myeloma cells. We found that IL-21 induced proliferation and inhibited apoptosis of the IL-6-dependent human myeloma cell lines ANBL-6, IH-1, and OH-2. The potency of IL-21 was close to that of IL-6 in the OH-2 cell line. Neutralizing antibodies to IL-6 or the IL-6 receptor transducer chain (gp130) did not affect IL-21-induced DNA synthesis, indicating that IL-21-induced proliferation was not mediated through these proteins. Tumor necrosis factor (TNF), another stimulator of myeloma cell growth, up-regulated the expression level of IL-21 receptor (IL-21R), and combinations of TNF and IL-21 gave synergistic effects on myeloma cell proliferation. Furthermore, 4 of 9 purified samples of primary myeloma cells showed a significant increase in DNA synthesis on stimulation of the cells by IL-21. By Western blot analysis, we demonstrated that the intracellular signaling pathways of IL-21 in myeloma cells involved phosphorylation of Jak1, Stat3, and Erk1/2 (p44/42 mitogen-activated protein kinase). IL-21 is a novel growth and survival factor in multiple myeloma and may represent a target for future therapy.  相似文献   

17.
Signalling through the interleukin (IL)-6 pathway induces proliferation and drug resistance of multiple myeloma cells. We therefore sought to determine whether the IL-6-neutralizing monoclonal antibody siltuximab, formerly CNTO 328, could enhance the activity of melphalan, and to examine some of the mechanisms underlying this interaction. Siltuximab increased the cytotoxicity of melphalan in KAS-6/1, INA-6, ANBL-6, and RPMI 8226 human myeloma cell lines (HMCLs) in an additive-to-synergistic manner, and sensitized resistant RPMI 8226.LR5 cells to melphalan. These anti-proliferative effects were accompanied by enhanced activation of drug-specific apoptosis in HMCLs grown in suspension, and in HMCLs co-cultured with a human-derived stromal cell line. Siltuximab with melphalan enhanced activation of caspase-8, caspase-9, and the downstream effector caspase-3 compared with either of the single agents. This increased induction of cell death occurred in association with enhanced Bak activation. Neutralization of IL-6 also suppressed signalling through the phosphoinositide 3-kinase/Akt pathway, as evidenced by decreased phosphorylation of Akt, p70 S6 kinase and 4E-BP1. Importantly, the siltuximab/melphalan regimen demonstrated enhanced anti-proliferative effects against primary plasma cells derived from patients with myeloma, monoclonal gammopathy of undetermined significance, and amyloidosis. These studies provide a rationale for translation of siltuximab into the clinic in combination with melphalan-based therapies.  相似文献   

18.
BACKGROUND: Vascular endothelium undergoes apoptosis when exposed to reactive oxygen species (ROS), including hydrogen peroxide and superoxide radicals. ROS are believed to be the cause of damage to small vessels during ischemia-reperfusion injury and of arterial damage during atherosclerosis. Hydrogen peroxide-induced apoptosis is mediated through the inhibition of Bcl-xl activity and caspase-3 and caspase-9 activation. The BH4 domain of the Bcl-2 family members is responsible for their antiapoptotic activity. The BH4 domains of Bcl-2 and Bcl-xl inhibit cytochrome c release and the loss of mitochondrial membrane potential. METHODS AND RESULTS: The purpose of this project was to study the antiapoptotic effect of cell-permeant derivative of Bcl-2 (BH4 peptide) on endothelial cells exposed to stress conditions. BH4 peptide was conjugated to the cell-permeable peptide TAT and was applied to endothelial cells under conditions of serum starvation and hydrogen peroxide treatment. TAT-BH4 reduced caspase-3 activity and prevented apoptotic cell death. CONCLUSION: Our results indicate that TAT-BH4 peptide can protect endothelial cells from ROS-induced apoptosis.  相似文献   

19.
Defects in apoptosis mechanisms play important roles in malignancy and autoimmunity. Orphan nuclear receptor Nur77/TR3 has been demonstrated to bind antiapoptotic protein Bcl-2 and convert it from a cytoprotective to a cytodestructive protein, representing a phenotypic conversion mechanism. Of the 6 antiapoptotic human Bcl-2 family members, we found that Nur77/TR3 binds strongest to Bcl-B, showing selective reactivity with Bcl-B, Bcl-2, and Bfl-1 but not Bcl-X(L), Mcl-1, or Bcl-W. Nur77 converts the phenotype of Bcl-B from antiapoptotic to proapoptotic. Bcl-B is prominently expressed in plasma cells and multiple myeloma. Endogenous Bcl-B associates with endogenous Nur77 in RPMI 8226 myeloma cells, where RNA interference experiments demonstrated dependence on Bcl-B for Nur77-induced apoptosis. Furthermore, a Nur77-mimicking peptide killed RPMI 8226 myeloma cells through a Bcl-B-dependent mechanism. Because Bcl-B is abundantly expressed in plasma cells and some myelomas, these findings raise the possibility of exploiting the Nur77/Bcl-B mechanism for apoptosis for eradication of autoimmune plasma cells or myeloma.  相似文献   

20.
Dewson G  Cohen GM  Wardlaw AJ 《Blood》2001,98(7):2239-2247
The apoptosis and subsequent clearance of eosinophils without histotoxic mediator release is thought to be crucial in the resolution of airway inflammation in asthma. Interleukin-5 (IL-5) is a potent suppressor of eosinophil apoptosis. The mechanism by which IL-5 inhibits spontaneous eosinophil apoptosis was investigated. Freshly isolated eosinophils constitutively expressed the conformationally active form of Bax in the cytosol and nucleus. During spontaneous and staurosporine-induced apoptosis, Bax underwent a caspase-independent translocation to the mitochondria, which was inhibited by IL-5. Eosinophil apoptosis was associated with the release of cytochrome c from the mitochondria, which was also inhibited by IL-5. IL-5 and the cell-permeable caspase inhibitor, benzyloxycarbonyl-Val-Ala-Asp-(OMe) fluoromethyl ketone (z-VAD.fmk), prevented phosphatidylserine (PS) externalization, although only IL-5 inhibited loss of mitochondrial membrane potential (DeltaPsim). Peripheral blood eosinophils endogenously expressed "initiator" caspase-8 and -9, and "effector" caspase-3, -6, and -7. Spontaneous eosinophil apoptosis was associated with processing of caspase-3, -6, -7, -8, and -9. IL-5 and z-VAD.fmk prevented caspase activation in spontaneous apoptosis. The results suggest that spontaneous eosinophil apoptosis involves Bax translocation to the mitochondria, cytochrome c release, caspase-independent perturbation of the mitochondrial membrane, and subsequent activation of caspases. IL-5 inhibits spontaneous eosinophil apoptosis at a site upstream of Bax translocation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号