首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Conversion of single-stranded DNA of phage ϕX174 to the double-stranded replicative form in Escherichia coli uses enzymes essential for initiation and replication of the host chromosome. These enzymes can now be purified by the assay that this phage system provides. The ϕX174 conversion is distinct from that of M13. The reaction requires different host enzymes and is resistant to rifampicin and streptolydigin, inhibitors of RNA polymerase. However, RNA synthesis is essential for ϕX174 DNA synthesis: the reaction is inhibited by low concentrations of actinomycin D, all four ribonucleoside triphosphates are required, and an average of one phosphodiester bond links DNA to RNA in the isolated double-stranded circles. Thus, we presume that, as in the case of M13, synthesis of a short RNA chain primes the synthesis of a replicative form by DNA polymerase. Initiation of DNA synthesis by RNA priming is a mechanism of wide significance.  相似文献   

3.
Rift Valley fever and Toscana viruses are human pathogens for which no effective therapeutics exist. These and other phleboviruses have segmented negative-sense RNA genomes that are sequestered by a nucleocapsid protein (N) to form ribonucleoprotein (RNP) complexes of irregular, asymmetric structure, previously uncharacterized at high resolution. N binds nonspecifically to single-stranded RNA with nanomolar affinity. Crystal structures of Rift Valley fever virus N-RNA complexes reconstituted with defined RNAs of different length capture tetrameric, pentameric and hexameric N-RNA multimers. All N-N subunit contacts are mediated by a highly flexible α-helical arm. Arm movement gives rise to the three multimers in the crystal structures and also explains the asymmetric architecture of the RNP. Despite the flexible association of subunits, the crystal structures reveal an invariant, monomeric RNP building block, consisting of the core of one N subunit, the arm of a neighboring N, and four RNA nucleotides with the flanking phosphates. Up to three additional RNA nucleotides bind between subunits. The monomeric building block is matched in size to the repeating unit in viral RNP, as visualized by electron microscopy. N sequesters four RNA bases in a narrow hydrophobic binding slot and has polar contacts only with the sugar-phosphate backbone, which faces the solvent. All RNA bases, whether in the binding slot or in the subunit interface, face the protein in a manner that is incompatible with base pairing or with “reading” by the viral polymerase.  相似文献   

4.
Positive-sense single-stranded RNA viruses replicate in virus-induced membranous organelles for maximum efficiency and immune escaping. The replication of potato virus X (PVX) takes place on the endoplasmic reticulum (ER); however, how PVX-encoded RNA-dependent RNA polymerase (RdRp) is associated with the ER is still unknown. A proline-kinked amphipathic α-helix was recently found in the MET domain of RdRp. In this study, we further illustrate that the first α-helix of the MET domain is also required for ER association. Moreover, we found that the MET domain forms multimers on ER and the first α-helix is essential for multimerization. These results suggest that the RdRp of PVX adopts more than one hydrophobic motif for membrane association and for multimerization.  相似文献   

5.
6.
Small RNAs of ≈20–30 nt have diverse and important biological roles in eukaryotic organisms. After being generated by Dicer or Piwi proteins, all small RNAs in plants and a subset of small RNAs in animals are further modified at their 3′-terminal nucleotides via 2′-O-methylation, carried out by the S-adenosylmethionine-dependent methyltransferase (MTase) Hen1. Methylation at the 3′ terminus is vital for biological functions of these small RNAs. Here, we report four crystal structures of the MTase domain of a bacterial homolog of Hen1 from Clostridium thermocellum and Anabaena variabilis, which are enzymatically indistinguishable from the eukaryotic Hen1 in their ability to methylate small single-stranded RNAs. The structures reveal that, in addition to the core fold of the MTase domain shared by other RNA and DNA MTases, the MTase domain of Hen1 possesses a motif and a domain that are highly conserved and are unique to Hen1. The unique motif and domain are likely to be involved in RNA substrate recognition and catalysis. The structures allowed us to construct a docking model of an RNA substrate bound to the MTase domain of bacterial Hen1, which is likely similar to that of the eukaryotic counterpart. The model, supported by mutational studies, provides insight into RNA substrate specificity and catalytic mechanism of Hen1.  相似文献   

7.
In cultured pea roots there is extrachromosomal DNA associated with cells that differentiate from the G2 phase of the cell cycle that is absent from those that differentiate from the G1 phase. We examined this extrachromosomal DNA by electron microscopy and found that it consisted of three types: (i) double-stranded linear molecules with single-stranded branches (74%), (ii) double-stranded molecules without branches (26%), and (iii) free single-stranded molecules. The double-stranded molecules with or without branches were similar in length, having a modal length of 10-15 μm. The free single-stranded molecules were shorter and had a mean length of 3.8 μm. The length of the branches attached to the duplex molecules was only slightly less than that of the free form. The duplex molecules with branches were interpreted as configurations reflecting an ongoing strand-displacement process that results in free single-stranded molecules. Finally, measurements on duplex molecules with multiple branches suggested that the extrachromosomal DNA may exist in the form of tandemly repeated sequences.  相似文献   

8.
9.
The gene A product of Escherichia coli bacteriophage ϕX 174, necessary for initiation of ϕX DNA synthesis, has been identified and purified to near homogeneity. The gene A protein is shown to be a highly specific DNA endonuclease which breaks one phosphodiester bond in the viral strand of either double-stranded, circular ϕX replicative form I (RFI), or in single-stranded, circular ϕX viral DNA; it is inactive against all other species of DNA tested.  相似文献   

10.
The sequencing of individual DNA strands with nanopores is under investigation as a rapid, low-cost platform in which bases are identified in order as the DNA strand is transported through a pore under an electrical potential. Although the preparation of solid-state nanopores is improving, biological nanopores, such as α-hemolysin (αHL), are advantageous because they can be precisely manipulated by genetic modification. Here, we show that the transmembrane β-barrel of an engineered αHL pore contains 3 recognition sites that can be used to identify all 4 DNA bases in an immobilized single-stranded DNA molecule, whether they are located in an otherwise homopolymeric DNA strand or in a heteropolymeric strand. The additional steps required to enable nanopore DNA sequencing are outlined.  相似文献   

11.
The site specificity of phosphorylation of the α subunit of eukaryotic initiation factor 2 (eIF-2α) by the heme-regulated and double-stranded RNA-activated eIF-2α kinases were compared by phosphopeptide mapping. eIF-2α was maximally phosphorylated in vitro with [γ-32P]ATP and either crude or partially purified preparations of the kinases. 32P-Labeled eIF-2α was isolated by electrophoresis in sodium dodecyl sulfate/polyacrylamide gels. The fixed, stained, and dried polypeptide band was excised and then exhaustively digested directly in the gel slice with one of several proteases (trypsin, chymotrypsin, subtilisin, or thermolysin); the resultant [32P]phosphopeptides were analyzed by one-dimensional chromatography or by two-dimensional chromatography and high-voltage electrophoresis. In addition, limited proteolysis of [32P]eIF-2α contained in fixed, dried, and stained gel slices was achieved with Staphylococcus aureus protease V8, chymotrypsin, or subtilisin, and the partial 32P-labeled cleavage products were analyzed by gel electrophoresis. Each protease produced distinct and reproducible [32P]phosphopeptide profiles after partial or exhaustive proteolysis of [32P]eIF-2α. With a given protease, identical [32P]phosphopeptide patterns were obtained whether eIF-2α was phosphorylated by the heme-regulated or the double-stranded RNA-activated kinase. These data indicate that, in vitro, the kinases phosphorylate sites on eIF-2α that are identical or proximally located in the primary sequence. In this report we also provide preliminary evidence that the two eIF-2α kinases activated in lysates by heme deficiency or double-stranded RNA phosphorylate site(s) of endogenous eIF-2α that are similar, if not identical, to the sites phosphorylated in vitro with partially purified eIF-2α kinase(s) and eIF-2.  相似文献   

12.
This work describes the rational design, synthesis, and study of a ligand that selectively complexes CUG repeats in RNA (and CTG repeats in DNA) with high nanomolar affinity. This sequence is considered a causative agent of myotonic dystrophy type 1 (DM1) because of its ability to sequester muscleblind-like (MBNL) proteins. Ligand 1 was synthesized in two steps from commercially available compounds, and its binding to CTG and CUG repeats in oligonucleotides studied. Isothermal titration calorimetry studies of 1 with various sequences showed a preference toward the T-T mismatch (Kd of 390 ± 80 nM) with a 13-, 169-, and 85-fold reduction in affinity toward single C-C, A-A, and G-G mismatches, respectively. Binding and Job analysis of 1 to multiple CTG step sequences revealed high affinity binding to every other T-T mismatch with negative cooperativity for proximal T-T mismatches. The affinity of 1 for a (CUG)4 step provided a Kd of 430 nM with a binding stoichiometry of 1:1. The preference for the U-U in RNA was maintained with a 6-, >143-, and >143-fold reduction in affinity toward single C-C, A-A, and G-G mismatches, respectively. Ligand 1 destabilized the complexes formed between MBNL1N and (CUG)4 and (CUG)12 with IC50 values of 52 ± 20 μM and 46 ± 7 μM, respectively, and Ki values of 6 ± 2 μM and 7 ± 1 μM, respectively. These values were only minimally altered by the addition of competitor tRNA. Ligand 1 does not destabilize the unrelated RNA-protein complexes the U1A-SL2 RNA complex and the Sex lethal-tra RNA complex. Thus, ligand 1 selectively destabilizes the MBNL1N-poly(CUG) complex.  相似文献   

13.
The CurA halogenase (Hal) catalyzes a cryptic chlorination leading to cyclopropane ring formation in the synthesis of the natural product curacin A. Hal belongs to a family of enzymes that use Fe2+, O2 and α-ketoglutarate (αKG) to perform a variety of halogenation reactions in natural product biosynthesis. Crystal structures of the enzyme in five ligand states reveal strikingly different open and closed conformations dependent on αKG binding. The open form represents ligand-free enzyme, preventing substrate from entering the active site until both αKG and chloride are bound, while the closed form represents the holoenzyme with αKG and chloride coordinated to iron. Candidate amino acid residues involved in substrate recognition were identified by site-directed mutagenesis. These new structures provide direct evidence of a conformational switch driven by αKG leading to chlorination of an early pathway intermediate.  相似文献   

14.
T-DNA nuclear import is a central event in genetic transformation of plant cells by Agrobacterium. Presumably, the T-DNA transport intermediate is a single-stranded DNA molecule associated with two bacterial proteins, VirD2 and VirE2, which most likely mediate the transport process. While VirE2 cooperatively coats the transported single-stranded DNA, VirD2 is covalently attached to its 5′ end. To better understand the mechanism of VirD2 action, a cellular receptor for VirD2 was identified and its encoding gene cloned from Arabidopsis. The identified protein, designated AtKAPα, specifically bound VirD2 in vivo and in vitro. VirD2–AtKAPα interaction was absolutely dependent on the carboxyl-terminal bipartite nuclear localization signal sequence of VirD2. The deduced amino acid sequence of AtKAPα was homologous to yeast and animal nuclear localization signal-binding proteins belonging to the karyopherin α family. Indeed, AtKAPα efficiently rescued a yeast mutant defective for nuclear import. Furthermore, AtKAPα specifically mediated transport of VirD2 into the nuclei of permeabilized yeast cells.  相似文献   

15.
In many bacterial viruses and in certain animal viruses, the double-stranded DNA genome enters and exits the capsid through a portal gatekeeper. We report a pseudoatomic structure of a complete portal system. The bacteriophage SPP1 gatekeeper is composed of dodecamers of the portal protein gp6, the adaptor gp15, and the stopper gp16. The solution structures of gp15 and gp16 were determined by NMR. They were then docked together with the X-ray structure of gp6 into the electron density of the ≈1-MDa SPP1 portal complex purified from DNA-filled capsids. The resulting structure reveals that gatekeeper assembly is accompanied by a large rearrangement of the gp15 structure and by folding of a flexible loop of gp16 to form an intersubunit parallel β-sheet that closes the portal channel. This stopper system prevents release of packaged DNA. Disulfide cross-linking between β-strands of the stopper blocks the key conformational changes that control genome ejection from the virus at the beginning of host infection.  相似文献   

16.
Human Cleavage Factor Im (CFIm) is an essential component of the pre-mRNA 3′ processing complex that functions in the regulation of poly(A) site selection through the recognition of UGUA sequences upstream of the poly(A) site. Although the highly conserved 25 kDa subunit (CFIm25) of the CFIm complex possesses a characteristic α/β/α Nudix fold, CFIm25 has no detectable hydrolase activity. Here we report the crystal structures of the human CFIm25 homodimer in complex with UGUAAA and UUGUAU RNA sequences. CFIm25 is the first Nudix protein to be reported to bind RNA in a sequence-specific manner. The UGUA sequence contributes to binding specificity through an intramolecular G:A Watson–Crick/sugar-edge base interaction, an unusual pairing previously found to be involved in the binding specificity of the SAM-III riboswitch. The structures, together with mutational data, suggest a novel mechanism for the simultaneous sequence-specific recognition of two UGUA elements within the pre-mRNA. Furthermore, the mutually exclusive binding of RNA and the signaling molecule Ap4A (diadenosine tetraphosphate) by CFIm25 suggests a potential role for small molecules in the regulation of mRNA 3′ processing.  相似文献   

17.
18.
19.
In human cells infected with herpes simplex virus 1 the double-stranded RNA-dependent protein kinase (PKR) is activated but phosphorylation of the α subunit of eukaryotic translation initiation factor 2 (eIF-2) and total shutoff of protein synthesis is observed only in cells infected with γ1z34.5 mutants. The carboxyl-terminal 64 aa of γ134.5 protein are homologous to the corresponding domain of MyD116, the murine growth arrest and DNA damage gene 34 (GADD34) protein and the two domains are functionally interchangeable in infected cells. This report shows that (i) the carboxyl terminus of MyD116 interacts with protein phosphatase 1α in yeast, and both MyD116 and γ134.5 interact with protein phosphatase 1α in vitro; (ii) protein synthesis in infected cells is strongly inhibited by okadaic acid, a phosphatase 1 inhibitor; and (iii) the α subunit in purified eIF-2 phosphorylated in vitro is specifically dephosphorylated by S10 fractions of wild-type infected cells at a rate 3000 times that of mock-infected cells, whereas the eIF-2α-P phosphatase activity of γ134.5 virus infected cells is lower than that of mock-infected cells. The eIF-2α-P phosphatase activities are sensitive to inhibitor 2. In contrast to eIF-2α-P phosphatase activity, extracts of mock-infected cells exhibit a 2-fold higher phosphatase activity on [32P]phosphorylase than extracts of infected cells. These results indicate that in infected cells, γ134.5 interacts with and redirects phosphatase to dephosphorylate eIF-2α to enable continued protein synthesis despite the presence of activated PKR. The GADD34 protein may have a similar function in eukaryotic cells. The proposed mechanism for maintenance of protein synthesis in the face of double-stranded RNA accumulation is different from that described for viruses examined to date.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号