首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Polychlorinated biphenyls (PCBs) are ubiquitous contaminants found as complex mixtures of coplanar and non-coplanar congeners. The hepatic temporal and dose-dependent effects of the most abundant non-dioxin-like congener, 2,2′,4,4′,5,5′-hexachlorobiphenyl (PCB153), were examined in immature, ovariectomized C57BL/6 mice, and compared to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), the prototypical aryl hydrocarbon receptor (AhR) ligand. Animals were gavaged once with 300 mg/kg PCB153 or sesame oil vehicle and sacrificed 4, 12, 24, 72 or 168 h post dose. In the dose-response study, mice were gavaged with 1, 3, 10, 30, 100 or 300 mg/kg PCB153 or sesame oil for 24 h. Significant increases in relative liver weights were induced with 300 mg/kg PCB153 between 24 and 168 h, accompanied by slight vacuolization and hepatocellular hypertrophy. The hepatic differential expression of 186 and 177 genes was detected using Agilent 4 × 44 K microarrays in the time course (|fold change| ≥ 1.5, P1(t) ≥ 0.999) and dose-response (|fold change| ≥ 1.5, P1(t) ≥ 0.985) studies, respectively. Comparative analysis with TCDD suggests that the differential gene expression elicited by PCB153 was not mediated by the AhR. Furthermore, constitutive androstane and pregnane X receptor (CAR/PXR) regulated genes including Cyp2b10, Cyp3a11, Ces2, Insig2 and Abcc3 were dose-dependently induced by PCB153. Collectively, these results suggest that the hepatocellular effects elicited by PCB153 are qualitatively and quantitatively different from TCDD and suggestive of CAR/PXR regulation.  相似文献   

3.
4.
5.
6.
Epidemiological studies on 2,3,7,8,-tetrachlorodibenzo-p-dioxin (TCDD) exposure indicated high incidences of pulmonary dysfunctions and lung cancer. Animal studies also demonstrated lung cancer development in female, but not in male, rats exposed to TCDD. Such effects, however, have not been reported in polychlorinated biphenyls (PCB) exposure. In our present study, we have investigated the effects of TCDD and PCB126, with or without cotreatment with 17 beta-estradiol (E2), on a human bronchial epithelial cell line BEAS-2B. We found that treatment with either TCDD or PCB126 alone reduced cell numbers as well as thymidine incorporation. Cell death, however, was only detected in PCB126-, but not TCDD-, treated cultures. The TCDD-induced cell reduction, therefore, could not be contributed to cell death. Meanwhile, because TCDD- and PCB126-enhanced CYP1A1 and CYP1B1 expressions were significantly reduced by the AhR antagonist and CYP1 inhibitor alpha-naphthoflavone (ANF), this indicated that the effects of TCDD and PCB126 were AhR and cytochrome p450 1 dependent. We also found that while E2 itself did not alter CYP1A1 and CYP1B1 expressions, cotreatment of E2 with TCDD or PCB126 would significantly enhance TCDD-, but not PCB126-, induced toxicity. We further demonstrated that in the presence of E2, 1 nM TCDD increased the production of E2 metabolites, 2-methoxyestradiol (2-MeOE2) and 4-methoxyestradiol (4-MeOE2). PCB126, however, only increased 2-MeOE2 formation without significant induction of 4-MeOE2. We believe that these metabolites, especially 4-MeOE2, interacted with TCDD to further suppress cell growth. Our data provided the first demonstration on the enhancement of TCDD-induced toxicity in human lung cells via interaction with estrogen.  相似文献   

7.
Hassoun EA  Li F  Abushaban A  Stohs SJ 《Toxicology》2000,145(2-3):103-113
The abilities of single doses of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) to induce oxidative stress in hepatic and some extra-hepatic tissues of animals, are well documented. In this study we have investigated the induction of oxidative stress in hepatic and brain tissues of rats after subchronic (13 weeks) exposure to TCDD and two of its congeners, namely 2,3,4,7,8-pentachlorodibenzofuran (PeCDF) and 3,3',4,4',5-pentachlorobiphenyl (PCB126). TCDD, PeCDF and PCB126 were administered daily to groups of rats at various doses, for 13 weeks, and biomarkers of oxidative stress, including the production of superoxide anion, lipid peroxidation and DNA-single strand breaks (SSBs), were determined in the hepatic and brain tissues at the end of the exposure period. The three congeners caused dose-dependent increases in the production of superoxide anion, lipid proxidation and DNA-SSBs, with maximal effects achieved at doses ranging between 10-100, 20-92, and 300-550 ng/kg per day for TCDD, PeCDF and PCB126, respectively. The doses that produce 50% of maximal responses by each of the xenobiotics in the hepatic and brain tissues were found to be within the ranges of 7-34, 13-32, and 137-400 ng/kg per day for TCDD, PeCDF and PCB126, respectively. The results of the study suggest that subchronic exposures to TCDD, PeCDF and PCB126 induce significant oxidative damage in the hepatic and brain tissues of rats, with more damage observed in the brain as compared to the hepatic tissues. Also, as inducers of oxidative stress in the hepatic and brain tissues, TCDD is the most potent among the three congeners and PCB126 being the least potent.  相似文献   

8.
Halogenated aromatic hydrocarbons (HAHs) are ubiquitous environment contaminants that produce many of their toxic effects by binding to the aryl hydrocarbon receptor (AhR). However, several investigations have demonstrated that certain polychlorinated biphenyl (PCB) congeners, principally di-ortho-chlorinated PCB congeners, or mixtures containing multiple di-ortho-chlorinated PCBs, inhibit AhR-mediated responses induced by other toxic HAHs. Most relevant to the present study are past reports demonstrating antagonism by these uniquely acting PCB congeners on AhR agonist-mediated inhibition of humoral immune responses. The mechanism responsible for antagonism of AhR agonists by certain PCBs is presently unknown. The present study evaluated the antagonist activity of several di-ortho-substituted PCB congeners [PCB47 (2,2',4,4'), PCB52 (2,2',5,5'), PCB128 (2,2',3,3',4,4'), and PCB153 (2,2',4,4',5,5')] when present in combination with AhR agonists [TCDD (2,3,7,8,-tetrachlorodibenzo-p-dioxin), PCB126 (3,3',4,4',5), and PCB77 (3,3',4,4')] on CYP1A1 induction and inhibition of lipopolysaccharide (LPS)-induced immunoglobulin production in the CH12.LX B cell line. In contrast to non-ortho-substituted PCB (PCB77), which showed additive effects on CYP1A1 induction in combination with TCDD, all of the di-ortho-substituted PCBs examined produced antagonism. Di-ortho-substituted PCB (PCB52) also antagonized TCDD- or PCB126- mediated inhibition of IgM secretion and immunoglobulin heavy chain mRNA expression in the LPS-activated B cells. In addition, PCB52 inhibited TCDD-induced AhR DNA binding to a dioxin-responsive element. Collectively, these results suggest that the mechanism responsible for antagonism by di-ortho-substituted PCB congeners of AhR agonist-mediated CYP1A1 induction and inhibition of antibody responses in B cells occurs through interference with agonist activation of the cytosolic AhR complex.  相似文献   

9.
We evaluated gingival toxicities induced by chronic exposure of female Harlan Sprague-Dawley rats to dioxin and dioxin-like compounds (DLCs) and compared them to similarly induced oral lesions reported in the literature. This investigation represents part of an ongoing initiative of the National Toxicology Program to determine the relative potency of chronic toxicity and carcinogenicity of polychlorinated dioxins, furans, and biphenyls. For two years, animals were administered by gavage 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD); 3,3',4,4',5-pentachlorobiphenyl (PCB126); 2,3,4,7,8-pentachlorodibenzofuran (PeCDF); 2,2',4,4',5,5'-hexachlorobiphenyl (PCB153); a tertiary mixture of TCDD, PCB126, and PeCDF; a binary mixture of PCB126 and 153; or a binary mixture of PCB126 and 2,3',4,4',5-pentachlorobiphenyl (PCB118); control animals received corn oil-acetone vehicle (99:1) alone. A full complement of tissues, including the palate with teeth, was examined microscopically. In the groups treated with TCDD and the mixtures of TCDD, PCB126, and PeCDF; PCB126 and 153; and PCB126 and 118, the incidences of gingival squamous hyperplasia increased significantly. Moreover, in the groups treated with TCDD, PCB126, and the mixture of PCB126 and 153, squamous cell carcinoma (SCC) in the oral cavity increased significantly. This investigation constitutes the first report documenting that chronic administration of dioxin-like PCBs can induce gingival SCC in rats. These results indicate that dioxin and DLCs target the gingiva of the oral cavity, in particular the junctional epithelium of molars.  相似文献   

10.
Dioxins and polychlorinated biphenyls (PCBs) have been shown to accumulate in the adrenal glands when incorporated into the body. However, the impacts of exposure on adrenal steroidogenesis have not been thoroughly investigated. In this study, we demonstrated that dioxin-like PCB126 altered androgen, cortisol, and aldosterone biosynthesis differentially in human adrenocortical H295R cells. PCB126 diminished basal and cAMP-induced androstenedione production as well as CYP17 mRNA expression in a dose-dependent and time-dependent manner. The CYP17 repression was accompanied with decreases in the encoded 17 alpha-hydroxylase and 17,20-lyase activities, particularly the latter. In contrast, high concentrations of PCB126 stimulated basal cortisol and aldosterone biosynthesis, including induction of CYP21B, CYP11B1, and CYP11B2 mRNA expression and elevation of the conversion of cortisol from 17-OH-progesterone and aldosterone from progesterone. cAMP abolished the positive effect of PCB126 on cortisol synthesis, while it synergistically enhanced PCB126 stimulation on CYP11B2 expression and aldosterone production. It seemed likely that the downregulation of CYP21B caused by the combination of PCB126 and cAMP counteracted the CYP11B1 induction stimulated by the co-treatment. In addition, high concentrations of PCB126 might sensitize the regulation of adrenocorticotropin (ACTH) on the adrenocortical cells by increasing ACTH receptor levels. Because adrenal steroids have profound influences on glucose tolerance, insulin sensitivity, lipid metabolism, obesity, vascular function, and cardiac remodeling, this article also discusses the potential association of the detected adrenocortical alterations with increased diabetic and cardiovascular risk found among highly exposed people.  相似文献   

11.
Polychlorinated biphenyls are persistent environmental pollutants that elicit a wide range of effects in humans and wildlife, mediated by the aryl hydrocarbon receptor. 3,3',4,4',5-pentachlorobiphenyl (PCB126) is the most potent congener with relative effect potencies ranging from 0.0026 to 0.857, and a toxic equivalency factor (TEF) of 0.1 set by an expert panel of the World Health Organization. In this study, the hepatic effects elicited by 300 microg/kg PCB126 were compared with 30 microg/kg 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in immature, ovariectomized female C57BL/6 mice. Comprehensive hepatic gene expression analyses with complementary histopathology, high-resolution gas chromatograph/high-resolution mass spectrometer tissue analysis, and clinical chemistry were examined. For temporal analysis, mice were orally gavaged with PCB126 or sesame oil vehicle and sacrificed after 2, 4, 8, 12, 18, 24, 72, 120, or 168 h. In the dose-response study, mice were gavaged with 0.3, 1, 3, 10, 30, 100, 300, 1000 microg/kg PCB126, 30 or 100 microg/kg TCDD and sacrificed after 72 h. 251 and 367 genes were differentially expressed by PCB126 at one or more time points or doses, respectively, significantly less than elicited by TCDD. In addition, there was less vacuolization and necrosis, and no immune cell infiltration, despite comparable or higher TEF-adjusted hepatic PCB126 levels. The functional annotation of differentially expressed genes was consistent with the observed histopathology. Collectively, the data indicate that 300 microg/kg PCB126 elicited a subset of weaker effects compared with 30 microg/kg TCDD in immature, ovariectomized C57BL/6 mice.  相似文献   

12.
13.
Polychlorinated biphenyls (PCBs), a structurally diverse group of environmental pollutants, are effective promoters in two-stage cancer models, which implies that epigenetic mechanisms are involved. Inhibition of gap junctional intercellular communication (GJIC) belongs among critical epigenetic events of tumor promotion. We determined the relative potencies of a series of environmentally relevant PCB congeners to inhibit GJIC in vitro in a rat liver epithelial cell line with pluripotent oval cell characteristics. The nonplanar PCBs were potent inhibitors of GJIC, whereas the coplanar PCBs did not inhibit GJIC. We then compared the effects of the coplanar PCB 126 (3,3',4,4',5-pentachlorobiphenyl) and the noncoplanar PCB 153 (2,2',4,4',5,5'-hexachlorobiphenyl) with effects of two model GJIC inhibitors, a tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA) and epidermal growth factor (EGF). In contrast to TPA or EGF, PCB 153 elicited a long-term downregulation of GJIC (up to 48 h). Using Western blot analysis with phospho-specific antibodies, it was found that PCB 153, and not PCB 126, activated mitogen-activated protein kinases ERK1/2; however in contrast to TPA and EGF, this activation was observed at the time points subsequent to GJIC inhibition. Moreover, blocking of ERK1/2 activation did not prevent the GJIC inhibition induced by PCB 153. Therefore, additional intracellular signaling pathways potentially involved in the downregulation of GJIC by PCBs were screened by using specific chemical probes inhibiting serine/threonine kinases, tyrosine kinases, and phospholipases. The inhibition of diacylglycerol lipase partially blocked and the selective inhibition of Src kinases and phosphatidylcholine-specific phospholipase C (PC-PLC) completely blocked the inhibitory effects of the noncoplanar PCB on GJIC, indicating that PC-PLC or sphingomyelinase and Src might be upstream regulators of noncoplanar PCB-induced inhibition of GJIC.  相似文献   

14.
Halogenated agonists for the aryl hydrocarbon receptor (AHR), such as 3,3',4,4',5-pentachlorobiphenyl (PCB126) and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), cause developmental toxicity in fish. AHR dependence of these effects is known for TCDD but only presumed for PCB126, and the AHR-regulated genes involved are known only in part. We defined the role of AHR in regulation of four cytochrome P450 1 (CYP1) genes and the effect of PCB126 on cell cycle genes (i.e., PCNA and cyclin E) in zebra fish (Danio rerio) embryos. Basal and PCB126-induced expression of CYP1A, CYP1B1, CYP1C1, and CYP1C2 was examined over time as well as in relation to cell cycle gene expression and morphological effects of PCB126 in developing zebra fish. The four CYP1 genes differed in the time for maximal basal and induced expression, i.e., CYP1B1 peaked within 2 days postfertilization (dpf), the CYP1Cs around hatching (3 dpf), and CYP1A after hatching (14-21 dpf). These results indicate developmental periods when the CYP1s may play physiological roles. PCB126 (0.3-100nM) caused concentration-dependent CYP1 gene induction (EC50: 1.4-2.7nM, Lowest observed effect concentration [LOEC]: 0.3-1nM) and pericardial edema (EC50: 4.4nM, LOEC: 3nM) in 3-dpf embryos. Blockage of AHR2 translation significantly inhibited these effects of PCB126 and TCDD. PCNA gene expression was reduced by PCB126 in a concentration-dependent manner, suggesting that PCB126 could suppress cell proliferation. Our results indicate that the four CYP1 genes examined are regulated by AHR2 and that the effect of PCB126 on morphology in zebra fish embryos is AHR2 dependent. Moreover, the developmental patterns of expression and induction suggest that CYP1 enzymes could function in normal development and in developmental toxicity of PCB126 in fish embryos.  相似文献   

15.
In utero exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) can have an immediate impact on developmental processes that then lead to long-term deficits in function. To define the specific tissues affected by TCDD during development, we developed a lacZ-reporter gene mouse model driven by activation of the aryl hydrocarbon receptor (AhR). Exposure to TCDD on gestational day (GD) 14 results in strong activation of the lacZ transgene in numerous tissues including fore and hind paws, ear, and genital tubercle. Experiments were conducted to examine the ability of alternative AhR ligands to activate our model system. The coplanar polychlorinated biphenyl congeners 3,4,5,3',4'-pentachlorobiphenyl (PCB126) and 3,4,3',4'-tetrachlorobiphenyl (PCB77) both induced staining in fetal tissues identical to that observed following TCDD exposure. Exposure of fetuses to the PCB mixture Aroclor 1254 and the non-coplanar congener 2,3,6,2',5'-pentachlorobiphenyl (PCB95) did not result in any activation of the lacZ transgene. In addition to the testing of alternative ligands, another line of reporter mice was generated to determine the potential influence of the site of insertion of the lacZ transgene on the reported observations. Both TCDD and the coplanar PCBs induced a similar pattern of staining in the new line as compared to that observed in the original lacZ reporter mouse line. The ability of AhR ligands, other than TCDD, to activate the AhR-mediated transgene, in combination with the insertion-site independence of the response, strengthens the data previously derived from this model and increases the utility of this system for investigations examining AhR-mediated events during development.  相似文献   

16.
The aryl hydrocarbon receptor (AhR) is a promiscuous receptor activated by structurally diverse synthetic and natural compounds. AhR activation may lead to ligand-specific changes in gene expression despite similarities in mode of action. Therefore, differential gene expression elicited by four structurally diverse, high affinity AhR ligands (2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD; 10 nM, 30 μg/kg), 3,3′,4,4′,5-pentachlorobiphenyl (PCB126; 100 nM, 300 μg/kg), β-naphthoflavone (βNF; 10 μM, 90 mg/kg), and indolo[3,2-b]carbazole (ICZ; 1 μM)) in mouse Hepa1c1c7 hepatoma cells and C57BL/6 mouse liver samples were compared. A total of 288, 183, 119, and 131 Hepa1c1c7 genes were differentially expressed (|fold-change| ≥ 1.5, P1(t) ≥ 0.9999) by TCDD, βNF, PCB126, and ICZ, respectively. Only ∼35% were differentially expressed by all 4 ligands in Hepa1c1c7 cells. In vivo, 661, 479, and 265 hepatic genes were differentially expressed following treatment with TCDD, βNF, and PCB126, respectively. Similar to Hepa1c1c7 cells, ≤34% of gene expression changes were common across all ligands. Principal components analysis identified time-dependent gene expression divergence. Comparisons of ligand-elicited expression between Hepa1c1c7 cells and mouse liver identified only 11 common gene expression changes across all ligands. Although metabolism may explain some ligand-specific gene expression changes, PCB126, βNF, and ICZ also elicited divergent expression compared to TCDD, suggestive of selective AhR modulation.  相似文献   

17.
18.
19.
Interactions between environmental contaminants can lead to non-additive effects that may affect the toxicity and risk assessment of a mixture. Comprehensive time course and dose-response studies with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), non-dioxin-like 2,2′,4,4′,5,5′-hexachlorobiphenyl (PCB153) and their mixture were performed in immature, ovariectomized C57BL/6 mice. Mice were gavaged once with 30 μg/kg TCDD, 300 mg/kg PCB153, a mixture of 30 μg/kg TCDD with 300 mg/kg PCB153 (MIX) or sesame oil vehicle for 4,12, 24,72 or 168 h. In the 24 h dose-response study, animals were gavaged with TCDD (0.3,1, 3, 6, 10, 15, 30, 45 μg/kg), PCB153 (3,10, 30, 60, 100, 150, 300, 450 mg/kg), MIX (0.3 + 3, 1 + 10, 3 + 30, 6 + 60, 10 + 100, 15 + 150, 30 + 300, 45 μg/kg TCDD + 450 mg/kg PCB153, respectively) or vehicle. All three treatments significantly increased relative liver weights (RLW), with MIX eliciting significantly greater increases compared to TCDD and PCB153 alone. Histologically, MIX induced hepatocellular hypertrophy, vacuolization, inflammation, hyperplasia and necrosis, a combination of TCDD and PCB153 responses. Complementary lipid analyses identified significant increases in hepatic triglycerides in MIX and TCDD samples, while PCB153 had no effect on lipids. Hepatic PCB153 levels were also significantly increased with TCDD co-treatment. Microarray analysis identified 167 TCDD, 185 PCB153 and 388 MIX unique differentially expressed genes. Statistical modeling of quantitative real-time PCR analysis of Pla2g12a, Serpinb6a, Nqo1, Srxn1, and Dysf verified non-additive expression following MIX treatment compared to TCDD and PCB153 alone. In summary, TCDD and PCB153 co-treatment elicited specific non-additive gene expression effects that are consistent with RLW increases, histopathology, and hepatic lipid accumulation.  相似文献   

20.
In the last few decades, combined exposure to methylmercury (MeHg) and polychlorinated biphenyls (PCBs) from fish and seafood, and their potentially interactive effects on neurodevelopment, have been giving increasing cause for concern. We examined the combined effects of MeHg and either a non-dioxin PCB (PCB153) or a dioxin-like PCB (PCB126) congener on the developing brain cholinergic muscarinic receptors (MRs). These receptors are known to play a major role in many central functions including higher cognitive processes and the modulation of extrapyramidal motor activity. MRs in pup rat brains diminished following prenatal and lactational exposure, from gestational day [GD]7 to postnatal day [PND]21, to MeHg (0.5mg/kgbodyweight[bw]/day), PCB153 (5mg/kgbw/day), and PCB126 (100ng/kg/day), alone or in combination. Total MR density, as well as M1, M2, and M3 receptor subtypes of the weanling and pubertal rats, were affected in a brain-area-, gender-, time- and compound-dependent fashion. MeHg decreased (by 15-20%) the total MR density in a delayed (PND36) manner in the cerebral cortex of both genders, and early (at weaning) in the cerebellum of both genders, with the effect lasting until puberty (in males only). MeHg decreased the ACh M1- and M3-immunopositive neurons in the cerebral cortex and also increased the M2-immunopositive Bergmann glia in the cerebellum. PCB153 also induced a delayed (PND36) decrease (of 20%) in total MR number in the cerebellum of the male offspring and in the cerebral cortex of both genders. The latter effect was coupled with a decrease in ACh M1- and ACh M3-immunopositive neuron populations. PCB126 decreased (by 30-40%) total MR density in a gender-dependent manner, males being more sensitive than females. The effect was evident early (at PND21) and lasted until puberty in the cerebellum, while it was observed later (at PND36) in the cerebral cortex. The M1 and M3 receptors were similarly affected by PCB126. Co-exposure to MeHg and either PCB153 or PCB126 had the same effect on the cerebral MRs as exposure to each compound alone. The results rule out additive or synergistic interactions between MeHg and PCB153 or PCB126 on MRs in the brain areas examined. Some early-onset changes persisted until puberty, while other modifications became manifest only at the advanced time point (PND36), when the brain levels of total Hg, PCB153, and PCB126 had declined. These data support the ability of MeHg and PCBs to induce delayed neurotoxicity after developmental exposure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号