首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.

Purpose

The aim of this study is to investigate the mechanisms of interactions between TGF-β and Wnt/β-catenin pathways that induce and regulate EMT and promote breast cancer cells to become resistant to treatment.

Methods

The effect of TGF-β on Wnt/β-catenin signaling pathway was examined by using a human Wnt/β-catenin-regulated cDNA plate array and western blot analysis. The interaction of Twist at promoter of Wnt3 was examined by chromatin immunoprecipitation (ChIP) assay. Secreted Wnt3 level was determined by ELISA assay.

Results

HER2-overexpressing breast cancer cells treated with TGF-β have a reduced response to trastuzumab and exhibited EMT-like phenotype. The TGF-β-induced EMT in HER2-cells was concordant with upregulation of Wnt3 and β-catenin pathways. The TGF-β-induced induction of Wnt3 during EMT was found to be Smad3-dependent. ChIP analysis identified occupancy of Twist at promoter region of Wnt3. Knock-down of Twist by shRNA confirmed the significance of Twist in response to TGF-β regulating Wnt3 during EMT. Subsequently, TGF-β-induced matrix metalloproteinases, MMP1, MMP7, MMP9, MMP26, Vascular endothelial growth factors (VEGF), and activation of Wnt/β-catenin signaling were repressed by the shRNA treatment. TGF-βR1 ALK5 kinase inhibitor, A83-01 can effectively prevent the TGF-β-induced Twist and Wnt3. Co-treating A83-01 and trastuzumab inhibited TGF-β-induced cell invasion significantly in both trastuzumab responsive and resistant cells.

Conclusions

Our data demonstrated an important interdependence between TGF-β and Wnt/β-catenin pathways inducing EMT in HER2-overexpressing breast cancer cells. Twist served as a linkage between the two pathways during TGF-β-induced EMT. A83-01 could inhibit the TGF-β-initiated pathway interactions and enhance HER2-cells response to trastuzumab treatment.
  相似文献   

3.
4.
Q Yang  J Huang  Q Wu  Y Cai  L Zhu  X Lu  S Chen  C Chen  Z Wang 《British journal of cancer》2014,110(8):1958-1967

Background:

Breast cancer is the most common female malignant disease, and the second leading cause of cancer-related death in the United States. Acquired resistance to chemotherapeutic drugs is a pivotal reason that leads to worse treatment outcome of breast cancer. Therefore, it is urgent to elucidate the mechanism of drug resistance in breast cancer.

Methods:

To investigate the underlying molecular basis of the acquired resistant cells to paclitaxel in breast cancer, we used multiple methods including real-time RT–PCR, western blotting analysis, migration and invasion assays, wound healing assay, and transfection.

Results:

We found that epithelial–mesenchymal transition (EMT) is involved in paclitaxel-resistant (PR) breast cancer cells. The resistant cells with EMT features exhibit increased migration and invasion activities. Mechanistically, high expression of Skp2 was found to be associated with EMT in PR cells. Notably, depletion of Skp2 in PR cells led to partial reversal of EMT phenotype.

Conclusions:

These findings suggest that Skp2 was critically involved in PR-mediated EMT. Skp2 could be a potential therapeutic target for breast cancer.  相似文献   

5.

Introduction

Epithelial to mesenchymal transition (EMT) is associated with the basal-like breast cancer phenotypes. Sixty percent of basal-like cancers have been shown to express wild-type estrogen receptor beta (ERβ1). However, it is still unclear whether the ERβ expression is related to EMT, invasion and metastasis in breast cancer. In the present study, we examined whether ERβ1 through regulating EMT can influence invasion and metastasis in basal-like cancers.

Methods

Basal-like breast cancer cells (MDA-MB-231 and Hs578T), in which ERβ1 was either overexpressed or down-regulated were analyzed for their ability to migrate and invade (wound-healing assay, matrigel-coated Transwell assay) as well as for the expression of EMT markers and components of the EGFR pathway (immunoblotting, RT-PCR). Co-immunoprecipitation and ubiquitylation assays were employed to examine whether ERβ1 alters epidermal growth factor receptor (EGFR) protein degradation and the interaction between EGFR and the ubiquitin ligase c-Cbl. The metastatic potential of the ERβ1-expressing MDA-MB-231 cells was evaluated in vivo in a zebrafish xenotransplantation model and the correlation between ERβ1 and E-cadherin expression was examined in 208 clinical breast cancer specimens by immunohistochemistry.

Results

Here we show that ERβ1 inhibits EMT and invasion in basal-like breast cancer cells when they grow either in vitro or in vivo in zebrafish. The inhibition of EMT correlates with an ERβ1-mediated up-regulation of miR-200a/b/429 and the subsequent repression of ZEB1 and SIP1, which results in increased expression of E-cadherin. The positive correlation of ERβ1 and E-cadherin expression was additionally observed in breast tumor samples. Down-regulation of the basal marker EGFR through stabilization of the ubiquitin ligase c-Cbl complexes and subsequent ubiquitylation and degradation of the activated receptor is involved in the ERβ1-mediated repression of EMT and induction of EGFR signaling abolished the ability of ERβ1 to sustain the epithelial phenotype.

Conclusions

Taken together, the results of our study strengthen the association of ERβ1 with the regulation of EMT and propose the receptor as a potential crucial marker in predicting metastasis in breast cancer.  相似文献   

6.
7.

Background:

Transforming growth factor-β (TGF-β) is a major inducer of epithelial–mesenchymal transition (EMT) in different cell types. TGF-β-mediated EMT is thought to contribute to tumour cell spread and metastasis. Sialyl Lewis antigens synthesised by fucosyltransferase (FUT) 3 and FUT6 are highly expressed in patients with metastatic colorectal cancer (CRC) and are utilised as tumour markers for cancer detection and evaluation of treatment efficacy. However, the role of FUT3 and FUT6 in augmenting the malignant potential of CRC induced by TGF-β is unclear.

Methods:

Colorectal cancer cell lines were transfected with siRNAs for FUT3/6 and were examined by cell proliferation, invasion and migration assays. The expression and phosphorylation status of TGF-β downstream molecules were analysed by western blot. Fucosylation of TGF-β receptor (TβR) was examined by lectin blot analysis.

Results:

Inhibition of FUT3/6 expression by siRNAs suppressed the fucosylation of type I TβR and phosphorylation of the downstream molecules, thereby inhibiting the invasion and migration of CRC cells by EMT.

Conclusion:

Fucosyltransferase 3/6 has an essential role in cancer cell adhesion to endothelial cells by upregulation of sialyl Lewis antigens and also by enhancement of cancer cell migration through TGF-β-mediated EMT.  相似文献   

8.
9.
Peritoneal dissemination is a major clinical obstacle in gastrointestinal cancer therapy, and it accounts for the majority of cancer‐related mortality. Calreticulin (CRT) is over‐expressed in gastric tumors and has been linked to poor prognosis. In this study, immunohistochemistry studies revealed that the up‐regulation of CRT was associated with lymph node and distant metastasis in patients with gastric cancer specimens. CRT was significantly down‐regulated in highly metastatic gastric cancer cell lines and metastatic animal by Honokiol‐treated. Small RNA interference blocking CRT by siRNA‐CRT was translocated to the cells in the early immunogenic response to Honokiol. Honokiol activated endoplasmic reticulum (ER) stress and down‐regulated peroxisome proliferator‐activated receptor‐γ (PPARγ) activity resulting in PPARγ and CRT degradation through calpain‐II activity, which could be reversed by siRNA‐calpain‐II. The Calpain‐II/PPARγ/CRT axis and interaction evoked by Honokiol could be blocked by gene silencing or pharmacological agents. Both transforming growth factor (TGF)‐β1 and N‐methyl‐N′‐nitro‐N‐nitrosoguanidine (MNNG) induced cell migration, invasion and reciprocal down‐regulation of epithelial marker E‐cadherin, which could be abrogated by siRNA‐CRT. Moreover, Honokiol significantly suppressed MNNG‐induced gastrointestinal tumor growth and over‐expression of CRT in mice. Knockdown CRT in gastric cancer cells was found to effectively reduce growth ability and metastasis in vivo. The present study provides insight into the specific biological behavior of CRT in epithelial‐to‐mesenchymal transition (EMT) and metastasis. Taken together, our results suggest that the therapeutic inhibition of CRT by Honokiol suppresses both gastric tumor growth and peritoneal dissemination by dictating early translocation of CRT in immunogenic cell death, activating ER stress, and blocking EMT.  相似文献   

10.
Epithelial–mesenchymal transition (EMT) has been reported to play a significant role in tumour metastasis as well as chemoresistance. However, the molecular mechanisms involved in chemotherapy-induced EMT are still unclear. MicroRNA (miRNA) expression and functions have been reported to contribute to phenotypic features of tumour cells. To investigate the roles of miRNAs in chemotherapy-induced EMT, we established two docetaxel-resistant lung adenocarcinoma (LAD) cell models (SPC-A1/DTX and H1299/DTX), which display EMT-like properties and gain increased invasion or migration activity. MiR-451 was found to be significantly downregulated in docetaxel-resistant LAD cells, and re-expression of miR-451 could reverse EMT to mesenchymal–epithelial transition (MET) and inhibit invasion and metastasis of docetaxel-resistant LAD cells both in vitro and in vivo. The proto-oncogene c-Myc was identified as a direct and functional target of miR-451, and further researches confirmed that overexpression of c-Myc which induced extracellular-signal-regulated kinase (ERK)-dependent glycogen synthase kinase-3 beta (GSK-3β) inactivation and subsequent snail activation is essential for acquisition of EMT phenotype induced by loss of miR-451. Furthermore, c-Myc was significantly upregulated in docetaxel-non-responding LAD tissues in comparison with docetaxel-responding tissues, and its expression was inversely correlated with miR-451 expression. This study first reported the involvement of miR-451/c-Myc/ERK/GSK-3β signalling axis in the acquisition of EMT phenotype in docetaxel-resistant LAD cells, suggesting that re-expression of miR-451 or targeting c-Myc will be a potential strategy for the treatment of chemoresistant LAD patients.  相似文献   

11.

Background:

Cancer-associated fibroblasts (CAFs) activated by tumour cells are the predominant type of stromal cells in breast cancer tissue. The reciprocal effect of CAFs on breast cancer cells and the underlying molecular mechanisms are not fully characterised.

Methods:

Stromal fibroblasts were isolated from invasive breast cancer tissues and the conditioned medium of cultured CAFs (CAF-CM) was collected to culture the breast cancer cell lines MCF-7, T47D and MDA-MB-231. Neutralising antibody and small-molecule inhibitor were used to block the transforming growth factor-β (TGF-β) signalling derived from CAF-CM, which effect on breast cancer cells.

Results:

The stromal fibroblasts isolated from breast cancer tissues showed CAF characteristics with high expression levels of α-smooth muscle actin and SDF1/CXCL12. The CAF-CM transformed breast cancer cell lines into more aggressive phenotypes, including enhanced cell–extracellular matrix adhesion, migration and invasion, and promoted epithelial–mesenchymal transition (EMT). Cancer-associated fibroblasts secreted more TGF-β1 than TGF-β2 and TGF-β3, and activated the TGF-β/Smad signalling pathway in breast cancer cells. The EMT phenotype of breast cancer cells induced by CAF-CM was reversed by blocking TGF-β1 signalling.

Conclusion:

Cancer-associated fibroblasts promoted aggressive phenotypes of breast cancer cells through EMT induced by paracrine TGF-β1. This might be a common mechanism for acquiring metastatic potential in breast cancer cells with different biological characteristics.  相似文献   

12.

Background:

Eribulin mesilate (eribulin), a non-taxane microtubule dynamics inhibitor, has shown trends towards greater overall survival (OS) compared with progression-free survival in late-stage metastatic breast cancer patients in the clinic. This finding suggests that eribulin may have additional, previously unrecognised antitumour mechanisms beyond its established antimitotic activity. To investigate this possibility, eribulin''s effects on the balance between epithelial–mesenchymal transition (EMT) and mesenchymal–epithelial transition (MET) in human breast cancer cells were investigated.

Methods:

Triple negative breast cancer (TNBC) cells, which are oestrogen receptor (ER−)/progesterone receptor (PR−)/human epithelial growth receptor 2 (HER2−) and have a mesenchymal phenotype, were treated with eribulin for 7 days, followed by measurement of EMT-related gene and protein expression changes in the surviving cells by quantitative real-time PCR (qPCR) and immunoblot, respectively. In addition, proliferation, migration, and invasion assays were also conducted in eribulin-treated cells. To investigate the effects of eribulin on TGF-β/Smad signalling, the phosphorylation status of Smad proteins was analysed. In vivo, the EMT/MET status of TNBC xenografts in mice treated with eribulin was examined by qPCR, immunoblot, and immunohistochemical analysis. Finally, an experimental lung metastasis model was utilised to gauge the metastatic activity of eribulin-treated TNBC in the in vivo setting.

Results:

Treatment of TNBC cells with eribulin in vitro led to morphological changes consistent with transition from a mesenchymal to an epithelial phenotype. Expression analyses of EMT markers showed that eribulin treatment led to decreased expression of several mesenchymal marker genes, together with increased expression of several epithelial markers. In the TGF-β induced EMT model, eribulin treatment reversed EMT, coincident with inhibition of Smad2 and Smad3 phosphorylation. Consistent with these changes, TNBC cells treated with eribulin for 7 days showed decreased capacity for in vitro migration and invasiveness. In in vivo xenograft models, eribulin treatment reversed EMT and induced MET as assessed by qPCR, immunoblot, and immunohistochemical analyses of epithelial and mesenchymal marker proteins. Finally, surviving TNBC cells pretreated in vitro with eribulin for 7 days led to decreased numbers of lung metastasis when assessed in an in vivo experimental metastasis model.

Conclusions:

Eribulin exerted significant effects on EMT/MET-related pathway components in human breast cancer cells in vitro and in vivo, consistent with a phenotypic switch from mesenchymal to epithelial states, and corresponding to observed decreases in migration and invasiveness in vitro as well as experimental metastasis in vivo. These preclinical findings may provide a plausible scientific basis for clinical observations of prolonged OS by suppression of further spread of metastasis in breast cancer patients treated with eribulin.  相似文献   

13.
G Xie  A Ji  Q Yuan  Z Jin  Y Yuan  C Ren  Z Guo  Q Yao  K Yang  X Lin  L Chen 《British journal of cancer》2014,110(10):2514-2523

Background:

Epithelial–mesenchymal transition (EMT) and cancer stem cells (CSCs) are considered to be crucial for cancer biology. The purpose of this study was to determine whether EMT directly led to the acquisition of tumour-initiating capacity in breast cancer cell lines.

Methods:

Epithelial–mesenchymal transition was induced in five breast cancer cell lines and one normal breast cell line by EMT-related cytokine stimulation. Mesenchymal–epithelial transition (MET) was induced by stably overexpressing miR-200c in three mesenchymal-like breast cancer cell lines. Molecular expression and cell function analysis were performed to evaluate the effect of EMT or MET on tumour-initiating capacity and other biological characteristics.

Results:

The induction of EMT did not enhance tumour-initiating capacity but, instead, conferred a CD44+/CD24−/low phenotype as well as cell proliferation, migration, and resistance to doxorubicin and radiation on breast cancer cell lines. Furthermore, MET did not lead to inhibition or loss of the tumour-initiating capacity in mesenchymal-like breast cancer cell lines, but it markedly attenuated other malignant properties, including proliferation, invasion, and resistance to therapy.

Conclusions:

Epithelial–mesenchymal transition does not alter tumour-initiating capacity of breast cancer cells but some other biological characteristics. Therefore, EMT and tumour-initiating capacity may not be directly linked in breast cancer cell lines.  相似文献   

14.
15.

Background

The epithelial–mesenchymal transition (EMT) is crucial for the invasion and metastasis of breast cancer. However, how Notch signaling regulates the EMT process and invasion in breast cancer remains largely unknown.

Methods

The impact of Notch1 silencing by specific shRNAs on the EMT and invasion of human breast cancer MCF-7 and MDA-MB-231 cells as well as xenografts was tested by western blot, real-time polymerase chain reaction (RT-PCR), immunofluorescence, transwell, and immunohistochemistry assays. The effect of Slug silencing or upregulation on the EMT and invasion of breast cancer cells was analyzed, and the effect of Notch1 signaling on Slug expression was determined by the luciferase reporter assay.

Results

The Notch1 intracellular domain (N1ICD) and Jagged1 were expressed in breast cancer cells. Notch1 silencing reversed the spontaneous EMT process and inhibited the migration and invasion of breast cancer cells and the growth of xenograft breast cancers. The expression of N1ICD was upregulated significantly by Jagged1-mediated Notch signaling activation. Moreover, Jagged1-mediated Notch signaling promoted the EMT process, migration, and invasion of breast cancer cells, which were abrogated by Notch silencing. Furthermore, the N1ICD positively regulated the Slug expression by inducing Slug promoter activation. Importantly, the knockdown of Slug weakened the invasion ability of breast cancer cells and reversed the Jagged1-induced EMT process with significantly decreased expression of vimentin and increased expression of E-cadherin. In addition, Slug overexpression restored the Notch1 knockdown-suppressed EMT process.

Conclusions

Our novel data indicate that Notch signaling positively regulates the EMT, invasion, and growth of breast cancer cells by inducing Slug expression. The Notch1–Slug signaling axis may represent a potential therapeutic target for breast cancer therapy.

Electronic supplementary material

The online version of this article (doi:10.1186/s12943-015-0295-3) contains supplementary material, which is available to authorized users.  相似文献   

16.
Optimizing chemotherapeutic drug delivery strategies relies, in part, on identification of the most clinically effective sequence, dose, and duration of drug exposure. The combination of dose intensive etoposide (VP16) followed by cyclophosphamide has clinical efficacy in the treatment of advanced breast cancer. However, molecular mechanisms that underlie the effectiveness of this combination of chemotherapeutic agents have not been investigated. In this study we investigated regulation of BAX and BCL2 expression by VP16 and cyclophosphamide as a potential mechanism for the induction of breast cancer cell death induced by this regimen.There was a dose and time dependent increase in BAX expression in the breast cancer cell lines MCF7, MDAMB435S, and MDAMBA231 following in vitro treatment with 50–100M VP16. Elevation of BAX protein expression in the presence of VP16 alone did not correlate with reduced viability or induction of apoptosis in MCF7, MDAMB435S, or MDAMBA231. VP16 did effectively block the breast cancer cell lines evaluated (MCF7 and MDAMB435S) at G2/M phase of the cell cycle, confirming activity of the drug in vitro. MCF7 and MDAMB435S cells that were pretreated with VP16 and subsequently exposed to 1.0–12.0g/m1 4hydroperoxycyclophosphamide (4HC), an active metabolite of cyclophosphamide, had markedly reduced viability when compared to matched controls treated with either VP16 or 4HC individually. Consistent with this loss of viability, exposure of all three cell lines to the combination of VP16 and 4HC resulted in higher BAX protein levels than those observed following treatment with either single agent. This combination of chemotherapeutic agents also resulted in reduced BCL2 expression.These observations suggest that combination chemotherapy may derive its efficacy, in part, through coordinated regulation of specific gene products associated with apoptosis. Characterization of molecular events that underlie susceptibility of specific tumor cells to combination chemotherapeutic regimens may lead to additional improvements in treatment strategies for this disease.  相似文献   

17.
Bone metastasis is one of the predominant causes of cancer lethality. This study demonstrates for the first time how β2-microglobulin (β2-M) supports lethal metastasis in vivo in human prostate, breast, lung, and renal cancer cells. β2-M mediates this process by activating epithelial to mesenchymal transition (EMT) to promote lethal bone and soft tissue metastases in host mice. β2-M interacts with its receptor, hemochromatosis (HFE) protein, to modulate iron responsive pathways in cancer cells. Inhibition of either β2-M or HFE results in reversion of EMT. These results demonstrate the role of β2-M in cancer metastasis and lethality. Thus, β2-M and its downstream signaling pathways are promising prognostic markers of cancer metastases and novel therapeutic targets for cancer therapy.  相似文献   

18.

Purpose

Procaspase‐3, a proenzyme of apoptotic executioner caspase‐3, is overexpressed in numerous tumors. We aimed to characterize a novel procaspase‐3 activator, WF‐210, which may have potential as an anticancer drug.

Experimental design

The procaspase‐3 activating ability, antitumor efficacy, mechanisms of action, and toxicity profiles of WF‐210 were investigated in vitro and in vivo, using normal cells, cancer cells, and mouse xenograft models. The role of procaspase‐3 in WF‐210‐induced apoptosis was explored by manipulating procaspase‐3 expression in cultured cells.

Results

WF‐210 activated procaspase‐3 with an EC50 of 0.95 μM, less than half that of its mother compound PAC‐1 (2.08 μM). The mechanism involved the chelation of inhibitory zinc ions, subsequently resulting in an auto‐activation of procaspase‐3. WF‐210 was more cytotoxic than PAC‐1 to human cancer cells, but less cytotoxic to normal cells. Cancer cells with high procaspase‐3 expression, like HL‐60 and U‐937, were particularly sensitive. WF‐210‐induced the apoptosis of HL‐60 and U‐937 cells by activating procaspases and promoting proteasome‐dependent degradation of XIAP and Survivin. The level of WF‐210‐induced apoptosis in cultured cells was related to the level of procaspase‐3 expression. Finally, WF‐210 was superior to PAC‐1 in retarding the in vivo growth of breast, liver and gallbladder xenograft tumors which overexpress procaspase‐3, and induced no substantial weight loss or neurotoxicity. WF‐210 and PAC‐1 had no effect on the growth of MCF‐7 xenograft tumors, which do not express procaspase‐3.

Conclusion

We identified WF‐210 as a potent small‐molecule activator of procaspase‐3. The favorable antitumor activity and acceptable toxicity profile of WF‐210 provide a strong rationale for its clinical evaluation in the treatment of tumors with high procaspase‐3 expression.  相似文献   

19.
Interleukin 1β has been associated with tumor development, invasiveness and metastasis in various types of cancer. However, the molecular mechanisms underlying this association have not been clearly elucidated. The present study is the first to show, in breast cancer cells, that an IL-1β/IL-1RI/β-catenin signaling pathway induces β-catenin accumulation due to GSK3β inactivation by Akt phosphorylation. Translocation to the nucleus of accumulated β-catenin and formation of the TCF/Lef/β-catenin complex induce sequential expression of c-MYC, CCDN1, SNAIL1 and MMP2, leading to up-regulation of proliferation, migration and invasion; all of the processes shown to be required, in cancerous cells, to initiate transition from a non-invading to an invasive phenotype.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号