首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Diagnostic Histopathology》2014,20(12):456-461
Whole slide imaging (WSI) is broadening the scope of cytopathology. Whole slide images are being used for telecytology, quality assurance activities (e.g. proficiency testing) and teaching (e.g. digital teaching sets and online virtual atlases). Progress in WSI technology that permits high resolution scanning, z-stacking, and hybrid robotic devices has encouraged the use of this imaging modality for cytology practice, education and research. However, widespread adoption in cytology still depends on overcoming barriers unrelated to cytology and challenges directly related to digitizing cytopathology slides. The aim of this article is to review WSI technology, applications and limitations specific to cytopathology.  相似文献   

2.
Whole slide imaging (WSI) has been used in conjunction with virtual microscopy (VM) for training or proficiency testing purposes, multicentre research, remote frozen section diagnosis and to seek specialist second opinion in a number of organ systems. The feasibility of using WSI/VM for routine surgical pathology reporting has also been explored. In this review, we discuss the utility and limitations of WSI/VM technology in the histological assessment of specimens from the prostate. Features of WSI/VM that are particularly well suited to assessment of prostate pathology include the ability to examine images at different magnifications as well as to view histology and immunohistochemistry side-by-side on the screen. Use of WSI/VM would also solve the difficulty in obtaining multiple identical copies of small lesions in prostate biopsies for teaching and proficiency testing. It would also permit annotation of the virtual slides, and has been used in a study of inter-observer variation of Gleason grading to facilitate precise identification of the foci on which grading decisions had been based. However, the large number of sections examined from each set of prostate biopsies would greatly increase time required for scanning as well as the size of the digital file, and would also be an issue if digital archiving of prostate biopsies is contemplated. Z-scanning of glass slides, a process that increases scanning time and file size would be required to permit focusing a virtual slide up and down to assess subtle nuclear features such as nucleolar prominence. The common use of large blocks to process prostatectomy specimens would also be an issue, as few currently available scanners can scan such blocks. A major component of proficiency testing of prostate biopsy assessment involves screening of the cores to detect small atypical foci. However, screening virtual slides of wavy fragmented prostate cores using a computer mouse aided by an overview image is very different from screening glass slides using a microscope stage. Hence, it may be more appropriate in this setting to mark the lesional area and focus only on the interpretation component of competency testing. Other issues limiting the use of digital pathology in prostate pathology include the cost of high quality slide scanners for WSI and high resolution monitors for VM as well as the requirement for fast Internet connection as even a subtle delay in presentation of images on the screen may be very disturbing for a pathologist used to the rapid viewing of glass slides under a microscope. However, these problems are likely to be overcome by technological advances in the future.  相似文献   

3.
Rapid advances are occurring in the field of cytopathology education and training. Web-based cytopathology educational resources and whole slide imaging (WSI) have revolutionized cytopathology education and helped to centralize the cytopathology resources enabling simultaneous delivery of interactive cytopathology educational programs to a wide range of students and learners nationally and across the globe. WSI is playing a central role in digital pathology and are being utilized as an educational tool in many areas of pathology and cytopathology. This is mainly due to their easy access from anywhere and anytime, with no need for replication of glass slides or a big concern about the issue of protection of patient privacy. Today, WSI is used in a variety of educational settings, as a substitute to multi-headed microscopic sessions, multisite conferences, cytopathology web pages, self-assessment in cytology, cytology proficiency testing, virtual atlases, and very recently in scientific publications.  相似文献   

4.
By imaging large numbers of slides automatically at high resolution, modem automated whole slide imaging (WSI) systems have the potential to become useful tools in pathology practice. This article describes a pilot validation study for use of automated high-speed WSI systems for surgical pathology quality assurance (QA). This was a retrospective comparative study in which 24 full genitourinary cases (including 47 surgical parts and 391 slides) were independently reviewed with traditional microscopy and whole slide digital images. Approximately half the cases had neoplasia in the diagnostic line. At the end of the study, diagnostic discrepancies were evaluated by a pathology consensus committee. The study pathologists felt that the traditional and WSI methods were comparable for case review. They reported no difference in perceived case complexity or diagnostic confidence between the methods. There were 4 clinically insignificant discrepancies with the signed-out cases: 2 from glass slide and 2 with WSI review. Of the 2 discrepancies reported by the WSI method, the committee agreed with the reviewer once and the original report once. At the end of the study, the participants agreed that automated WSI is a viable potential modality for surgical pathology QA, especially in multifacility health systems that would like to establish interfacility QA. The participants felt that major issues limiting the implementation of WSI-based QA did not involve image acquisition or quality but rather image management issues such as the pathologist's interface, the hospital's network, and integration with the laboratory information system.  相似文献   

5.
During the last decade pathology has benefited from the rapid progress of image digitizing technology. The improvement in this technology had led to the creation of slide scanners which are able to produce whole slide images (WSI) which can be explored by image viewers in a way comparable to the conventional microscope. The file size of the WSI ranges from a few megabytes to several gigabytes, leading to challenges in the area of image storage and management when they will be used routinely in daily clinical practice. Digital slides are used in pathology for education, diagnostic purposes (clinicopathological meetings, consultations, revisions, slide panels and, increasingly, for upfront clinical diagnostics) and archiving. As an alternative to conventional slides, WSI are generally well accepted, especially in education, where they are available to a large number of students with the full possibilities of annotations without the problem of variation between serial sections. Image processing techniques can also be applied to WSI, providing pathologists with tools assisting in the diagnosis-making process. This paper will highlight the current status of digital pathology applications and its impact on the field of pathology.  相似文献   

6.
International telecytology can improve patient care by increasing access to regional and international expertise in cytopathology. The majority of international telecytology studies published to date have been based on static telepathology platforms. Overall concordance rates for these studies ranged from 71% to 93%. This is comparable to the concordance rates published for other studies comparing diagnoses made by digital still images to reference glass slides, which vary from 80% to 95%. Static telepathology systems are relatively cheap and easy to use, and have the potential to increase access to international experts in developing countries with limited resources. In contrast, resource‐rich academic and private medical centers can use whole slide digital imaging (WSI) for telecytology consultation, though few studies have been published addressing this topic. International telepathology consultation services with digital whole slide image capabilities have been established at several academic medical centers including the University of Pittsburgh Medical Center (UPMC) and the University of California at Los Angeles (UCLA), through the UCLA Center for Telepathology and Digital Pathology. In a small series of 20 telecytology cases submitted to UCLA from 2014 to 2017 (10 gynecologic and 10 fine needle aspiration cases), a meaningful diagnosis was rendered for 100% of cases, with 100% concordance between the submitting institution, versus consultation diagnosis provided by UCLA. These limited results are promising, and in the future both WSI and static telecytology consultation may have a place serving clinical needs in different practice settings.  相似文献   

7.
Digital pathology systems offer pathologists an alternate, emerging mechanism to manage and interpret information. They offer increasingly fast and scalable hardware platforms for slide scanning and software that facilitates remote viewing, slide conferencing, archiving, and image analysis. Deployed initially and validated largely within the research and biopharmaceutical industries, WSI is increasingly being implemented for direct patient care. Improvements in image quality, scan times, and imageviewing browsers will hopefully allow pathologists to more seamlessly convert to digital pathology, much like our radiology colleagues have done before us. However, WSI creates both opportunities and challenges. Although niche applications of WSI technology for clinical, educational, and research purposes are clearly successful, it is evident that several areas still require attention and careful consideration before more widespread clinical adoption of WSI takes place. These include regulatory issues, development of standards of practice and validation guidelines, workflow modifications, as well as defining situations where WSI technology will really improve practice in a cost-effective way. Current progress on these and other issues, along with improving technology, will no doubt pave the way for increased adoption over the next decade, allowing the pathology community as a whole to harness the true potential of WSI for patient care. The digital decade will likely redefine how pathology is practiced and the role of the pathologist.  相似文献   

8.
BackgroundThe use of whole slide imaging (WSI) for frozen section (FS) diagnosis is helpful, particularly in the context of pathologist shortages. However, there is minimal data on such usage in resource-limited settings. This study aims to validate the use of WSI for FS diagnosis of lymph node metastasis using a low-cost virtual microscope scanner with consumer-grade laptops at a tertiary care hospital in Thailand.MethodsFS slides were retrieved for which the clinical query was to evaluate lymph node metastasis. They were digitized by a virtual microscope scanner (MoticEasyScan, Hong Kong) using up to 40× optical magnification. Three observers with different pathology experience levels diagnosed each slide, reviewing glass slides (GS) followed by digital slides (DS) after two weeks of a wash out period. WSI and GS diagnoses were compared. The time used for scanning and diagnosis of each slide was recorded.Results295 FS slides were retrieved and digitized. The first-time successful scanning rate was 93.6 %. The mean scanning time was 2 min per slide. Both intraobserver agreement and interobserver agreement of WSI and GS diagnoses were high (Cohen's K; kappa value >0.84). The time used for DS diagnosis decreased as the observer's experience with WSI increased.ConclusionsDespite varying pathological experiences, observers using WSI provided accurate FS diagnoses of lymph node metastasis. The time required for DS diagnoses decreased with additional observer's experience with WSI. Therefore, a WSI system containing low-cost scanners and consumer-grade laptops could be used for FS services in hospital laboratories lacking pathologists.  相似文献   

9.
Whole slide images (WSIs), also known as virtual slides, can support electronic distribution of immunohistochemistry (IHC) stains to pathologists that rely on remote sites for these services. This may lead to improvement in turnaround times, reduction of courier costs, fewer errors in slide distribution, and automated image analyses. Although this approach is practiced de facto today in some large laboratories, there are no clinical validation studies on this approach. Our retrospective study evaluated the interpretation of IHC stains performed in difficult prostate biopsies using WSIs. The study included 30 foci with IHC stains identified by the original pathologist as both difficult and pivotal to the final diagnosis. WSIs were created from the glass slides using a scanning robot (T2, Aperio Technologies, Vista, CA). An evaluation form was designed to capture data in 2 phases: (1) interpretation of WSIs and (2) interpretation of glass slides. Data included stain interpretations, diagnoses, and other parameters such as time required to diagnose and image/slide quality. Data were also collected from an expert prostate pathologist, consensus meetings, and a poststudy focus group. WSI diagnostic validity (intraobserver pairwise kappa statistics) was "almost perfect" for 1 pathologist, "substantial" for 3 pathologists, and "moderate" for 1 pathologist. Diagnostic agreement between the final/consensus diagnoses of the group and those of the domain expert was "almost perfect" (kappa = 0.817). Except for one instance, WSI technology was not felt to be the cause of disagreements. These results are encouraging and compare favorably with other efforts to quantify diagnostic variability in surgical pathology. With thorough training, careful validation of specific applications, and regular postsignout review of glass IHC slides (eg, quality assurance review), WSI technology can be used for IHC stain interpretation.  相似文献   

10.
The cytology laboratory has traditionally performed a relatively small variety of tests. The testing processes employed were generally manually performed and included preparation of glass slide materials, staining of these slides, coverslipping, and microscopic evaluation of the cellular material. Instrumentation in the cytology laboratory was very limited and included a centrifuge, membrane filtration system, and possibly an automated staining machine. If instruments were added, for example, a liquid based preparation device or an automated coverslipping device; the instruments were rarely checked to assure they were operating properly before implementation into clinical practice. In addition, little documentation was maintained with regards to the instrument performance evaluation process. Increasing automation and expansion of testing options have changed how cytopathology is practiced. There are many new devices employed for the preparation of specimens, staining and coverslipping of slides, and evaluation of cellular material. The increasing use of molecular testing methods in cytopathology further adds to the changing landscape of cytopathology. New instrumentation and testing methods are routinely being introduced and the cytopathology laboratory must assure that the testing performed is accurate and consistent. Cytopathology laboratory professionals need to appreciate the value of validation of the tests we perform and the instruments we use in order to best serve the patient. Our clinical laboratory colleagues have traditionally performed validation on both instruments and test methods before using them for clinical testing. If cytopathology wants to perform the complex testing being introduced and effectively utilize new instrumentation, we need to understand the value of validation and how we apply validation to our laboratory practice.  相似文献   

11.
The purpose of this study was to present a new method for handling histological/cytological cases. Thanks to the introduction of information technology in pathology, including the amenities afforded by robotic microscopes and digital imaging, tissue slides can be represented and evaluated using digital techniques in order to construct virtual cases through completely automated procedures. A virtual case (VC) is composed of a collection of digital images representing a histological/cytological slide at all magnification levels together with all relevant clinical data. In the present study, we describe an automated system to manage robotic microscope and image acquisition for the proper construction of VCs. These can then be viewed on a computer by means of an interface ("user-friendly") that allows one to select the more appropriate fields and to examine them at different magnifications, rapidly going from panoramic views to high resolution and vice versa. In comparison with glass slides, VCs have several advantages arising from their digital nature and can be considered a common platform for a wide range of applications such as teleconsultation, education, research, and quality control and proficiency tests.  相似文献   

12.
Conversion of glass slides to digital images is necessary to capitalize on advances in computational pathology and could potentially transform our approach to primary diagnosis, research, and medical education. Most slide scanners have a limited maximum scannable area and utilize proprietary tissue detection algorithms to selectively scan regions that contain tissue, allowing for increased scanning speed and reduced file size compared to scanning the entire slide at high resolution. However, very small and faintly stained tissue fragments may not be recognized by these algorithms, leading to loss of fidelity in the digital image compared to the glass slides. Cavitron ultrasonic surgical aspirator (CUSA) is frequently used in brain tumor resections, resulting in highly fragmented specimens that are used for primary diagnosis. Here we evaluated the rate of loss of fidelity in 296 digital images from 40 CUSA‐resected brain tumors scanned using a Philips Ultra Fast Scanner. Overall, 54% of the slides (at least one from every case) showed loss of fidelity, with at least one tissue fragment not scanned at high resolution. The majority of the missed tissue fragments were small (<0.5 mm), but rare slides were missing fragments greater than 5 mm in greatest dimension. In addition, 19% of the slides with missing tissue showed no indication of loss of fidelity in the digital image itself; the missing tissue could only be appreciated upon review of the glass slides. These results highlight a potential liability in the use of digital images for primary diagnosis in CUSA‐resected brain tumor specimens.  相似文献   

13.
Whole‐slide imaging (WSI) has been used for education and histological image preservation, and several studies have also reported its validity for practical pathological diagnosis. However, such studies employed materials stained with hematoxylin‐eosin (HE), and very few attempts have been made to use immunohistochemically stained materials for diagnostic purposes. In the present study, we investigated the availability of WSI diagnosis for immunohistochemically stained materials in place of routine glass slides. Thirty pathologists participated in a trial of HER2 expression diagnosis using WSI and compared the results with those obtained by light microscopy. The validity of WSI diagnosis (interobserver agreement) was rated as ‘substantial’ in comparison with glass slide diagnosis (κ‐value = 0.719). There was a tendency for observers to assign higher scores with WSI than with glass slides, probably because WSI requires slides to be scanned into a computer and observed via a monitor. Although we were able to demonstrate the potential utility of WSI for diagnosing immunostained materials, it must be borne in mind that there are some differences in visualization between WSI and glass slides.  相似文献   

14.
Whole slide imaging (WSI) is being increasingly used worldwide. Although previous studies have asserted the validity of WSI diagnosis, they have primarily targeted only small specimens and excluded cases requiring immunohistochemistry or special staining, such as lymphoma. The purpose of this study was to evaluate the accuracy of WSI diagnosis of lymphoma, for which 240 biopsies and resections of lymphoma cases were selected from the study set of lymphomas. All slides including H&E, immunohistochemical and special staining were digitized using a WSI image scanner. An experienced pathologist performed the WSI diagnoses, which were compared with original diagnoses based on light microscopic examinations. Discrepancy between the two interpretations were classified into three categories: concordance, minor discrepancy (no clinical significance), and major discrepancy (with clinical significance). Overall concordance between the light microscopic and WSI diagnosis was found in 223 cases (92.92%; 95%CI = 88.90–95.82), minor discrepancy in fifteen (6.25%; 95%CI = 3.54–10.10), and major discrepancy in two (0.83%; 95%CI = 0.10–2.98). Diagnosis of lymphoma using WSI appeared to be mostly accurate, suggesting that WSI may be a reliable technology for the diagnosis of lymphoma.  相似文献   

15.
Novel techniques have been developed to image cells at cellular and subcellular levels. They allow images to be analyzed with ultra‐high resolution, in 2D and/or 3D. Several of these tools have been tested on cytology specimens demonstrating emerging applications that are likely to change the field of cytopathology. This review covers several of these advanced imaging methods. The use of optical coherence tomography to perform optical biopsies during endoscopic ultrasound procedures or visualize cells within effusion samples is discussed. The potential for quantitative phase microscopy to accurately screen Pap test slides or resolve indeterminate diagnoses in urine cytology is reviewed. The article also examines the application of 3D cytology using LuCED for lung cancer detection in sputum samples and the feasibility of imaging flow and mass cytometry to measure multiple biomarkers at the single cell level. Although these novel technologies have great potential, further research is necessary to validate their routine use in cytopathology practice.  相似文献   

16.
The cytological test issue mostly from individual opportunistic or for some department from organized screening programme, must benefit of the same quality in all the procedures. Pathologists are very implicated in. The purpose of this document is to summarize cytopathologists' initiatives and to present their specific tools for that. The French association for quality assurance in pathology (AFAQAP) has been validated by HAS in March 2006 for EPP. Commission 1 of AFAQAP organized an annual voluntary test for diagnostic evaluation since 2000 with the adoption of new technologies (CD-rom, virtual digital slides), and in 2005 a test of Pap Smear reporting quality concerning TBS 2001 use. A referring evaluation on this theme is in press. Furthermore pathologists made tools are available to codify lesions they diagnose (ADICAP), to collect and to study data (FCRISAP), to standardize the histological and cytological reports (CRFS), to evaluate the procedures and structural requirements and techniques. Pathologists participate in the elaboration of national guidelines (ANAES 1998 et 2002, DGS 2006) and performance indicators with InVS. The cervix cancer screening programme must take in account and valorises the role of pathologists according to assessment of efficacy and evaluation of the screening.  相似文献   

17.
Molecular techniques are increasingly used in everyday practice for patient diagnosis and also to guide therapy. Their application in cytological specimens can allow a more cost‐effective management with fewer risks. However, standardized protocols are needed to guarantee accurate and reproducible results. We herein report five practical examples of the application of ancillary techniques in cytopathology and review the literature on the issue, highlighting the practical aspects of sample management.  相似文献   

18.
Recent advances in microcomputers and high resolution digital video cameras provide pathologists the opportunity to combine precision optics with digital imaging technology and develop new educational and research tools. We review recent advances in virtual microscopy and describe techniques for viewing digital images using a microcomputer-based workstation to simulate light microscopic examination, including scanning at low power to select features of interest and zooming to increase magnification. Hardware and software components necessary to acquire digital images of histological and cytological slides, and closely simulate their examination under a light microscope are discussed. The workstation is composed of a MicroLumina digital scanning camera (Leaf Systems, Southborough, MA), light microscope (Olympus Optical Co., Lake Success, NY), Pentium (Intel Corp., Santa Clara, CA) 166 MHz microcomputer configured with 64 megabytes of random access memory (RAM), a MGA Millenium Powerdesk graphics card (Matrox Graphics, Inc., Montreal, Canada) and Photoshop software (Adobe Systems Inc., San Jose, CA) running in a Windows 95 (Microsoft Corp., Redmond, WA) environment. Images with spatial resolutions of up to 2700 x 3400 pixels in 36-bit color, can be displayed simultaneously as distinct images in a montage, or merged into a single composite image file to highlight significant features of a histological or cytological slide. These image files are saved in Joint Photographers Experts Group (JPEG) format using compression ratios of up to 80:1 without detectable visual degradation. The advantages and technical limitations of various workstation components are addressed and applications of this technology for pathology education, proficiency testing, telepathology, and database development are discussed.  相似文献   

19.
Advances in new technologies for complete slide digitization in pathology have allowed the appearance of a wide spectrum of technologic solutions for whole-slide scanning, which have been classified into motorized microscopes and scanners. This article describes technical aspects of 31 different digital microscopy systems. The most relevant characteristics of the scanning devices are described, including the cameras used, the speed of digitization, and the image quality. Other aspects, such as the file format, the compression techniques, and the solutions for visualization of digital slides, (including diagnosis-aided tools) are also considered. Most of the systems evaluated allow a high-resolution digitization of the whole slide within about 1 hour using a x40 objective. The image quality of the current virtual microscopy systems is suitable for clinical, educational, and research purposes. The efficient use of digital microscopy by means of image analysis systems can offer important benefits to pathology departments.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号