首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Androgen independence is responsible for most prostate cancer lethality, yet currently there are no effective clinical treatments. We have been investigating the mechanisms underlying androgen-independent prostate cancer in Nkx3.1;Pten mutant mice, which display salient features of the disease, including a requirement for wild-type androgen receptor (AR) signaling. We now demonstrate that the Akt and Erk MAP kinase signaling pathways are activated in androgen-independent lesions of these mice. Forced activation of either Akt or Erk signaling in an androgen-responsive prostate cancer cell line promotes hormone-independent but AR-dependent growth in culture. Although these pathways act additively in culture, they act synergistically in vivo to promote tumorigenicity and androgen independence in the context of the prostate microenvironment. We propose that androgen independence emerges by means of epithelial-stromal competition, in which activation of Akt and Erk promotes AR activity in the prostate epithelium while counteracting antagonistic effects of the stroma.  相似文献   

2.
Androgen receptor in prostate cancer   总被引:23,自引:0,他引:23  
  相似文献   

3.
Classic work by Huggins and Hodges demonstrated that human prostate cancer regresses dramatically during antihormonal therapy but recurs frequently with androgen independence. Perturbations in the androgen receptor (AR) and PTEN-AKT signaling axes are significantly correlated with the progression of prostate cancer. Genetic alterations of the AR cause receptor hypersensitivity, promiscuity, and androgen-independent receptor transactivation. Prostate cancers maintain an elevated AKT activity through the loss of PTEN function or the establishment of autocrine signaling by growth factors and cytokines. We used an in vivo prostate regeneration system to investigate the biological potency of the potential crosstalk between these two signal transduction pathways. We demonstrate a direct synergy between AKT and AR signaling that is sufficient to initiate and progress na?ve adult murine prostatic epithelium to frank carcinoma and override the effect of androgen ablation. Both genotropic and nongenotropic signals mediated by AR are essential for this synergistic effect. However, phosphorylation of AR by AKT at Ser-213 and Ser-791 is not critical for this synergy. These results suggest that more efficient therapeutics for advanced prostate cancer may need to target simultaneously AR signaling and AKT or the growth factor receptor tyrosine kinases that activate AKT.  相似文献   

4.
5.
Androgens promote the growth and differentiation of prostate cells through ligand activation of the androgen receptor (AR). Sensitization of the androgenic response by multifunctional growth factor signaling pathways is one of the mechanisms via which AR contributes to the emergence of androgen-independent prostate tumors. The ability of AR to cross-talk with key growth factor signaling events toward the regulation of cell cycle, apoptosis, and differentiation outcomes in prostate cancer cells is established. In this paper, we review the functional interaction between AR and an array of growth factor signal transduction events (including epidermal growth factor; fibroblast growth factor; IGF1; vascular endothelial growth factor; transforming growth factor-beta) in prostate tumors. The significance of this derailed cross-talk between androgens and key signaling networks in prostate cancer progression and its value as a therapeutic forum targeting androgen-independent metastatic prostate cancer is discussed.  相似文献   

6.
7.
8.
9.
Ack/Ack1 is a nonreceptor protein tyrosine kinase that comprises a tyrosine kinase core, an SH3 domain, a Cdc42-binding region, a Ralt homology region, and a proline-rich region. Here we describe a detailed characterization of the Ack protein as well as the chromosomal localization of human Ack (chromosome 3q29) and the primary structure of murine Ack. We demonstrate that Ack is ubiquitously expressed, with highest expression seen in thymus, spleen, and brain. Activation of integrins by cell adhesion on fibronectin leads to strong tyrosine phosphorylation and activation of Ack. Upon cell stimulation with EGF or PDGF, Ack is tyrosine-phosphorylated and recruited to activated EGF or PDGF receptors, respectively. A pool of endogenous Ack molecules is constitutively tyrosine-phosphorylated, even in starved cells. Moreover, tyrosine-phosphorylated Ack forms a stable complex with the adapter protein Nck via its SH2 domain. Finally, we have characterized a membrane-targeting sterile alpha motif-like domain in the amino terminus of Ack. Using several Ack mutants, we show that the amino-terminal and CRIB domains are necessary for Ack autophosphorylation, whereas the SH3 domain appears to have an autoinhibitory role. These experiments suggest a functional role for Ack as an early transducer of multiple extracellular stimuli.  相似文献   

10.
TRPS1 mRNA is more highly expressed in androgen-dependent lymph node carcinoma of prostate-fast growing colony (LNCaP-FGC) compared with androgen-independent lymph node carcinoma of prostate-lymph node original (LNCaP-LNO) prostate cancer cell lines. Furthermore, TRPS1 mRNA expression is down-regulated by androgens in LNCaP-FGC cells, a process mediated by the androgen receptor (AR). Here, we present TRPS1 protein expression in human prostate cancer material derived from a panel of six androgen-dependent and eight androgen-independent human prostate cancer xenografts. TRPS1 protein is expressed in all androgen-dependent xenografts, which also express AR and prostate-specific antigen (PSA). Androgen withdrawal by castration resulted in an increase in TRPS1 protein in two androgen-dependent xenografts, indicating relieved repression by action of AR. TRPS1 protein is expressed in four androgen-independent xenografts and is low or absent in the other four androgen-independent xenografts. Androgen withdrawal by castration demonstrates that TRPS1 protein levels remain the same in 1 androgen-independent xenograft, most likely due to the lack of AR expression. These data show that TRPS1 protein expression is regulated by androgens via the AR in human prostate cancer xenografts. Analysis of TRPS1 mRNA expression in normal and tumour tissue of the prostate and 18 other human tissues, showed that TRPS1 had the highest mRNA expression levels in normal and tumour tissues of breast. In addition, high TRPS1 mRNA and protein expression levels were observed in four out of five human breast cancer cell lines. In conclusion, TRPS1 protein expression is down-regulated by androgens in human prostate cancer, and analysis of TRPS1 mRNA expression levels in several human tissues showed that the highest levels were observed in normal and tumour breast tissue.  相似文献   

11.
Multiple lines of evidence suggest a functional link between the androgen receptor (AR) and the serine/threonine kinase Akt in the development and progression of prostate cancer. To investigate the impact of Akt activity on AR homeostasis, we treated androgen-dependent LNCaP and LAPC-4 prostate cancer cells with Akt inhibitor. Akt inhibition decreased AR expression, suggesting that Akt activity was required for regulation of AR protein levels. However, while androgen-independent LNCaP-abl cells also showed diminished AR protein levels in response to Akt inhibition, treatment of androgen-independent LNCaP-AI cells failed to alter AR protein levels upon similar treatment, suggesting that AR protein levels in these androgen-independent prostate cells were regulated by mechanisms independent of Akt activation. Regulation of AR, downstream of activated Akt, also was observed in vivo when examining transgenic mice that overexpress constitutively active mutant myristoylated (myr)-Akt1 in the prostate. Transgenic mice expressing activated myr-Akt1 exhibited higher levels of AR mRNA and protein. Expression of activated myr-Akt1 did not alter prostate cell growth and no significant size differences between prostate tissues derived from transgenic animals were observed when comparing transgenic mice with wild-type mice. Still, transgenic mice overexpressing Akt exhibited higher levels of γH2AX and phosphorylated Chk2 in prostate tissue. These changes in markers associated with oncogene-induced senescence confirmed significant altered signaling in the transgenic mouse model. Overall, results presented here suggest that AR levels are regulated by the Akt pathway.  相似文献   

12.
Adam RM  Kim J  Lin J  Orsola A  Zhuang L  Rice DC  Freeman MR 《Endocrinology》2002,143(12):4599-4608
Peptide growth factors have been implicated in progression of prostate cancer (PCa) to the androgen-independent state; however, much of the evidence linking diffusible mitogens and survival factors to this process remains circumstantial. Heparin-binding epidermal growth factor-like growth factor (HB-EGF), a prostate stroma-derived factor, promotes survival, proliferation, and neuroendocrine differentiation of androgen-dependent LNCaP PCa cells in vitro. To test whether sustained exposure to HB-EGF can confer an androgen-independent phenotype, we generated stable populations of LNCaP cells that express constitutively a secreted form of HB-EGF (LNCaP/sHB). LNCaP/sHB cells proliferated more rapidly under androgen-depleted conditions in vitro and formed larger tumors with higher frequency in intact and castrated severe combined immunodeficient mice, in comparison to control cells. LNCaP/sHB tumors also expressed higher levels of the neuroendocrine marker, neuron-specific enolase, compared with control tumors. In castrates, increased neuron-specific enolase expression in LNCaP/sHB tumors was associated with reduced androgen receptor (AR) levels. In vitro, AR protein levels were reduced in LNCaP/sHB cells, and in transient transfection assays using an androgen-responsive promoter (mouse mammary tumor virus-long terminal repeat), LNCaP/sHB cells showed reduced sensitivity to dihydrotestosterone compared with controls. This is the first demonstration that continuous exposure of AR-positive PCa cells to a single growth factor can promote an androgen-independent phenotype in vivo. These findings also emphasize the potential role of pathways other than the AR axis in acquisition of androgen independence.  相似文献   

13.
14.
15.
16.
17.
Wu Y  Zhao W  Zhao J  Pan J  Wu Q  Zhang Y  Bauman WA  Cardozo CP 《Endocrinology》2007,148(6):2984-2993
Testosterone stimulates the expression of IGF-I in cells and tissues that include prostate, muscle and muscle satellite cells, and the uterus. Here, the molecular mechanisms of this effect of testosterone were explored. Testosterone increased IGF-I mRNA levels in HepG2 and LNCaP cells and stimulated the activity of reporter genes controlled by 1.6 kb of the upstream promoter of the human IGF-I gene. An androgen-responsive region that was located between -1320 and -1420 bases upstream of the first codon was identified by truncation studies. The androgen-responsive region was found to contain two sequences resembling known androgen receptor (AR)-binding sites from the Pem1 gene. Reporter genes incorporating these sequences were strongly stimulated by androgens. Each of the androgen-responsive elements (AREs) bound recombinant AR-DNA-binding domain in gel-shift experiments; binding was greatly enhanced by sequences flanking the apparent AR-binding half-sites. Testosterone induced recruitment of AR to sequences of genomic DNA containing these AREs. The two AREs were activated 5-fold more by AR than glucocorticoid receptor. Collectively, these findings indicate the presence of two AREs within the IGF-I upstream promoter that act in cis to activate IGF-I expression. These AREs seem likely to contribute to the up-regulation of the IGF-I gene in prostate tissues, HepG2 cells, and potentially other tissues.  相似文献   

18.
Androgen receptor involvement in the progression of prostate cancer   总被引:1,自引:0,他引:1  
  相似文献   

19.
20.
Human prostatic acid phosphatase (PAcP) was used as a valuable surrogate marker for monitoring prostate cancer prior to the availability of prostate-specific antigen (PSA). Even though the level of PAcP is increased in the circulation of prostate cancer patients, its intracellular level and activity are greatly diminished in prostate cancer cells. Recent advances in understanding the function of the cellular form of PAcP (cPAcP) have shed some light on its role in prostate carcinogenesis, which may have potential applications for prostate cancer therapy. It is now evident that cPAcP functions as a neutral protein tyrosine phosphatase (PTP) in prostate cancer cells and dephosphorylates HER-2/ErbB-2/Neu (HER-2: human epidermal growth factor receptor-2) at the phosphotyrosine (p-Tyr) residues. Dephosphorylation of HER-2 at its p-Tyr residues results in the down-regulation of its specific activity, which leads to decreases in growth and tumorigenicity of those cancer cells. Conversely, decreased cPAcP expression correlates with hyperphosphorylation of HER-2 at tyrosine residues and activation of downstream extracellular signal-regulated kinase (ERK)/mitogen activated protein kinase (MAPK) signaling, which results in prostate cancer progression as well as androgen-independent growth of prostate cancer cells. These in vitro results on the effect of cPAcP on androgen-independent growth of prostate cancer cells corroborate the clinical findings that cPAcP level is greatly decreased in advanced prostate cancer and provide insights into one of the molecular mechanisms involved in prostate cancer progression. Results from experiments using xenograft animal models further indicate a novel role of cPAcP as a tumor suppressor. Future studies are warranted to clarify the use of cPAcP as a therapeutic agent in human prostate cancer patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号