首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Disturbances in the serotonin (5-HT) system are associated with various neuropsychiatric disorders. The 5-HT system can be studied in vivo by measuring 5-HT transporter (SERT) densities using (123)iodine-labeled 2beta-carbomethoxy-3beta(4-iodophenyl)tropane ([(123)I]beta-CIT) and single photon emission computed tomography (SPECT). Validation of this technique is important because [(123)I]beta-CIT does not bind selectively to SERTs. Some studies have validated this technique in vivo in the human brain in SERT-rich areas, but the technique has not been validated yet in SERT-low cortical areas. The aim of this study was to further validate [(123)I]beta-CIT SPECT in assessing SERTs in vivo in humans in both SERT-rich and SERT-low areas. A double-blind, placebo-controlled, crossover design was used with the selective 5-HT reuptake inhibitor (SSRI) citalopram. Six male subjects underwent two [(123)I]beta-CIT SPECT sessions: one after pretreatment with citalopram and one after placebo. Scans were acquired 4 h and 22-27 h p.i., and both region-of-interest and voxel-by-voxel analyses were performed. Citalopram reduced [(123)I]beta-CIT binding ratios in SERT-rich midbrain and (hypo)thalamus. Binding ratios were also lower after citalopram in SERT-low cortical areas, but statistical significance was only reached in several cortical areas using voxel-by-voxel analysis. In addition, citalopram increased binding ratios in the DAT-rich striatum and increased absolute uptake in the cerebellum. The results show that [(123)I]beta-CIT SPECT is a valid technique to study SERT binding in vivo in human brain in SERT-rich areas. Although we provide some evidence that [(123)I]beta-CIT SPECT may be used to measure SERTs in SERT-low cortical areas, these measurements must be interpreted with caution.  相似文献   

2.
Both positron emission tomography and single photon emission computed tomography (SPECT) studies suggest that saturation of serotonin transporters (SERT) is present during treatment with therapeutic doses of selective serotonin reuptake inhibitors (SSRIs). Selective serotonin reuptake inhibitors also appear to increase the availability of dopamine transporters (DAT). The current study measured SERT occupancy and modulation of DAT by the serotonin/norepinephrine reuptake inhibitor (SNRI) venlafaxine using [123I]2beta-carbomethoxy-3beta-(4-iodophenyl)-tropane SPECT. Eight healthy subjects were administered open-label venlafaxine extended release capsules (75 mg/d for 4 days followed by 150 mg/d for 5 days). Venlafaxine significantly inhibited [123I]beta-CIT binding to SERT in the brainstem (55.4%) and the diencephalon (54.1%). In contrast, venlafaxine increased [123I]beta-CIT binding to DAT in the striatum (10.1%) after 5 days of administration of 150 mg/d. The displacement of [123I]beta-CIT from brain SERT and the increase in striatal [123I]beta-CIT binding to DAT appear similar to previous work with the SSRI citalopram (40 mg/d). A literature review of SERT occupancy by marketed SSRIs and the SNRI venlafaxine using SPECT ([123I]beta-CIT) or positron emission tomography ([11C](N, N-Dimethyl-2-(2-amino-4-cyanophenylthio)-benzylamine) imaging suggests that therapeutic doses of SNRI are associated with virtual saturation of the serotonin transporter.  相似文献   

3.
Few studies have demonstrated in vivo alterations of human serotonin and dopamine transporters (SERTS and DATS) during antidepressant treatment. The current study measured these transporter availabilities with [(123)I]beta-CIT single photon emission computed tomography (SPECT) during administration of selective serotonin reuptake inhibitors (SSRIs) or a non-SSRI, bupropion. A total of 17 healthy human subjects were randomly assigned to two different treatment protocols: (1). citalopram (40 mg/day) followed by augmentation with bupropion (100 mg/day) or (2). bupropion (100-200 mg/day) for 16 days. Citalopram significantly inhibited [(123)I]beta-CIT binding to SERT in brainstem (51.4%) and diencephalon (39.4%) after 8 days of administration, which was similarly observed after 16 days. In contrast, citalopram significantly increased striatal DAT binding by 15-17% after 8 and 16 days of administration. Bupropion and its augmentation to citalopram did not have a significant effect on DAT or SERT. In 10 depressed patients who were treated with paroxetine (20 mg/day), a similar increase in DAT and inhibition of SERT were observed during 6 weeks treatment. The results demonstrated the inhibition of SERT by SSRI in human in vivo during the chronic treatment and, unexpectedly, an elevation of DAT. This apparent SSRI-induced modulation of the dopamine system may be associated with the side effects of these agents, including sexual dysfunction.  相似文献   

4.
RATIONALE: Tablets sold as ecstasy often contain not only 3,4-methylenedioxymethamphetamine (MDMA) but other compounds well known to cause dopaminergic neurotoxicity, such as (meth)amphetamine. Furthermore, the use of ecstasy in the Netherlands is often combined with the use of amphetamine. However, little is known about the effects of ecstasy use or the combination of ecstasy and amphetamine use on dopamine (DA) neurones in the human brain. OBJECTIVES: This study was designed to investigate the effects of ecstasy as well as the combined use of ecstasy and amphetamine on the density of nigrostriatal DA neurones. METHODS: [123I]beta-CIT SPECT was used to quantify striatal DA transporters. Striatal [123I]beta-CIT binding ratios of control subjects ( n=15) were compared with binding ratios of ecstasy users ( n=29) and individuals with a history of combined ecstasy and amphetamine use ( n=9) after adjustment for age. RESULTS: Striatal [123I]beta-CIT binding ratios were significantly lower in combined ecstasy and amphetamine users compared to sole ecstasy users (6.75 versus 8.46, respectively: -20.2%, P=0.007). Binding ratios were significantly higher in ecstasy users when compared to controls (8.46 versus 7.47, respectively: +13.2%, P=0.045). CONCLUSIONS: These initial observations suggest that the sole use of ecstasy is not related to dopaminergic neurotoxicity in humans. In contrast, the reported use of amphetamine by regular users of ecstasy seems to be associated with a reduction in nigrostriatal DA neurones.  相似文献   

5.
3,4-Methylendioxymethamphetamine (MDMA) has both stimulatory and hallucinogenic properties which make its psychoactive effects unique and different from those of typical psychostimulant and hallucinogenic agents. The present study investigated the effects of MDMA on extracellular dopamine (DA(ex)) and serotonin (5-HT(ex)) levels in the striatum and prefrontal cortex (PFC) using in vivo microdialysis techniques in mice lacking DA transporters (DAT) and/or 5-HT transporters (SERT). subcutaneous injection of MDMA (3, 10 mg/kg) significantly increased striatal DA(ex) in wild-type mice, SERT knockout mice, and DAT knockout mice, but not in DAT/SERT double-knockout mice. The MDMA-induced increase in striatal DA(ex) in SERT knockout mice was significantly less than in wildtype mice. In the PFC, MDMA dose-dependently increased DA(ex) levels in wildtype, DAT knockout, SERT knockout and DAT/SERT double-knockout mice to a similar extent. In contrast, MDMA markedly increased 5-HT(ex) in wildtype and DAT knockout mice and slightly increased 5-HT(ex) in SERT-KO and DAT/SERT double-knockout mice. The results confirm that MDMA acts at both DAT and SERT and increases DA(ex) and 5-HT(ex).  相似文献   

6.
Numerous findings indicate alterations in brain serotonin systems in obsessive-compulsive disorder (OCD). We investigated the in vivo availability of thalamus-hypothalamus serotonin transporters (SERT) in patients with DSM-IV OCD who displayed prominent behavioral checking compulsions (OC-checkers). Four hours after injection of [(123)I]-2beta-carbomethoxy-3beta-(4-iodophenyl)tropane ([(123)I]-beta-CIT), single photon emission computed tomography (SPECT) scans were performed in 24 medication-free non-depressed OC-checkers and 24 age- and gender-matched healthy controls. For quantification of brain serotonin transporter availability, a ratio of specific to non-displaceable [(123)I]-beta-CIT brain binding was used (V'(3)=(thalamus and hypothalamus-cerebellum)/cerebellum). Drug-free non-depressed OC-checkers showed an 18% reduced brain serotonin transporter availability in the thalamus and hypothalamus, as compared with healthy control subjects (1.38+/-0.19 vs 1.69+/-0.21; p<0.001). There was a strong negative correlation between severity of OC symptomatology (Y-BOCS scores) and SERT availability (r=-0.80; p<0.001). Moreover, we found a significant positive correlation between illness duration and serotonin transporter availability (r=0.43; p<0.05). This first report of significantly reduced [(123)I]-beta-CIT binding in the thalamus-hypothalamus region in OC-checkers suggests reduced brain serotonin transporter availability, which is more pronounced with increased severity of OC symptomatology and short duration of illness. The results provide direct evidence for an involvement of the serotonergic system in the pathophysiology of OCD.  相似文献   

7.
Brain monoaminergic function is involved in the pathophysiology of psychiatric disorders. The loudness dependence (LD) of the N1/P2 component of auditory evoked potentials has been proposed as a noninvasive indicator of central serotonergic function, whereas single photon emission computed tomography (SPECT) and [123I]beta-CIT can be used to visualize both serotonin (SERT) and dopamine transporters (DAT). The aim of the study was to correlate LD and SPECT measures in patients with obsessive-compulsive disorder, a condition with evidence for a serotonergic dysfunction. A total of 10 subjects received both neurophysiological and imaging investigations. Evoked potentials were recorded following the application of acoustic stimuli with increasing intensities. The LD of the relevant subcomponents (tangential dipoles) was investigated using dipole source analysis. SPECT was performed 20-24 h after injection of a mean 140 MBq [123I]beta-CIT. As a measure of brain SERT and DAT availabilities, a ratio of specific to nonspecific [123I]beta-CIT binding for the midbrain . pons region (SERT) and the striatum (DAT) was used. The LD of the right tangential dipole correlated significantly with both SERT and DAT availabilities (Pearson's correlations: rho = 0.69, p < 0.05, and rho = 0.80, p < 0.01, respectively). The correlations remained significant after controlling for the effects of age, gender, and severity of clinical symptoms. Associations between LD and both SERT and DAT availabilities further validate the use of neurophysiological approaches as noninvasive indirect measures of neurochemical brain function and point at a hypothesized interconnection of central monoaminergic systems.  相似文献   

8.
Imaging serotonin transporters (SERT) is an emerging research tool potentially useful to cast light on the mechanisms of drug action as well as to monitor the treatment of depressed patients. We have prepared two new derivatives of 3, 2-(2-(dimethylaminomethyl)phenoxy)-5-iodophenylamine (4) and 2-(2-(dimethylaminomethyl)benzyl)-5-iodophenylamine (5) (K(i) for SERT = 0.37 and 48.6 nM, respectively). Both [(125)I]4 and [(125)I]5 displayed excellent brain uptakes in rats, and they showed a highest uptake in hypothalamus (between 60 and 240 min), a region populated with the highest density of SERT. The specific uptake of [(125)I]4 in the hypothalamus resulted in a target to nontarget ratio ([hypothalamus-cerebellum]/cerebellum) of 4.3 at 2 h. Autoradiography of rat brain sections (ex vivo at 2 h) of [(125)I]4 showed an excellent regional distribution pattern consistent with known SERT localization. These data suggest that [(123)I]4 may be useful for imaging SERT binding sites in the brain by single photon emission computed tomography (SPECT).  相似文献   

9.
Rationale: Methylenedioxymethamphetamine (MDMA) is known to damage brain pre-synaptic serotonin (5-HT) neurons. Since loss of 5-HT neurons has been implicated in memory loss, it is important to establish whether MDMA use may produce changes in postsynaptic 5-HT receptors and memory function in humans. Objectives: To investigate whether MDMA use leads to compensative alterations in post-synaptic 5-HT2A receptors and whether there is a relation with memory disturbances. Methods: Brain cortical 5-HT2A receptor densities were studied with [123I]-5-I-R91150 SPECT in five abstinent MDMA users and nine healthy controls. Memory performance was assessed using RAVLT. Results: [123I]-5-I-R91150 binding ratios were significantly higher in the occipital cortex of MDMA users than in controls, indicating up-regulation. Mean cortical 5-HT2A receptor binding correlated positively with RAVLT-recall in MDMA users. Conclusion: Our preliminary results may indicate altered 5-HT neuronal function with correlated memory impairment in abstinent MDMA users. Received: 20 August 1999 / Final version: 25 November 1999  相似文献   

10.
3,4-Methylenedioxymethamphetamine (MDMA or ecstasy) is a popular recreational drug that has been shown to induce loss of brain serotonin (5-HT) neurons. The purpose of this study was to determine the usefulness of pharmacological magnetic resonance imaging (phMRI) in assessing 5-HT dysfunction by examining the hemodynamic response evoked by infusion with the selective 5-HT reuptake inhibitor citalopram. We studied the effects of MDMA on brain hemodynamics using arterial spin labeling (ASL) based phMRI following a citalopram challenge (7.5mg/kg, i.v.), combined with [(123)I]β-CIT SPECT imaging in ten male MDMA users and seven healthy non-users. Single photon emission computed tomography (SPECT) imaging was used to assess the availability of 5-HT transporters (SERT). Imaging results were compared with the results of behavioral measures and mood changes following drug administration, in both groups (using the Beck Depression Inventory, Barratt Impulsiveness Scale and a visual analog scale). Reductions in SERT binding were observed in the occipital cortex of MDMA users. In line with this, citalopram induced decreases in cerebral blood flow (CBF) in the occipital cortex of MDMA users. ASL based phMRI also detected a CBF decrease in the thalamus of MDMA users. In concordance with imaging findings, behavioral measures differed significantly between MDMA users and controls. MDMA users had higher impulsivity scores and felt more uncomfortable after citalopram infusion, compared with control subjects. Our findings indicate that phMRI is very well suited for in-vivo assessment of 5-HT dysfunction.  相似文献   

11.
The present study examined short- and long-term effects of MDMA (3,4-methylene-dioxymethamphetamine) on serotonin (5-HT2 and 5-HT1c) receptors in the brain of the rat. N1-Methyl-2-[125I]lysergic acid diethylamide ([125I]MIL) was used to label these receptors in vitro and in vivo. The usefulness of [125I]MIL for in vivo detection of changes in 5-HT2 receptors was confirmed in preliminary experiments in which rats were treated chronically with mianserin (5 mg/kg, once daily for 10 days). Decreases in specific in vivo binding of [125I]MIL, after treatment with mianserin were found to be of the same magnitude as those determined by others, using in vitro methods. The MDMA (8 doses; 5-20 mg/kg each) was administered to rats over a period of 4 days. At various times after administration of the last dose of MDMA, the binding of [125I]MIL was measured. Acutely, treatment with MDMA (20 mg/kg) reduced specific in vivo binding of [125I]MIL in all regions of brain studied. For example, in the frontal cortex, specific binding of [125I]MIL was decreased by 80% at 6 hr and by 62% at 24 hr, after cessation of treatment with MDMA. Twenty-one days after administration of MDMA however, the number of binding sites for [125I]MIL was back to control levels. Reductions in in vivo binding of [125I]MIL in frontal cortex were dependent on the dose of MDMA injected and were associated with decreases in the number of binding sites for [125I]MIL (Bmax values) in tissue homogenates of the same area. Autoradiographic studies of MDMA-treated rats confirmed the decreased density of 5-HT2 receptors and also suggested that the 5-HT1c receptor of the choroid plexus was not affected. These results indicate that repeated administration of MDMA caused transient down-regulation of 5-HT2 receptors in the brain of the rat. Further, they demonstrated that [125I]MIL is a suitable radioligand for labeling 5-HT2 receptors, both in vitro and in vivo. Once labeled with an appropriate radionuclide for SPECT (single photon emission computed tomography) or PET (positron emission tomography), MIL should prove useful for monitoring changes in the density of serotonin receptors in the living mammalian brain.  相似文献   

12.
RATIONALE: Tardive dyskinesia occurs frequently in schizophrenic patients chronically treated with classical antipsychotic medication. It may be caused by loss of dopaminergic cells, due to free radicals as a product of high synaptic dopamine levels. OBJECTIVE: To evaluate dopamine transporter density in the striatum in patients with tardive dyskinesia. METHODS: Striatal [123I]FP-CIT binding was measured with SPECT in seven schizophrenic patients with tardive dyskinesia and eight healthy controls. RESULTS: No significant difference was found between striatal [123I]FP-CIT binding ratios in patients with tardive dyskinesia and controls. CONCLUSIONS: This preliminary study indicates no change in striatal dopamine transporter density in schizophrenic patients with tardive dyskinesia. This finding does not support the hypothesis that tardive dyskinesia is caused by dopaminergic cell loss.  相似文献   

13.
[123I]ADAM (2-((2-((dimethylamino)methyl)phenyl)thio)-5-iodophenylamine) is a promising radioligand for in-vivo quantification of serotonin transporters (SERT) using single photon emission computed tomography (SPECT) in man. We performed tracer kinetic analysis in various brain regions to determine the optimum equilibrium time for SERT quantification with [123I]ADAM and SPECT. Radiosyntheses of [123I]ADAM were performed at MAP Medical Technologies Oy, Tikkakoski, Finland. Thirty healthy male volunteers (21-41 yr) received between 104 and 163 MBq [123I]ADAM intravenously as a bolus. Consecutively, multiple SPECT scans were performed between 14 and 420 min post-injection (p.i.) using a Siemens Multispect 3 camera. Reconstruction was performed applying filtered back projection with a Butterworth filter (cut-off 0.7, order 7) in 128x128 matrices. Regions of interest (ROI) were drawn manually on the individual T1-weighted magnetic resonance image (MRI) comprising midbrain/hypothalamus for specific binding to SERT, and the cerebellum as reference region. After re-orientation to the MRI, the ROI template was applied to SPECT studies. We generated time-activity curves for the ROI and calculated the ratio countstarget/countscerebellum minus 1 (=V3') as a measure for specific SERT binding. Counts were corrected for applied activity, acquisition time and body-weight. Peak uptakes were observed between 14 and 50 min after bolus injection. Counts per voxel were highest in the midbrain/hypothalamus, 798 (max. 872, min. 728), whereas 462 counts per voxel (max. 599, min. 412) were measured in the cerebellum at a mean time of 31 min p.i. Stable values for V3' reached 205-320 min p.i. Mean peak V3' value was 1.43 (95% CI 171-230) for the midbrain/hypothalamus at 205 min p.i. [123I]ADAM is a useful ligand for in-vivo quantification of human SERT by means of SPECT, with a comparatively better signal-to-noise ratio compared to beta-CIT. Our data suggest that the acquisition time for the SPECT scan is optimally, under pseudo-equilibrium conditions, between 205-320 min post-bolus injection of the tracer.  相似文献   

14.
Nicotinic acetylcholine receptors (nAChRs) have been implicated in a number of neurological disorders. 5-Iodo-3-[2(S)-2-azetidinylmethoxy]pyridine (5-I-A-85380) is a novel nAChR marker, binding predominantly to the alpha4beta2 subtype. This in vitro autoradiography study describes the distribution of 5-[(125)I]-A-85380 binding in post-mortem brain tissue from normal elderly individuals and from cases with age-associated dementias of both neurodegenerative and vascular types. The binding distribution of 5-[(125)I]-A-85380 in normal brain tissue was found to be consistent with the reported distribution of other high-affinity nicotinic ligands. In addition to high thalamic and moderate striatal and temporal cortex density, moderate 5-[(125)I]-A-85380 binding was also seen in white matter tracts in cingulate, occipital, and temporal areas, indicating the presence of nAChRs along nerve fiber tracts, which has not been reported in other high-affinity nicotinic agonist distribution studies. In Parkinson's disease (PD), loss of striatal 5-[(125)I]-A-85380 binding closely parallels the loss of nigrostriatal dopaminergic markers previously observed. In dementia with Lewy bodies (DLB) reduced striatal 5-[(125)I]-A-85380 binding density, comparable to that in PD, may be a marker of early degeneration in nigrostriatal inputs, while in Alzheimer's disease (AD) reduced striatal 5-[(125)I]-A-85380 binding could be related to reduced cortical inputs. The reductions of nAChRs seen in AD, DLB, and PD were not apparent in vascular dementia (VaD). In conclusion, 5-I-A-85380 is clearly a useful ligand for both in vitro and in vivo single photon emission tomography human studies investigating disease symptoms and progression, response to acetylcholinesterase-inhibiting drugs and in differentiating primary degenerative dementia from VaD.  相似文献   

15.
2beta-Carbomethoxy-3beta-(4'-((Z)-2-iodoethenyl)phenyl)nortropane (ZIENT) (6) and 2beta-carbomethoxy-3beta-(4'-((E)-2-iodoethenyl)phenyl)nortropane (EIENT) (10) were prepared and evaluated in vitro and in vivo for serotonin transporter (SERT) selectivity and specificity. High specific activity [(123)I]ZIENT and [(123)I]EIENT were synthesized in 45% (n = 5) and 42% (n = 4) radiochemical yield (decay-corrected to end of bombardment (EOB)), respectively, by preparation of the precursor carbomethoxy-3beta-(4'-((Z)-2-trimethylstannylethenyl)phenyl)nortropane (7) and 2beta-carbomethoxy-3beta-(4'-((E)-2-tributylstannylethenyl)phenyl)nortropane (9), respectively, followed by treatment with no carrier-added sodium [(123)I]iodide and hydrogen peroxide in ethanolic HCl. Competition binding in cells stably expressing the transfected human SERT, dopamine transporter (DAT), and norepinephrine transporter (NET) using [(3)H]citalopram, [(3)H]WIN 35,428, and [(3)H]nisoxetine, respectively, demonstrated the following order of SERT affinity (K(i) in nM): ZIENT (0.05) > nor-CIT (0.12) > EIENT (1.15) > fluvoxamine (1.46). The affinity of ZIENT and EIENT for DAT was 69 and 1.6-fold lower, respectively, than for SERT. In vivo biodistribution and blocking studies were performed in male rats and demonstrated that the brain uptake of [(123)I]ZIENT was selective and specific for SERT-rich regions (hypothalamus, striatum, pons, and prefrontal cortex). SPECT brain imaging studies in monkeys demonstrated high [(123)I]ZIENT uptake in the diencephalon, which resulted in diencephalon-to-cerebellum ratios of 2.12 at 190 min. [(123)I]ZIENT uptake in the diencephalon achieved transient equilibrium at 157 min. In a displacement experiment of [(123)I]ZIENT in a cynomolgus monkey, radioactivity was reduced by 39% in the diencephalon at 101 min following injection of citalopram. The high specific activity one-step radiolabeling preparation and high selectivity of [(123)I]ZIENT for SERT support its candidacy as a radioligand for mapping brain SERT sites.  相似文献   

16.
RATIONALE: There is evidence that abnormalities in brain dopamine, norepinephrine and serotonin metabolism may play an important role in binge eating. Serotonin-active antidepressant drugs have also been found to decrease binge eating. OBJECTIVE: We investigated serotonin transporter binding in obese binge-eating women. Eleven obese binge-eating and seven obese control women participated in the study. The subjects were not taking any medication known to affect serotonin (5-HT) transporters. METHODS: We used single-photon emission tomography (SPECT) with the radioligand 123I-labelled nor-beta-CIT, which specifically labels 5-HT transporters. RESULTS: Obese binge-eating women showed significantly decreased 5-HT transporter binding in the mid-brain compared with obese controls (2.1 +/- 0.5 versus 2.9 +/- 0.5, respectively). CONCLUSIONS: SPECT imaging with a ligand specific for 5-HT transporters can be used to assess altered serotonin transporter binding in the living human brain. The results tentatively suggest that 5-HT transporter binding is decreased in binge-eating women.  相似文献   

17.
Ball KT  Rebec GV 《Psychopharmacology》2005,181(4):676-687
Rationale Like amphetamine, a locomotor-activating dose of 3,4-methylenedioxymethamphetamine (MDMA) predominantly excites striatal single-unit activity in freely moving rats. Although both D1- and D2-like dopamine (DA) receptors play important roles in this effect, MDMA, unlike amphetamine, strongly increases both DA and serotonin (5-HT) transmission. Objectives This study was conducted to investigate the 5-HT receptor mechanisms underlying the striatal effects of MDMA. Methods We recorded the activity of >200 single units in the striatum of awake, unrestrained rats in response to acute MDMA administration (5 mg/kg) combined with the selective blockade of either 5-HT2A or 5-HT2C/B receptors. Results Prior administration of SR-46349B (a 5-HT2A antagonist 0.5 mg/kg) blocked nearly all MDMA-induced striatal excitations, which paralleled its significant attenuation of MDMA-induced locomotor activation. Conversely, prior administration of SB-206553 (a 5-HT2C/B antagonist 2.0 mg/kg) had no effect on the amount of MDMA-induced locomotor activation or the distribution of single-unit responses to MDMA. However, a coefficient-of-variation analysis indicated significantly less variability in the magnitude of both MDMA-induced neuronal excitations and inhibitions in rats that were pretreated with SB-206553 compared to vehicle. Analysis of concurrent single-unit activity and behavior confirmed that MDMA-induced striatal activation was not merely due to behavioral feedback, indicating a primary action of MDMA. Conclusion These results support and extend our previous findings by showing that 5-HT2A and 5-HT2C/B receptors differentially regulate the expression of MDMA-induced behavioral and striatal neuronal responses, either directly or through the modulation of DA transmission.  相似文献   

18.
RATIONALE: In vitro data have shown anticholinergic properties of the atypical antipsychotic drug olanzapine. Substantial occupancy of muscarinic receptors may be an explanation for the low incidence of extrapyramidal side effects induced by olanzapine. OBJECTIVES: To obtain an in vivo measurement of muscarinic receptor occupancy by olanzapine compared with risperidone in patients with schizophrenia stabilised on medication. METHODS: Five patients with schizophrenia treated with olanzapine and five patients treated with risperidone were studied. Muscarinic receptor occupancy in the striatum and cortex was studied in vivo with SPECT using [123I]-IDEX as a radioligand. SPECT data were compared with those of six healthy subjects. RESULTS: Patients stabilised on olanzapine showed significantly lower mean (+/-SD) striatal and cortical (1.50+/-0.21 and 1.51+/-0.22, respectively) muscarinic receptor binding ratios of [123I]-IDEX (reflecting higher levels of muscarinic receptor occupancy) than controls (3.91+/-0.61 and 3.65+/-0.70, respectively). Furthermore, [123I]-IDEX binding ratios in patients treated with risperidone were slightly lower than controls, reaching significance only in the striatum (2.99+/-0.27 versus 3.91+/-0.61, for risperidone and controls). CONCLUSIONS: The substantial occupancy of muscarinic receptors in the striatum and cortex by olanzapine may be an explanation for the low incidence and severity of extrapyramidal side effects of this antipsychotic drug. Furthermore, it may also explain the anticholinergic side effects of olanzapine.  相似文献   

19.
Neuronal nicotinic acetylcholine receptors (nAChRs), ubiquitously distributed in the human brain, are implicated in various neurophysiological processes and in the pathophysiology and/or treatment strategies of Alzheimer's and Parkinson's diseases, Tourette's syndrome, epilepsy, schizophrenia, depression, and anxiety, as well as being particularly affected in tobacco dependence/withdrawal. In the past two decades, researchers have developed an extensive series of radioligands for the assessment of nAChRs in vivo through emission tomography, PET and SPECT. Several radioligands, derivatives of A-85380: 2-[(18)F]FA, 6-[(18)F]FA and 5-[(123)I]IA, are now being employed for the evaluation of nAChR in humans with PET and SPECT. Displaying better imaging properties than (11)C-nicotine and a better toxicity profile than epibatidine analogs, they have allowed quantification of thalamic nAChR in the human brain. Nevertheless, A-85380 derivatives still exhibit slow brain kinetics and a moderate signal-to-noise ratio. Current research efforts on the part of PET/SPECT radiochemists, therefore, have focused on development of new, highly specific and highly selective nAChR radioligands with improved brain kinetics that are able to localize high-affinity nAChRs in vivo. Key examples of new PET/SPECT ligands that are derived from several different structural classes are discussed along with a review of their chemical as well as their in vitro and/or in vivo properties. In particular, new PET nAChR radioligands will be examined that either present faster brain kinetics allowing simple and reliable quantification approaches or higher binding potentials suitable for the evaluation of extrathalamic nAChR.  相似文献   

20.
[(123)I]Epidepride, [(18)F]fallypride, and [(76)Br]isoremoxipride (FLB-457) and their corresponding [(11)C]labeled derivatives belong to a class of high-affinity radioligands for SPECT or PET imaging of dopamine D(2) receptors in the human brain. In contrast to previously used imaging agents, these ligands are capable of identifying extrastriatal dopamine D(2) receptors. The design of these substituted benzamides derive its origin from the atypical antipsychotic agent, remoxipride. Starting in the late 1970's, halogenated analogs of (S)-sulpiride were evaluated in binding assays and behavioral studies, leading to the discovery of remoxipride. Remoxipride was 10 times weaker than sulpiride in vitro but 50 times more potent in vivo. Search for a putative active metabolite of remoxipride led to the discovery of raclopride and eticlopride, the former becoming a useful radioligand as tritium or carbon-11 labeled form for receptor binding and PET studies, respectively. In the US, the mono-iodine analog of raclopride, [(123)I]iodobenzamide (IBZM), was found to have moderate putamen-to-cerebellum ratio in rat and human brain. Continued search for metabolites of remoxipride led to the discovery of its 3,6-dihydroxy derivative, NCQ-344, with an extremely potent in vivo activity in the rat. SAR studies of the metabolites of remoxipride led to the discovery of the 3-methoxy isomer, isoremoxipride (FLB-457) and its corresponding 6-hydroxy analog, FLB-463, both having affinities for the dopamine D(2) receptor in the 20-30 pM range. Later, the 5-[(123)I]iodo analog of FLB-463, [(123)I]ioxipride ([(123)I]NCQ-298), became a potential SPECT imaging agent. In the mean time, the deshydroxy analog of IBZM, [(125)I]iodopride, showed binding potential in the rat similar to [(125)I]IBZM. Epidepride was designed by combining the structure of isoremoxipride with that of iodopride. In 1988, epidepride was independently prepared and radiolabeled in three separate laboratories in Stockholm, Berkeley, and Nashville. Evaluation of seven [(125)I]iodine substituted analogs of raclopride, including IBZM, revealed the unusual high striatum-to-cerebellum ratio of 234 of [(125)I]epidepride in the rat. Subsequent SPECT images with [(123)I]epidepride demonstrated its ability to identify extrastriatal dopamine D(2) receptors in the human brain. Exploration of the structure of epidepride confirmed its exceptional properties, to be exceeded only by its N-allyl homolog, [(125)I]nalepride. The design by others of a series of potent 5-(3-[(18)F]fluoropropyl) substituted analogs of epidepride for PET imaging, lead to the discovery of [(18)F]fallypride. By elucidating the role of lipophilicity in the substituted benzamides, the excellent imaging characteristics of [(11)C]/[(123)I]epidepride, [(11)C]/[(76)Br]isoremoxipride and [(18)F]fallypride, could not only be explained but predicted with remarkable accuracy. By using the inverse product of the receptor affinity (K(D)), and the apparent partition constant of the radioligand (P((7.4))), estimates of maximal binding potential of any radioligand for imaging of any neurotransmitter receptor or transporter site seem possible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号