首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
P Ye  A J D'Ercole 《Endocrinology》1999,140(7):3063-3072
Tumor necrosis factor-alpha (TNF-alpha) has been causally implicated in several demyelinating disorders, including multiple sclerosis. Because insulin-like growth factor I (IGF-I) is a potent stimulator of myelination, we investigated whether it can protect oligodendrocytes and myelination from TNF-alpha-induced damage using mouse glial cultures as a model. Compared with controls, TNF-alpha decreased oligodendrocyte number by approximately 40% and doubled the number of apoptotic oligodendrocytes and their precursors. Addition of Boc-aspartyl(Ome)-fluoromethyl ketone (BAF), an inhibitor of interleukin-1beta converting enzyme (ICE)/caspase proteases, blocked TNF-alpha-induced reductions in oligodendrocytes, indicating that the TNF-alpha-induced reduction in oligodendrocytes is, at least in part, due to apoptosis, and that ICE/caspases are one of TNF-alpha action mediators. Simultaneous addition of IGF-I to TNF-alpha-treated cultures negated these TNF-alpha effects nearly completely. Furthermore, IGF-I promoted oligodendrocyte precursor proliferation and/or differentiation in TNF-alpha-treated cultures. To analyze TNF-alpha and IGF-I actions on oligodendrocyte function, we measured the abundance of messenger RNAs (mRNAs) for two major myelin-specific proteins, myelin basic protein (MBP) and proteolipid protein (PLP). While TNF-alpha decreased MBP and PLP mRNA abundance by 5- to 6-fold, IGF-I abrogated TNF-alpha-induced reductions in a dose- and time-dependent manner. The changes in MBP and PLP mRNA abundance could not be completely explained by the changes in oligodendrocyte number, indicating that myelin protein gene expression is regulated by both TNF-alpha and IGF-I. These data support the hypothesis that TNF-alpha can mediate oligodendrocyte and myelin damage, and indicate that IGF-I protects oligodendrocytes from TNF-alpha insults by blocking TNF-alpha-induced apoptosis, and by promoting oligodendrocyte and precursor proliferation/differentiation and myelin protein gene expression.  相似文献   

2.
—The present article summarizes our data regarding: (a) the effect of sex steroids on the expression of a specific astrocytic marker in glial cell cultures (GFAP); (b) the effects of aging on two markers of the peripheral myelin (glycoprotein Po and the myelin basic protein, MBP); (c) the possible modification of the damaging effects of aging on these two markers by the in vivo administration of progesterone and its derivatives; and, finally, (d) the effect of progesterone derivatives on the gene expression of Po in cultures of rat Schwannn cells. The data obtained have indicated that progesterone and its 5-reduced metabolites may play an important role in the control of gene expression of GFAP and Po, respectively, in type 1 astrocytes and Schwann cells. It has also been found that the gene expression of Po and MBP is dramatically decreased in the myelin of the sciatic nerve of aged male rats and that the aged-linked decrease of the gene expression of Po is partially reversible with steroid treatment.  相似文献   

3.
The effect of ascorbic acid (AA) on rat glioma C6 cells was studied. At physiological AA concentrations of 0.1 and 1 mM, no morphological and no proliferative alterations in the C6 cultures were detectable. Although the total RNA content per cell was not affected by the AA-treatment, AA upregulated the expression of myelin-specific genes, i.e. proteolipid protein (PLP) and myelin-associated glycoprotein (MAG) genes as assessed by northern blot analysis. The steady-state level of the specific mRNAs increased transiently in the AA-treated cells. Three days after AA administration the message level reached a maximum of 10-and 2-fold over control for the PLP and MAG genes, respectively. The upregulation of the genes was directly related to AA concentration. The present data indicate a possible involvement of AA in the regulation of myelin gene activity in the CNS.  相似文献   

4.
The effect of factors released from N2A neuroblastoma cells on the expression of myelin protein genes in glioma C6 cells, i.e., proteolipid protein (PLP) and myelin-associated glycoprotein (MAG), was studied. Both cells lines were propagated in serum-free DMEM-F10 (1:1) medium. The addition of 50% N2A conditioned medium (N2ACM) stimulated the proliferation of C6 cells by approximately 4.5 fold as compared to control cells. The N2ACM-treated cells formed aggregates indicating increased cell-cell affinity. The exposure of C6 cells to N2ACM transiently stimulated the expression of both the MAG-specific and the PLP-specific messages up to eight and four fold over the control values, respectively. The maximal upregulation of the PLP gene occurred two days after N2ACM administration and preceded that of the MAG gene by two days. The effect of N2ACM was dose-dependent in the range of 12.5 to 50 %. The secretion of N2A paracrine factors that stimulated the myelin gene expression was also time-dependent. The optimal conditioning time for the release of the PLP gene-stimulating activity was one day, while the maximal MAG gene-stimulating activity was found in the medium conditioned for 3 days. This cellular system may provide a convenient model for studies on trophic neuronal-glial interaction. Furthermore, the results indicate a difference in the regulatory mechanisms between the PLP and the MAG genes.  相似文献   

5.
We have hypothesized that oligodendrocyte (OL) surface glycolipids, specifically galactocerebroside and sulfatide, play a role in the regulation of OL development by acting as sensors/transmitters of environment information. In support of this hypothesis we report here a reversible inhibition of OL progenitor cell differentiation by a monoclonal antibody [Ranscht mAb (R-mAb); Ranscht, B., Clapshaw, P. A. & Seifert, W. (1982) Proc. Natl. Acad. Sci. USA 79, 2709-2713] that reacts with these glycolipids. When isolated OL progenitors or mixed primary cultures are grown in the presence of the antibody, myelinogenic development is blocked in a dose-dependent manner at concentrations as low as 2 micrograms of IgG per ml. The inhibited cells express the OL progenitor markers O4 and vimentin but are negative for galactosylcerebroside, sulfatide, 2',3'-cyclic nucleotide 3'-phosphohydrolase, myelin basic protein, and myelin basic protein RNA expression. In contrast, the levels of total cellular protein and the expression of astrocytic glial fibrillary acidic protein in mixed cultures are not affected. Antibody-blocked cells have a distinctive morphology in which long, sparsely branched processes emanate from round cell bodies. Upon removing the perturbing antibody, the cells rapidly resume differentiation. Reverted mixed primary cultures, in which OL progenitors of several sequential developmental stages are present at the time of plating, differentiate more rapidly than control cultures, suggesting that the antibody-induced block results in a synchronization of developmental progression along the OL lineage by accumulating cells at the inhibition point. However, the normal temporal sequence of marker expression is maintained. Control studies with several other antibodies recognizing OL cell surface antigens, including HNK-1, neural cellular adhesion molecule (N-CAM), 1A9, anticholesterol, and O1, did not inhibit development. Since the inhibition occurs in highly enriched populations of OL progenitors, the inhibition does not involve cell-cell interactions between OLs and other cell types but concerns interactions of OLs with themselves, soluble factors, or OL extracellular matrix molecules and adhesion factors that provide essential environmental signals required for normal myelinogenic development.  相似文献   

6.
7.
Aging has been shown to have an effect on the capacity to differentiate preadipocytes and on the expression of some genes expressed in adipose tissue. The mRNA levels of adipocyte differentiation-related genes were examined in rhesus monkeys (Macaca Mulatta) ranging in age from 7 to 30 years. The effect of aging on the expression of peroxisome proliferator activated receptor gamma (PPARgamma), adipocyte determination- and differentiation-dependent factor 1/sterol regulatory element binding protein 1 (ADD1/SREBP1), CCAAT/enhancer binding protein alpha (C/EBPalpha), lipoprotein lipase (LPL), GLUT4 glucose transporter, and adipsin were examined by slot blot analysis. Significant inverse correlations were observed between age and the mRNA levels of PPARgamma, ADD1/SREBP1, LPL, and GLUT4. The coordinate downregulation of these genes may be linked to the declining fat mass of senescent animals. There was no correlation between age and the mRNA levels of adipsin. The mRNA levels of these genes were not correlated to body weight orfasting plasma insulin. These findings indicate that aging may have an effect on the adipocyte differentiation program and this effect appears to be gene specific.  相似文献   

8.
Tumor necrosis factor (TNF) alpha-induced adipose-related protein (TIARP) has recently been cloned as a TNFalpha-stimulated protein expressed in adipocytes. Its expression is differentiation-dependent and potentially involved in mediating TNFalpha-induced insulin resistance. To further characterize regulation of TIARP gene expression, 3T3-L1 adipocytes were treated with key hormones modulating insulin sensitivity and influencing adipocyte metabolism, and TIARP gene expression was determined by quantitative real-time RT-PCR. Interestingly, TIARP mRNA expression was stimulated almost 9-fold after 500 ng/ml GH were added for 16 h whereas addition of 10 microM isoproterenol, 100 nM insulin and 100 nM dexamethasone for 16 h significantly decreased TIARP gene expression to between 35 and 50% of control levels. In contrast, angiotensin 2 (10 microM) and triiodothyronine (1 microM) did not have any effect. The stimulatory effect of GH was time- and dose-dependent with stimulation occurring as early as 1 h after effector addition and at concentrations as low as 5 ng/ml GH. Moreover, pharmacological inhibition of Janus kinase 2 and p42/44 mitogen-activated protein kinase reversed the stimulatory effect of GH, suggesting that both signaling molecules are involved in activation of TIARP gene expression by GH. Furthermore, an increase of TIARP mRNA could be completely reversed to control levels by withdrawal of GH for 24 h. Taken together, these results show that TIARP is not only responsive to TNFalpha but also to important other hormones influencing glucose homeostasis and adipocyte metabolism. Thus, this factor may play an integrative role in the pathogenesis of insulin resistance and its link to obesity.  相似文献   

9.
10.
Paralytic tremor (pt), a hereditary neurological disorder of rabbits is a recessive, X-linked point mutation of the gene for proteolipid protein (PLP) biosynthesis. This mutation results in substitution of histidine36 by glutamine in the PLP molecule and produces severe hypomyelination. In the present study, we investigated the developmental expression of myelin - oligodendrocyte - specific glycolipid markers by means of ELISA assay. While immunoreactivity with antibodies recognising proligodendroblast (POA) antigen was unchanged, only minute amounts of the other glycolipid markers characteristic for more advanced stages of OLs maturation, such as 04 and 01 antigens, were expressed inpt brain. The degree of down-regulation was similar to that for MBP. Concomitantly, the level ofin situ expression of the mutated PLP gene mRNA in glial cells of 14 day oldpt brain was found to be as high as in age-matched controls. Northern blot analysis of developmental PLP gene expression showed a significant deficit of this message inpt brain, but only at more advanced developmental stages. However, aside from changes in myelin structure, no changes in glial cell number or morphology were evident by light microscopic examination ofpt mutants. In contrast, electron microscopy revealed substantial abnormalities inpt oligodendrocyte cytoarchitecture, indicating functional impairment of intracellular transport and utilisation of myelin constituents. Thus, only POA expression is positively correlated with the unchanged content of OLs inpt brain, whereas decreases of 04 and 01 antigens, together with MBP immunoreactivity, are indicators of the degree of hypomyelination. Furthermore, oligodendrocyte differentiation appears to proceed normally inpt mutant brain up to the stage of PLP gene expression. Then, due to intracellular accumulation of this abnormal gene product, synthesis of PLP as well as the other myelin-specific constituents is inhibited by a feed-back control mechanism.  相似文献   

11.
BACKGROUND: Chronic and excessive alcohol misuse results in neuropathological damage in the cerebral cortex. The damage includes white matter loss, brain atrophy, and selective loss of neurons in the superior frontal gyrus. Chronic alcohol misuse also results in alterations in the expression of a number of genes, including a selective reprogramming of myelin gene expression in the frontal cortex. METHODS: The expression of cyclic nucleotide phosphodiesterase, glial fibrillary acidic protein, myelin-associated glycoprotein, myelin basic protein, and myelin proteolipid protein were assessed in the superior frontal gyrus and the primary motor cortex of control, uncomplicated alcoholic, and cirrhotic alcoholic cases. RESULTS: Overall, the expression of cyclic nucleotide phosphodiesterase, glial fibrillary acidic protein, myelin-associated glycoprotein, and myelin basic protein were significantly lower in the cirrhotic alcoholic cases compared with controls, with a similar tendency for myelin proteolipid protein. There was a strong correlation between the expression of the proteins studied and the brain weight of the individual case, but this interaction did not confound the overall analysis. There was no significant difference between controls and uncomplicated alcoholics. CONCLUSIONS: The loss of myelin proteins occurred without gross changes in brain pathology or brain weight and was not restricted to pathologically susceptible brain regions. It is not possible to determine whether the loss of myelin proteins in cirrhotic alcoholics is the result of cirrhosis per se or the combination of alcohol misuse and liver cirrhosis. Future studies comparing cases with alcoholic and nonalcoholic cirrhosis of the liver disease are required to elucidate this further.  相似文献   

12.
A 39-year-old man with myotonic dystrophy consulted our hospital for nausea, vomiting and dizziness that occurred after 75 g oral glucose tolerance test (OGTT). Reexamination of OGTT revealed remarkable hyperinsulinemia (622 microU/ml) followed by reactive hypoglycemia (50 mg/dl) and such hypoglycemic symptoms as nausea, vomiting, dizziness and palpitation. DNA analysis of the circulating lymphocytes revealed increased (1,500 times) number of cytosine-thymine-guanine (CTG) trinucleotide repeats in myotonic dystrophy protein kinase (DM kinase) gene. Gel chromatographic analysis of the plasma in combination with sensitive enzyme immunoassay of insulin revealed that the ratio of proinsulin to total immunoreactive insulin was elevated at fasting (12.9%), and was decreased to 8.9% at 60 min after glucose administration. These findings may indicate that biologically active authentic insulin was predominantly secreted after glucose administration in the present case. This is the first case report of myotonic dystrophy with hyperinsulinemia associated with reactive hypoglycemia induced by oral glucose administration.  相似文献   

13.
We investigated the glucose transporter gene and protein expression during early organogenesis in the rat and in rat embryos cultured with hypoglycemic serum. Erythrocyte-type glucose transporter (GLUT-1) mRNA was expressed at a high level in embryos; peak levels were reached at days 10.5–11.5 and decreased as gestational age increased. In contrast, the insulin regulaable glucose transporter (GLUT-4) mRNA was not detected. The levels of GLUT-1 protein determined by Western blot analysis increased in parallel with expression of the glucose transporter (GLUT-1) gene and peak levels were observed on days 10.5 and 11.5, which correspond to the main periods of neural tube formation. Immunohistochemical staining of the embryo on day 10.5 showed that GLUT-1 protein was abundantly located in the tissue of neural tube. When embryos were cultured from day 9.5 to day 10.5 with insulin-induced hypoglycemic serum containing 2–3 mM glucose an increased frequency of anterior neural tube defects was observed in association with a significant reduction of the glycolytic flux. Increased levels of GLUT-1 mRNA and protein were not observed during the culture with hypoglycemic serum compared with the levels in embryos cultured in normal serum. Addition of insulin to normal serum (500 U/ml) did not affect the GLUT-1 mRNA and protein levels. GLUT-1 mRNA and protein are strongly expressed in the embryo during early organogenesis, especially in the tissues of the neural tube, and the expression of the glucose transporter did not increase in response to prolonged glycopenia. This may account for the vulnerability of embryogenesis to hypoglycemia during these critical developmental periods.  相似文献   

14.
The applicability of antisense technology to suppress the expression of myelin associated glycoprotein (MAG) in cultured oligodendrocytes was evaluated. Differentiating oligodendrocyte precursor cells obtained by the shake-off method were exposed to nine unmodified antisense oligodeoxynucleotides (ODNs) targeted to the first seven exons of MAG mRNA. After four days, steady-state levels of MAG, proteolipid protein (PLP) and basic protein (BP) mRNAs were determined by Northern blot analysis. Only ODN annealing to 599-618 nt of the MAG mRNA (the junction of exon 5 and 6) resulted in a significant, 75% decrease in the MAG mRNA level. Unexpectedly, six other anti-MAG ODNs which had no significant effect on the MAG message, greatly increased the level of BP mRNA. The highest upregulation of approximately 12 fold was observed with ODN annealing to 139-168 nt (junction of exon 3 and 4). On the other hand, the 997-1016 ODN decreased the levels of BP and PLP messages by 70-80%. The 599-618 ODN also decreased the PLP mRNA by 85%. The results demonstrate that antisense ODNs targeted to one gene may profoundly alter the expression of other genes, and hence, complicate functional analysis of the targeted protein.  相似文献   

15.
Selective arterial calcium stimulation and hepatic venous sampling (ASVS) for insulin secretion is used as a diagnostic procedure in patients with insulinomas or adult nesidioblastosis. In some of those patients, severe hypoglycemia requiring urgent glucose administration occurs during the procedure. Such glucose administration, however, may affect the results and damage the validity of the test. We report two cases of hyperinsulinemic hypoglycemia, in which ASVS tests were successfully performed under hyperinsulinemic euglycemic glucose clamps. A 40-year-old male with nesidioblastosis developed continual severe hypoglycemia several years after a Billroth II-Braun gastrectomy, and continuous glucose infusion could not be stopped even during ASVS tests. A 9-year-old girl with an insulinoma that showed atypical hypovascularity on imaging examinations had ASVS tests under a glucose clamp for safety. Hyperinsulinemic (approximately 100 microU/ml) euglycemic (approximately 90 mg/dl) clamps were achieved by an artificial endocrine pancreas. The insulin analogue lispro was utilized for clamps and endogenous insulin was measured with an assay that does not cross-react with the analogue. Diagnostically significant responses (more than twofold) of insulin secretion were observed under hyperinsulinemic clamps in both cases. The use of the hyperinsulinemic glucose clamp technique during the ASVS test should be considered for maintaining the safety of some hypoglycemic patients.  相似文献   

16.
Previous studies showed that the cell-surface receptor for reovirus serotype 3 (Reo3R) appears at an early stage of oligodendrocyte differentiation and that anti-Reo3R antibodies and Reo3R-binding peptides induce galactocerebroside expression by developing oligodendrocytes. In the present studies, anti-Reo3R antibodies are shown to stimulate additional features of the program of oligodendrocyte development, including the loss of the A2B5 marker and expression of myelin basic protein. In anti-Reo3R antibody-treated cultures, galactocerebroside was expressed by cells having the morphology of immature oligodendrocyte precursors. Reo3R binding did not appear directly to inhibit or stimulate proliferation of glial progenitor cells or to affect their lineage commitment. Cell-surface structures utilized as a receptor by reovirus type 3 appear to play a role in the regulation of the initiation or rate of execution of the oligodendrocyte developmental program.  相似文献   

17.
Prader-Willi syndrome (PWS) has a biphasic clinical phenotype with failure to thrive in the neonatal period followed by hyperphagia and severe obesity commencing in childhood among other endocrinological and neurobehavioral abnormalities. The syndrome results from loss of function of several clustered, paternally expressed genes in chromosome 15q11-q13. PWS is assumed to result from a hypothalamic defect, but the pathophysiological basis of the disorder is unknown. We hypothesize that a fetal developmental abnormality in PWS leads to the neonatal phenotype, whereas the adult phenotype results from a failure in compensatory mechanisms. To address this hypothesis and better characterize the neonatal failure to thrive phenotype during postnatal life, we studied a transgenic deletion PWS (TgPWS) mouse model that shares similarities with the first stage of the human syndrome. TgPWS mice have fetal and neonatal growth retardation associated with profoundly reduced insulin and glucagon levels. Consistent with growth retardation, TgPWS mice have deregulated liver expression of IGF system components, as revealed by quantitative gene expression studies. Lethality in TgPWS mice appears to result from severe hypoglycemia after postnatal d 2 after depletion of liver glycogen stores. Consistent with hypoglycemia, TgPWS mice appear to have increased fat oxidation. Ghrelin levels increase in TgPWS reciprocally with the falling glucose levels, suggesting that the rise in ghrelin reported in PWS patients may be secondary to a perceived energy deficiency. Together, the data reveal defects in endocrine pancreatic function as well as glucose and hepatic energy metabolism that may underlie the neonatal phenotype of PWS.  相似文献   

18.
We used a fluorescence differential display-PCR (FDD-PCR) technique to analyze the genes expressed in mouse brains collected at nine different developmental stages ranging from 3 days to 15 months after birth, and 5 age-dependently expressed genes were found. Age-dependent expression of each of these 5 genes was confirmed by quantitative real-time PCR analysis. Of the 5 genes, 4 (B1-B4) had high homology with the nucleotide sequences of cDNA clones of known mouse genes (myelin proteolipid protein, transferrin, embryo cDNA from the RIKEN full-length enriched library, and protein tyrosine phosphatase), and the rest (B5) with expressed sequence tags of an unknown gene. Sequencing analysis of the full-length cDNA constructed based on the B5 sequence demonstrated that the gene product of B5 was identical to G-substrate, a specific substrate for cGMP-dependent protein kinase. The expression patterns of known genes obtained in our study may provide a further opportunity to investigate the biological and physiological roles of the proteins they encode.  相似文献   

19.
20.
We have isolated the mouse gene encoding adipocyte P2, aP2, the differentiation-dependent adipocyte protein homologous to myelin P2. The aP2 gene is present in a single copy in the mouse and is present in single or few copies in species from human to Drosophila. The entire gene spans 4 kilobases and consists of four exons encoding 25, 57, 34, and 16 amino acids; the overall exon structure is similar to the gene encoding liver fatty acid binding protein. A plasmid vector was constructed containing the entire aP2 gene with flanking sequences, modified by linker insertion. When this gene is stably introduced into 3T3-F442A cells, it is expressed only upon adipose differentiation, with a time course of induction very similar to that of the endogenous aP2 gene. We have compared the DNA sequence of the 5'-flanking region of the aP2 gene to the promoter regions of two other genes activated during adipocyte differentiation, glycerol-3-phosphate dehydrogenase and adipsin, and find a 13-base region of homology (Formula: see text) present in multiple copies in the 5'-flanking region of each gene. An adjacent 15-base sequence is present only in glycerol-3-phosphate dehydrogenase and aP2 genes. Both of these elements share homology with putative viral enhancer core sequences. These results indicate that the aP2 gene contains sequence information necessary for differentiation-dependent expression in fat cells; common elements shared by adipocyte-specific genes may play a role in this process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号