首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the lung the expression of xenobiotic-metabolizing enzymes such as cytochromes P450 (CYP) and glutathione S-transferases (GST) may be affected by inhaled pollutants. Toluene diisocyanate (TDI) is a highly volatile chemical compound known to induce a wide array of diseases in workers exposed to vapors or sprays, including respiratory allergy and asthma. We investigated the effect of inhaled TDI on expression of CYP 1A1, 2B1, 2E1, and 3A1 and of alpha-, mu-, and pi-GST in rat lung. Animals were exposed to targeted concentrations of 0.01, 0.1, or 1 ppm TDI vapors or to cleaned filtered air for 8 h. Expression of CYP and GST was analyzed 18 24 h after the end of exposure using western blotting, northern blotting, and immunohistochemistry. Constitutive levels of CYP 2B1 and 3A1 proteins were found in lung tissue from control rats, whereas CYP 1A1 and 2E1 proteins were not detectable. Animal exposure to TDI vapors neither modified CYP 3A1 protein expression, nor led to any detectable expression of CYP 1A1 or 2E1. In contrast, exposure to 1 ppm TDI induced a 40% reduction in CYP 2B1 protein levels. This decrease was associated with a 33% decrease in CYP 2B1 mRNA levels. Additionally, CYP 2B1 immunolabeling localized to ciliated epithelial cells, Clara cells, and type II alveolar cells in the lung tissue of control rats was markedly decreased in animals exposed to 1 ppm TDI. Constitutive levels of alpha-, mu-, and pi-GST proteins were found in lung tissue from control rats. Exposure to TDI had no effect on lung expression of either of the GST. In conclusion, this study clearly shows a selective decrease in CYP 2B1 expression by TDI vapors in rat lung. The contribution of CYP 2B1 to metabolize further xenobiotics is therefore altered.  相似文献   

2.
3.
In this study the drug interaction between ciprofloxacin (CIPRO) and pentoxifylline (PTX) was investigated and the role of CYP1A2 in the drug interaction was determined with the aid of a selective CYP1A2 inhibitor, furafylline (FURA), and the Cyp1A2 knockout mouse. Serum concentrations of PTX (83.4+/-1 micromol/l) and metabolite-1 (M-1) (13.7+/-2.8 micromol/l) following a single injection of PTX (100 mg/kg i.p.) were significantly higher (P<0.05) in mice treated with CIPRO (25 mg/kg i.p. 9 days) compared to serum concentrations of PTX (46.3+/-0.5 micromol/l) and M-1 (6.4+/-1.1 micromol/l) in mice administered saline. Murine hepatic microsomes were incubated with PTX alone or the combination of PTX and CIPRO. The metabolism of PTX in the murine hepatic microsomes containing both CIPRO and PTX was significantly decreased compared to microsomes incubated with PTX alone, suggesting that CIPRO may inhibit the metabolism of PTX. To further clarify the role of CYP1A2 in the metabolism of PTX in mice, the effect of a selective CYP1A2 mechanism based inhibitor, FURA, on the metabolism of PTX was investigated and our results indicate that FURA inhibited metabolism of PTX. We then investigated PTX elimination in the Cyp1A2 knockout mouse. Blood levels of PTX were assessed at 2 and 20 min following a single injection of PTX (32 mg/kg i.v). Serum concentration of PTX was determined in Cyp1A2 knockout mice compared to Cyp1A2 wild type control mice. The serum concentration of PTX in Cyp1A2 wild type mice (n=9) was 22.2+/-3.2 micromol/l at 20 min following injection of PTX. The serum concentration of PTX in Cyp1A2 knockout mice (n=11) was significantly elevated at 20 min following injection of PTX compared to Cyp1A2 wild type mice. These results clearly indicate that inhibition of CYP1A2 catalytic activity that occurs in the Cyp1A2 knockout mice is sufficient to alter metabolism of PTX and result in markedly elevated levels in serum of Cyp1A2 knockout mice. The results of Western analysis in murine microsomes suggest that CYP1A2 protein levels were not altered by CIPRO indicating that CIPRO did not downregulate Cyp1A2. The results of Western analysis also indicated that CIPRO treatment increased CYP2E1 in mouse microsomes and the implications of these will be discussed.  相似文献   

4.
Urethane is an established animal carcinogen and has been classified as "reasonably anticipated to be a human carcinogen." Until recently, urethane metabolism via esterase was considered the main metabolic pathway of this chemical. However, recent studies in this laboratory showed that CYP2E1, and not esterase, is the primary enzyme responsible for urethane oxidation. Subsequent studies demonstrated significant inhibition of urethane-induced genotoxicity and cell proliferation in Cyp2e1-/- compared to Cyp2e1+/+ mice. Using Cyp2e1-/- mice, current studies were undertaken to assess the relationships between urethane metabolism and carcinogenicity. Urethane was administered via gavage at 1, 10, or 100 mg/kg/day, 5 days/week, for 6 weeks. Animals were kept without chemical administration for 7 months after which they were euthanized, and urethane carcinogenicity was assessed. Microscopic examination showed a significant reduction in the incidences of liver hemangiomas and hemangiosarcomas in Cyp2e1-/- compared to Cyp2e+/+ mice. Lung nodules increased in a dose-dependent manner and were less prevalent in Cyp2e1-/- compared to Cyp2e+/+ mice. Microscopic alterations included bronchoalveolar adenomas, and in one Cyp2e1+/+ mouse treated with 100 mg/kg urethane, a bronchoalveolar carcinoma was diagnosed. Significant reduction in the incidence of adenomas and the number of adenomas/lung were observed in Cyp2e1-/- compared to Cyp2e1+/+ mice. In the Harderian gland, the incidences of hyperplasia and adenomas were significantly lower in Cyp2e1-/- compared to Cyp2e+/+ mice at the 10 mg/kg dose, with no significant differences observed at the high or low doses. In conclusion, this work demonstrated a significant reduction of urethane-induced carcinogenicity in Cyp2e1-/- compared to Cyp2e1+/+ mice and proved that CYP2E1-mediated oxidation plays an essential role in urethane-induced carcinogenicity.  相似文献   

5.
Enzymatic activities are routinely used to identify the contribution of individual forms of cytochrome P450 in a particular biotransformation. p-Nitrophenol O-hydroxylation (PNPH) has been widely used as a measure of CYP2E1 catalytic activity. However, rat and human forms of CYP3A have also been shown to catalyze this activity. In mice, the contributions of CYP3A and CYP2E1 to PNPH activity are not known. Here we used hepatic microsomes from Cyp2e1(-/-) and wild-type mice to investigate the contributions of constitutively expressed and alcohol-induced murine CYP2E1 and CYP3A to PNPH activity. In liver microsomes from untreated mice, PNPH activity was much greater in wild-type mice compared with Cyp2e1(-/-) mice, suggesting a major role for CYP2E1 in catalyzing PNPH activity. Hepatic PNPH activities were not significantly different in microsomes from male and female mice, although the microsomes from females have dramatically higher levels of CYP3A. Treatment with a combination of ethanol and isopentanol resulted in induction of CYP3A proteins in wild-type and Cyp2e1(-/-) mice, as well as CYP2E1 protein in wild-type mice. The alcohol treatment increased PNPH activities in hepatic microsomes from wild-type mice but not from Cyp2e1(-/-) mice. Our findings suggest that in untreated and alcohol-treated mice, PNPH activity may be used as a specific probe for CYP2E1 and that constitutively expressed and alcohol-induced forms of mouse CYP3A have little to no role in catalyzing PNPH activity.  相似文献   

6.
CYP2E1 is widely accepted as the sole form of cytochrome P450 responsible for alcohol-mediated increases in acetaminophen (APAP) hepatotoxicity. However, we previously found that alcohol [ethanol and isopentanol (EIP)] causes increases in APAP hepatotoxicity in Cyp2e1(-/-) mice, indicating that CYP2E1 is not essential. Here, using wild-type and Cyp2e1(-/-) mice, we investigated the relative roles of CYP2E1 and CYP3A in EIP-mediated increases in APAP hepatotoxicity. We found that EIP-mediated increases in APAP hepatotoxicity occurred at lower APAP doses in wild-type mice (300 mg/kg) than in Cyp2e1(-/-) mice (600 mg/kg). Although this result suggests that CYP2E1 has a role in the different susceptibilities of these mouse lines, our findings that EIP-mediated increases in CYP3A activities were greater in wild-type mice compared with Cyp2e1(-/-) mice raises the possibility that differential increases in CYP3A may also contribute to the greater APAP sensitivity in EIP-pretreated wild-type mice. At the time of APAP administration, which followed an 11 h withdrawal from the alcohols, alcohol-induced levels of CYP3A were sustained in both mouse lines, whereas CYP2E1 was decreased to constitutive levels in wild-type mice. The CYP3A inhibitor triacetyloleandomycin (TAO) decreased APAP hepatotoxicity in EIP-pretreated wild-type and Cyp2e1(-/-) mice. TAO treatment in vivo resulted in inhibition of microsomal CYP3A-catalyzed activity, measured in vitro, with no inhibition of CYP1A2 and CYP2E1 activities. In conclusion, these findings suggest that both CYP3A and CYP2E1 contribute to APAP hepatotoxicity in alcohol-treated mice.  相似文献   

7.
《中国新药杂志》2010,19(23):2174
 目的:观察椒目油A2(zanthoxylum seed oil A2,ZSOA2)对卵蛋白(ovalbumin,OVA)诱导哮喘小鼠不同时间点肺组织嗜酸性粒细胞(Eos)凋亡的影响。方法:BALB/c小鼠腹腔注射0.2 mL 20% Al(OH)3和10% OVA的混合液致敏,然后经呼吸道滴入50 μL OVA混合溶液(4 g OVA/0.01 mol?L-1磷酸盐缓冲液)制备小鼠哮喘模型。滴入OVA混合溶液后24 h,48 h,3 d,7 d和14 d分别处死小鼠。伊红(HE)染色法检测肺组织病理形态学变化;末端脱氧核苷酸转移酶介导的带生物素dUTP切口末端标记技术(TUNEL)检测肺组织Eos的凋亡情况;原位杂交(ISH)法测定肺组织中白介素-5(IL-5)、嗜酸粒细胞趋化因子(eotaxin,EON) mRNA阳性粒细胞表达数; Western Blot法测定肺组织Fas,Fas L,Bax,BcL-2,Caspase-3, 9,TNF-R1,p-JNK和c-jun信号通路蛋白的表达。结果:椒目油A2组能显著增加各时间点哮喘小鼠肺组织内Eos的凋亡率,降低IL-5,EON mRNA阳性粒细胞数,上调肺组织中各时间点Fas L和TNF-R1蛋白的表达,降低c-jun和p-JNK蛋白表达。结论:椒目油A2增加粒细胞凋亡率与降低IL-5,EON mRNA阳性粒细胞数、上调肺组织中Fas L和TNF-R1蛋白的表达有关。  相似文献   

8.
Isocyanate-induced asthma, the most commonly reported cause of occupational asthma, has been difficult to diagnose and control, in part, because the biological mechanisms responsible for the disease and the determinants of exposure have been difficult to define. Appropriate animals models of isocyanate asthma will be instrumental to further our understanding of this disease. Previous studies have demonstrated that dermal exposure to isocyanates in mice results in systemic sensitization that leads to eosinophilic airways inflammation upon subsequent airway challenge. We hypothesized that inhalation of vapor phase toluene diisocyante (TDI) will lead to immunologic sensitization in mice and that subsequent challenge will induce pathology and immune system alterations indicative of asthma found in humans. To determine the impact of exposure dose as well as the involvement of immune (allergic) or nonimmune mechanisms, a murine model of TDI asthma was established and characterized following either low-level subchronic or high-dose acute inhalation TDI exposure. C57BL/6 J mice were exposed to TDI by inhalation either subchronically for 6 weeks (20 ppb, 4 h/day, 5 days/week) or by a 2-h acute exposure at 500 ppb. Both groups were challenged 14 days later via inhalation with 20 ppb TDI for 1 h. Mice that underwent the subchronic exposure regimen demonstrated a marked allergic response evidenced by increases in airway inflammation, eosinophilia, goblet cell metaplasia, epithelial cell alterations, airway hyperreponsiveness (AHR), T(H)1/T(H)2 cytokine expression in the lung, elevated levels of serum IgE, and TDI-specific IgG antibodies, as well as the ability to transfer these pathologies to naive mice with lymphocytes or sera from TDI exposed mice. In contrast, mice that received acute TDI exposure demonstrated increased AHR, specific IgG antibodies, and pathology in the lung consistent with asthma, but without the presence of elevated serum IgE, lung eosionophilia, or increased expression of T(H) cytokines. These results describe mouse models for TDI asthma consistent with that found in workers with occupational asthma and indicate that the pulmonary pathology associated with TDI can vary depending upon the exposure paradigm.  相似文献   

9.
10.
环磷酰胺(cyclophosphamide,CPA)是治疗多种肿瘤的一线化疗药,但过量应用可引起肝损伤。本文旨在探讨氧化苦参碱(oxymatrine,OMT)与CPA的联合给药是否会加剧其肝毒性,并初步阐明其机制。小鼠单独给药OMT(100 mg·kg-1)不同时间后,检测肝组织Cyp2b10 mRNA和CYP2B10蛋白表达。小鼠灌胃(intragastric adminis‐tration,ig)给药不同剂量OMT,同时隔天腹腔注射(intraperitoneal injection,ip)给予CPA(200 mg·kg-1),10天后,检测血清谷丙/谷草转氨酶(alanine/aspartate aminotransferase,ALT/AST)活力,记录小鼠死亡率,检测肝组织Cyp2b10mRNA水平,并分析ALT/AST活力、死亡率和Cyp2b10 mRNA水平间的相关性。本文中动物福利和实验过程均遵循上海中医药大学实验动物伦理委员会的规定。结果发现,OMT单独给药可以显著提高小鼠肝组织中Cyp2b10mRNA和CYP2B10蛋白表...  相似文献   

11.
12.
Previous experiments showed that treatment of mice and rats with thioacetamide (TAA) induced liver cell damage, fibrosis and/or cirrhosis, associated with increased oxidative stress and activation of hepatic stellate cells. Some experiments suggest that CYP2E1 may be involved in the metabolic activation of TAA. However, there is no direct evidence on the role of CYP2E1 in TAA-mediated hepatotoxicity. To clarify this, TAA-induced hepatotoxicity was investigated using Cyp2e1-null mice. Male wild-type and Cyp2e1-null mice were treated with TAA (200 mg/kg of body weight, single, i.p.) at 6 weeks of age, and hepatotoxicity examined 24 and 48 h after TAA treatment. Relative liver weights of Cyp2e1-null mice were significantly different at 24 h compared to wild-type mice (p<0.01). Serum levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP) and lactate dehydrogenase (LDH) in Cyp2e1-null mice were significantly different at both time points compared to wild-type mice (p<0.01). Histopathological examination showed Cyp2e1-null mice represented no hepatototoxic lesions, in clear contrast to severe centriobular necrosis, inflammation and hemorrhage at both time points in wild-type mice. Marked lipid peroxidation was also only limited to wild-type mice (p<0.01). Similarly, TNF-alpha, IL-6 and glutathione peroxidase mRNA expression in Cyp2e1-null mice did not significantly differ from the control levels, contrasting with the marked alteration in wild-type mice (p<0.01). Western blot analysis further revealed no increase in iNOS expression in Cyp2e1-null mice. These results reveal that CYP2E1 mediates TAA-induced hepatotoxicity in wild-type mice as a result of increased oxidative stress.  相似文献   

13.
Isocyanate-induced asthma, which is the most common type of occupational asthma, has been difficult to diagnose and control, in part, because the biological mechanisms responsible for the disease and the determinants of exposure are not fully defined. To help address these issues, we recently established a murine model of toluene diisocyanate (TDI) asthma using inhalation exposure paradigms consistent with potential workplace exposure. In order to confirm our hypothesis that TDI-induce asthma, like allergic asthma, is predominantly a Th2 response, the ability of mice that were deficient in CD4 or CD8 cells or specific Th1 and Th2 cytokines to develop TDI asthma was examined. The development of allergic asthma was evaluated by monitoring lungs for the presence of eosinophilia, goblet cell metaplasia, epithelial cell alterations, airway hyperreactivity (AHR), and Th2 and Th1 cytokine expression, as well as serum IgE levels and TDI-specific IgG antibodies. Transgenic CD8 or CD4 knockout (KO) mice exhibited significant reductions in AHR, cytokine expression, serum antibody levels, airway inflammation, and histopathological lesions, although in a number of the endpoints the effects were more attenuated in CD4 KO mice. IFNgamma depletion ablated the increase in AHR in TDI-allergic mice, but had only slight to moderate effects on airway histopathology, serum antibody levels, and cytokine expression compared to sensitized/challenged controls. IL-4 and IL-13 deficiency had moderate inhibitory effects, while combined IL-4/IL-13 depletion effectively prevented almost all asthma-associated pathologies. Taken together, these results indicate that TDI asthma, like immune-mediated asthma produced by large-molecular-weight materials, is driven primarily by CD4+ T cells and is dependent upon the expression of Th2 cytokines. However, as with protein-induced asthma models, certain pathologies are influenced by CD8+ T cells and Th1-derived cytokines, such as AHR and cytokine production.  相似文献   

14.

Background and purpose:

Earlier we reported that 7,8-dihydro-8-oxo-deoxyguanosine (8-oxo-dG), an oxidatively modified guanine nucleoside, exerted anti-inflammatory activity through inactivation of the GTP binding protein, Rac. In the present study, the effects of 8-oxo-dG were investigated on responses to antigen challenge in sensitized mice, as Rac is also involved at several steps of the immune process including antigen-induced release of mediators from mast cells.

Experimental approach:

Mice were sensitized and challenged with ovalbumin without or with oral administration of 8-oxo-dG during the challenge. Effects of 8-oxo-dG were assessed by measuring lung function, cells and cytokines in broncho-alveolar lavage fluid (BALF) and serum levels of antigen-specific IgE. Rac activity in BALF cells was also measured.

Key results:

8-oxo-dG inhibited the increased airway resistance and decreased lung compliance of sensitized and challenged mice to the levels of non-sensitized control mice and lowered the increased leukocytes particularly, eosinophils, in BALF. Furthermore, 8-oxo-dG suppressed allergy-associated immune responses, such as raised anti- ovalbumin IgE antibody in serum, increased expression of CD40 and CD40 ligand in lung, increased interleukin-4, -5, -13, interferon-γ and tumour necrosis factor-α in BALF and mRNA levels of these cytokines in BALF cells, dose-dependently. The corresponding purine, 8-oxo-guanine, showed no effects in the same experiments. Finally, 8-oxo-dG, but not 8-oxo-guanine, inhibited the increased Rac activity in sensitized and challenged mice.

Conclusion and implications:

8-Oxo-dG had anti-allergic actions that might be mediated by Rac inactivation. This compound merits further evaluation of its therapeutic potential in allergic asthma.  相似文献   

15.
Infection-associated inflammation can alter the expression levels and functions of cytochrome P450s (CYPs). Cyp gene expression is regulated by the activation of several nuclear receptors, including pregnane X receptor (PXR), constitutive androstane receptor (CAR), and aryl hydrocarbon receptor (AhR). These receptors can be activated by xenobiotics, including medicines. Here, to study the xenobiotic-induced fluctuations in CYP during inflammation, we examined the effect of lipopolysaccharide (LPS) treatment on the level of mRNAs encoding hepatic CYPs induced by xenobiotic-activated nuclear receptors, in mice. Both the mRNA induction of Cyp genes and the metabolic activities of CYP proteins were examined. LPS treatment caused a significant decrease in the induced expression of the mRNAs for Cyp3a11, 2c29, 2c55, and 1a2, but not for Cyp2b10. To assess the CYP enzymatic activities, CYP3A-mediated testosterone 6β-hydroxylation and the intrinsic clearance (CL(int)) of nifedipine in liver microsomes were measured in mice treated with the xenobiotic pregnenolone-16alpha-carbonitrile (PCN) with or without LPS administration. Both assays revealed that the CYP3A activity, which was induced by PCN, declined significantly after LPS treatment, and this decline correlated with the Cyp3a11 mRNA level. In addition, we found that the mRNAs for interleukin (IL)-1β and tumor necrosis factor (TNF) α were increased after treatment with LPS plus xenobiotics. Our findings demonstrated that LPS treatment reduces the PXR- and AhR-mediated, and possibly CAR-mediated Cyp gene expression and further suggest that these decreases are dependent on inflammatory cytokines in the liver.  相似文献   

16.
The effect of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on the liver of C57BL/6J mice is a model for clinical sporadic porphyria cutanea tarda (PCT). There is massive uroporphyria, inhibition of uroporphyrinogen decarboxylase (UROD) activity, and hepatocellular damage. A variety of evidence implicates the CYP1A2 enzyme as necessary for mouse uroporphyria. Here we report that, 5 weeks after a single oral dose of TCDD (75 microg/kg), Cyp1a2(+/+) wild-type mice showed severe uroporphyria and greater than 90% decreases in UROD activity; in contrast, despite exposure to this potent agent Cyp1a2(-/-) knockout mice displayed absolutely no increases in hepatic porphyrin levels, even after prior iron overload, and no detectable inhibition of UROD activity. Plasma levels of alanine-aminotransferase (ALT) and aspartate aminotransferase (AST)-although elevated in both genotypes after TCDD exposure-were significantly less in Cyp1a2(-/-) than in Cyp1a2(+/+) mice, suggesting that the absence of CYP1A2 also affords partial protection against TCDD-induced liver toxicity. Histological examination confirmed a decrease in hepatocellular damage in TCDD-treated Cyp1a2(-/-) mice; in particular, there was no bile duct damage or proliferation that in the Cyp1a2(+/+) mice might be caused by uroporphyrin. We conclude that CYP1A2 is both necessary and essential for the potent uroporphyrinogenic effects of TCDD in mice, and that CYP1A2 also plays a role in contributing to TCDD-induced hepatocellular injury. This study has implications for both the toxicity assessment of TCDD and the hepatic injury seen in PCT patients.  相似文献   

17.
CYP1A1 and CYP1B1 metabolically activate many polycyclic aromatic hydrocarbons (PAHs), including benzo[a]pyrene, to reactive intermediates associated with toxicity, mutagenesis, and carcinogenesis. Paradoxically, however, Cyp1a1-/- knockout mice are more sensitive to oral benzo[a]pyrene exposure, compared with wild-type Cyp1a1+/+ mice (Mol Pharmacol 65:1225, 2004). To further investigate the mechanism for this enhanced sensitivity, Cyp1a1-/-, Cyp1a2-/-, and Cyp1b1-/- single-knockout, Cyp1a1/1b1-/- and Cyp1a2/1b1-/- double-knockout, and Cyp1+/+ wild-type mice were analyzed. After administration of oral benzo[a]pyrene (125 mg/kg/day) for 18 days, Cyp1a1-/- mice showed marked wasting, immunosuppression, and bone marrow hypocellularity, whereas the other five genotypes did not. After 5 days of feeding, steady-state blood levels of benzo[a]pyrene were approximately 25 and approximately 75 times higher in Cyp1a1-/- and Cyp1a1/1b1-/- mice, respectively, than in wild-type mice. Benzo[a]pyrene-DNA adduct levels were highest in liver, spleen, and marrow of Cyp1a1-/- and Cyp1a1/1b1-/- mice. Many lines of convergent data obtained with oral benzo[a]pyrene dosing suggest that: 1) inducible CYP1A1, probably in both intestine and liver, is most important in detoxication; 2) CYP1B1 in spleen and marrow is responsible for metabolic activation of benzo[a]pyrene, which results in immune damage in the absence of CYP1A1; 3) both thymus atrophy and hepatocyte hypertrophy are independent of CYP1B1 metabolism but rather may reflect long-term activation of the aryl hydrocarbon receptor; and 4) the magnitude of immune damage in Cyp1a1-/- and Cyp1a1/1b1-/- mice is independent of plasma benzo[a]pyrene and total-body burden and clearance. Thus, a balance between tissue-specific expression of the CYP1A1 and CYP1B1 enzymes governs sensitivity of benzo[a]pyrene toxicity and, possibly, carcinogenicity.  相似文献   

18.
Crossing the Cyp1a1/1a2(-/-) double-knockout mouse with the Cyp1b1(-/-) single-knockout mouse, we generated the Cyp1a1/1a2/1b1(-/-) triple-knockout mouse. In this triple-knockout mouse, statistically significant phenotypes (with incomplete penetrance) included slower weight gain and greater risk of embryolethality before gestational day 11, hydrocephalus, hermaphroditism, and cystic ovaries. Oral benzo[a]pyrene (BaP) daily for 18 days in the Cyp1a1/1a2(-/-) produced the same degree of marked immunosuppression as seen in the Cyp1a1(-/-) mouse; we believe this reflects the absence of intestinal CYP1A1. Oral BaP-treated Cyp1a1/1a2/1b1(-/-) mice showed the same "rescued" response as that seen in the Cyp1a1/1b1(-/-) mouse; we believe this reflects the absence of CYP1B1 in immune tissues. Urinary metabolite profiles were dramatically different between untreated triple-knockout and wild-type; principal components analysis showed that the shifts in urinary metabolite patterns in oral BaP-treated triple-knockout and wild-type mice were also strikingly different. Liver microarray cDNA differential expression (comparing triple-knockout with wild-type) revealed at least 89 genes up- and 62 genes down-regulated (P-value < or = 0.00086). Gene Ontology "classes of genes" most perturbed in the untreated triple-knockout (compared with wild-type) include lipid, steroid, and cholesterol biosynthesis and metabolism; nucleosome and chromatin assembly; carboxylic and organic acid metabolism; metal-ion binding; and ion homeostasis. In the triple-knockout compared with the wild-type mice, response to zymosan-induced peritonitis was strikingly exaggerated, which may well reflect down-regulation of Socs2 expression. If a single common molecular pathway is responsible for all of these phenotypes, we suggest that functional effects of the loss of all three Cyp1 genes could be explained by perturbations in CYP1-mediated eicosanoid production, catabolism and activities.  相似文献   

19.
目的 研究丁香酸和柠檬苦素对小鼠肝脏细胞色素P450主要亚型mRNA及蛋白表达水平的影响.方法 C57BL/6小鼠随机分为空白对照组、丁香酸组、柠檬苦素组和苯巴比妥组,连续灌胃给药2周,末次给药后处死,提取小鼠肝脏总RNA及肝微粒体,荧光定量聚合酶链式反应(PCR)技术和蛋白质免疫印迹(Western blot)测定CYP450酶主要亚型mRNA和蛋白表达水平.结果 在mRNA水平上,丁香酸对Cyp1a2、Cyp2c37、Cyp2d9 mRNA表达没有明显作用,柠檬苦素对Cyp1a2 mRNA的表达有显著诱导作用;在蛋白水平上,丁香酸对CYP1A1、CYP1A2、CYP3A、CYP2D和CYP2E1蛋白的表达有明显的诱导作用,柠檬苦素对CYP1A1、CYP1A2、CYP2A、CYP2D和CYP2E1有显著的诱导,对CYP2B和CYP2C蛋白表达产生抑制作用.结论 丁香酸和柠檬苦素对细胞色素P450主要亚型均具有不同程度的诱导和抑制作用.  相似文献   

20.
Using Cyp1a2(-/-) mice we previously showed that CYP1A2 is absolutely required for hepatic uroporphyrin accumulation caused by iron and 5-aminolevulinate (ALA) treatment, both in the presence and absence of an inducer of CYP1A2. In this study we have used these mice to investigate whether CYP1A2 has an obligatory role in hepatic uroporphyria caused by hexachlorobenzene (HCBZ), an inducer of CYP2B and CYP3A, as well as CYP1A2. Here we treated mice with HCBZ and iron, with and without the porphyrin precursor, ALA, in the drinking water. In iron-loaded wild-type mice given a single dose of HCBZ and ALA, hepatic uroporphyrin (URO) accumulated to 300 nmol/g liver after 37 days, whereas in Cyp1a2(-/-) mice, there was no hepatic URO, even after an additional dose of HCBZ, and a further 29 days of ALA treatment. A similar requirement for CYP1A2 was found in uroporphyria produced in HCBZ and iron-treated mice in the absence of ALA. As detected by Western immunoblotting, HCBZ induced small increases in CYP2B and CYP3A in the livers of all animals. In the wild-type animals, HCBZ also induced CYP1A2 and associated enzyme activities, including uroporphyrinogen oxidation, by about 2-3-fold. In the Cyp1a2(-/-) mice, HCBZ did not increase hepatic microsomal uroporphyrinogen oxidation. These results indicate that, in mice, CYP1A2 is essential in the process leading to HCBZ-induced uroporphyria. Contributions by other CYP forms induced by HCBZ appear to be minimal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号