首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mutations in the TBX22 gene underlie an X-linked malformation syndrome with cleft palate (CP) and ankyloglossia. Its mutations also result in non-syndromic CP in some populations. To investigate whether mutations in TBX22 play a part in the formation of non-syndromic CP in the Thai population, we performed mutation analysis covering all the coding regions of the TBX22 gene in 53 unrelated Thai patients with non-syndromic CP. We identified four potentially pathogenic mutations, 359G-->A (R120Q), 452G-->T (R151L), 1166C-->A (P389Q), and 1252delG in four different patients. All mutations were not detected in at least 112 unaffected ethnic-matched control chromosomes and had never been previously reported. R120Q and R151L, found in two sporadic cases, were located in the DNA binding T-box domain. P389Q and 1252delG, found in two familial cases, were at the carboxy-terminal region, which has never been described. Our study indicates that TBX22 mutations are responsible for a significant proportion of Thai non-syndromic CP cases confirming its importance as a frequent cause of non-syndromic CP across different populations.  相似文献   

2.
3.
Dysfunctional mitochondria and the mitochondrial chaperone mortalin (HSPA9, GRP75) have been implicated in the pathogenesis of Parkinson disease (PD). We screened 139 early-onset PD (EOPD) patients for mutations in mortalin revealing one missense change (p.L358P) that was absent in 279 control individuals. We also found one additional missense variant among the controls (p.T333K). Although both missense changes were predicted to be disease causing, we detected no differences in subcellular localization, mitochondrial morphology, or respiratory function between wild-type and mutant mortalin. These findings suggest that variants in mortalin (1) are not a major cause of EOPD; (2) occur in patients and controls; and (3) do not lead to functional impairment of mitochondria.  相似文献   

4.
5.
6.
7.
Isolated cleft palate (CP) is common in humans and has complex genetic etiologies. Many genes have been found to contribute to CP, but the full spectrum of genes remains unknown. PCR-sequencing of the entire coding regions and the 3′ untranslated region (UTR) of the platelet-derived growth factor receptor alpha (PDGFRa) and the microRNA (miR), miR-140 identified seven novel single base-pair substitutions in the PDGFRa in 9/102 patients with CP (8.8%), compared with 5/500 ethnic-matched unaffected controls (1%) (the two-tailed P-value<0.0001). Of these seven, four were missense mutations in the coding regions and three in the 3′UTR. Frequencies of four changes (three in coding, one in 3′UTR) were statistically different from those of controls (P-value<0.05). The c.*34G>A was identified in 1/102 cases and 0/500 controls. This position is conserved in primates and located 10 bp away from a predicted binding site for the miR-140. Luciferase assay revealed that, in the presence of miR-140, the c.*34G>A significantly repressed luciferase activity compared with that of the wild type, suggesting functional significance of this variant. This is the first study providing evidence supporting a role of PDGFRa in human CP.  相似文献   

8.
Mutations in UBQLN2 have been shown to be a cause of dominant X-linked amyotrophic lateral sclerosis (ALS). Occurrences of mutations in this gene vary across ALS populations. We screened UBQLN2 for mutations in a final cohort of 150 Irish ALS patients. Individuals who were from families with male-to-male transmission or who carried pathogenic hexanucleotide repeat expansions in C9orf72 were excluded. Apart from common synonymous variation, no sequence variants in UBQLN2 were observed. Mutations in UBQLN2 are therefore not a frequent cause of ALS in the Irish population.  相似文献   

9.
10.
The ARX gene mutations have been demonstrated to cause different forms of mental retardation (MR). Beside FMR1, in families with X-linked mental retardation (XLMR), the ARX dysfunction was demonstrated to be among the most frequent causes of this heterogeneous group of disorders. Nevertheless, in sporadic cases of MR, ARX mutations are extremely rare. In order to evaluate the frequency of ARX mutation in XLMR, we performed mutational analysis of ARX in 165 mentally retarded probands negative for FRAXA and belonging to families in which the condition segregates as an X-linked condition. The same recurrent mutation, an in frame 24 bp insertion (c.428-451 dup (24 bp)), was identified in five patients. In one family, the mother of two affected boys was found not to carry the mutation detected in her sons. These data suggest the presence of germline mosaicism for the mutation in the mother. Our results confirm the significant contribution of ARX mutations in the etiology of MR, especially in this group of patients selected for XLMR (3%). These data, together with those reported in the literature, imply that screening for c.428-451 dup (24 bp) mutation should be recommended in all patients with suspected XLMR.  相似文献   

11.
12.
FUS/TLS (denoting fused in sarcoma/translocated in liposarcoma [MIM 137070]) codifies an RNA binding protein. Mutations in this gene cause amyotrophic lateral sclerosis (ALS; MIM 608030). Essential tremor (ET [MIM 190300]) is the most frequent movement disorder. Despite its strong familiar aggregation, recently a whole exome sequencing study has identified FUS mutations as a cause of familial ET. To determine whether mutations in FUS are also common in other populations, we sequenced FUS gene in 178 unrelated Spanish subjects with ET. We detected only an intronic single-pair nucleotide deletion (c.1293-37delC), which was predicted to affect mRNA splicing. However, leukocyte mRNA analysis showed no changes in FUS expression. In conclusion, coding or splicing FUS mutations are not a frequent cause of ET in the Spanish population.  相似文献   

13.
Mutation analysis of genomic DNA samples obtained from seven unrelated South African Indians with familial hypercholesterolaemia (FH) revealed two novel and two recurrent missense mutations in the low density lipoprotein receptor (LDLR) gene. The novel mutations are transversions of C to G and A to T at nucleotide positions 1215 (N384K) and 2356 (S765C), respectively. The known mutations were detected in CpG dinucleotides at bases 661 and 682, respectively, in the mutation-rich exon 4 of the LDLR gene. Mutation D200Y was found in a single FH family, while mutation E207K was detected in two apparently unrelated Indian families on a new mutual haplotype. Analysis of published mutations including our new data has shown that more than 50% of the different LDLR gene mutations identified to date in South African Indians occur at CpG hotspots.  相似文献   

14.
15.
16.
Neurofibromatosis type I (NFI) is a common autosomal dominant disorder with an increased risk for developing benign and malignant tumors. The NFI gene has been cloned and maps to 17qII.2, and the gene product acts as a tumor suppressor gene. Here we analyzed the role of mutations in TP53 in four malignant NFI tumors. Mutations were found in 3 out of 4 tumors. One of these mutations is a common missense mutation in codon 278 in one of the previously identified hot spots for mutations. The two other are hitherto unreported mutations, including a splice mutation of exon 3 and a nonsense mutation in exon 4. In addition, these four tumors also showed loss of heterozygosity (LOH) for markers on chromosome 17 in the region of TP53. Malignant NFI tumors are initiated by a somatic inactivation of the second NFI allele. Tumor progression, however, occurs by accumulation of additional genetic abnormalities, such as homozygous inactivation of TP53, as demonstrated in this paper. Genes Chromosom Cancer 10:250–255 (1994). © 1994 Wiley-Liss, Inc.  相似文献   

17.
A translocation that disrupted the netrin G1 gene (NTNG1) was recently reported in a patient with the early seizure variant of Rett syndrome (RTT). The netrin G1 protein (NTNG1) has an important role in the developing central nervous system, particularly in axonal guidance, signalling and NMDA receptor function and was a good candidate gene for RTT. We recruited 115 patients with RTT (females: 25 classic and 84 atypical; 6 males) but no mutation in the MECP2 gene. For those 52 patients with epileptic seizure onset in the first 6 months of life, CDKL5 mutations were also excluded. We aimed to determine whether mutations in NTNG1 accounted for a significant subset of patients with RTT, particularly those with the early onset seizure variant and other atypical presentations. We sequenced the nine coding exons of NTNG1 and identified four sequence variants, none of which were likely to be pathogenic. Mutations in the NTNG1 gene appear to be a rare cause of RTT but NTNG1 function demands further investigation in relation to the central nervous system pathophysiology of the disorder.  相似文献   

18.
19.
20.
Heterozygous missense variants in the SPTBN2 gene, encoding the non-erythrocytic beta spectrin 2 subunit (beta-III spectrin), have been identified in autosomal dominant spinocerebellar ataxia type 5 (SCA5), a rare adult-onset neurodegenerative disorder characterized by progressive cerebellar ataxia, whereas homozygous loss of function variants in SPTBN2 have been associated with early onset cerebellar ataxia and global developmental delay (SCAR14). Recently, heterozygous SPTBN2 missense variants have been identified in a few patients with an early-onset ataxic phenotype. We report five patients with non-progressive congenital ataxia and psychomotor delay, 4/5 harboring novel heterozygous missense variants in SPTBN2 and one patient with compound heterozygous SPTBN2 variants. With an overall prevalence of 5% in our cohort of unrelated patients screened by targeted next-generation sequencing (NGS) for congenital or early-onset cerebellar ataxia, this study indicates that both dominant and recessive mutations of SPTBN2 together with CACNA1A and ITPR1, are a frequent cause of early-onset/congenital non-progressive ataxia and that their screening should be implemented in this subgroup of disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号