首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Postural stability depends on interactions between the musculoskeletal system and neural control mechanisms. We present a frontal plane model stabilized by delayed feedback to analyze the effects of altered stance width on postural responses to perturbations. We hypothesized that changing stance width alters the mechanical dynamics of the body and limits the range of delayed feedback gains that produce stable postural behaviors. Surprisingly, mechanical stability was found to decrease as stance width increased due to decreased effective inertia. Furthermore, due to sensorimotor delays and increased leverage of hip joint torque on center-of-mass motion, the magnitudes of the stabilizing delayed feedback gains decreased as stance width increased. Moreover, the ranges of the stable feedback gains were nonoverlapping across different stance widths such that using a single neural feedback control strategy at both narrow and wide stances could lead to instability. The set of stable feedback gains was further reduced by constraints on foot lift-off and perturbation magnitude. Simulations were fit to experimentally measured kinematics, and the identified feedback gains corroborated model predictions. In addition, analytical gain margin of the linearized system was found to predict step transitions without the need for simulation. In conclusion, this model offers a method to dissociate the complex interactions between postural configuration, delayed sensorimotor feedback, and nonlinear foot lift-off constraints. The model demonstrates that stability at wide stances can only be achieved if delayed neural feedback gains decrease. This model may be useful in explaining both expected and paradoxical changes in stance width in healthy and neurologically impaired individuals.  相似文献   

2.
Evaluation of postural control in multiple planes is necessary to determine the movement strategies used to respond to unexpected perturbations. The present study quantified net joint torques of the lower limbs and trunk in the sagittal and frontal planes following multi-directional surface translations. Twenty-one healthy subjects stood with feet on separate force plates mounted on a moveable platform, translated unexpectedly in one of 12 directions. Peak net torque magnitudes and latencies following perturbation onset were determined as were the relative contributions of each joint to total torque production. Magnitude of net torque generated by each leg varied by perturbation direction, with the largest individual joint magnitude elicited in directions of limb loading. Relative contributions of individual joint torques to the total response were dependent upon perturbation direction. Results suggest that a redistribution of the relative contributions of hip/trunk versus ankle strategies occurs dependent on perturbation direction, with a significant contribution by the knee joint in response to forward perturbations. Direction-specific redistribution of proximal versus distal strategies appears to depend upon the biomechanical constraints imposed by a given perturbation direction. Thus, it appears that sagittal and frontal plane posture-righting responses may not be uniquely controlled, and may instead be governed similarly, with modulation of relative torque contributions among joints when necessary, given direction-specific anatomical constraints.  相似文献   

3.
The goal of this study was to identify whether impaired cortical preparation may relate to impaired scaling of postural responses of people with Parkinson’s disease (PD). We hypothesized that impaired scaling of postural responses in participants with PD would be associated with impaired set-dependent cortical activity in preparation for perturbations of predictable magnitudes. Participants performed postural responses to backward surface translations. We examined the effects of perturbation magnitude (predictable small vs. predictable large) and predictability of magnitude (predictable vs. unpredictable-in-magnitude) on postural responses (center-of-pressure (CoP) displacements) and on preparatory electroencephalographic (EEG) measures of contingent negative variation (CNV) and alpha and beta event-related desynchronization (ERD). Our results showed that unpredictability of perturbation magnitude, but not the magnitude of the perturbation itself, was associated with increased CNV amplitude at the CZ electrode in both groups. While control participants scaled their postural responses to the predicted magnitude of the perturbation, their condition-related changes in CoP displacements were not correlated with condition-related changes in EEG preparatory activity (CNV or ERD). In contrast, participants with PD did not scale their postural responses to the predicted magnitude of the perturbation, but they did demonstrate greater beta ERD in the condition of predictably small-magnitude perturbations and greater beta ERD than the control participants at the CZ electrode. In addition, increased beta ERD in PD was associated with decreased adaptability of postural responses, suggesting that preparatory cortical activity may have a more direct influence on postural response scaling for people with PD than for control participants.  相似文献   

4.
Influence of central set on human postural responses   总被引:16,自引:0,他引:16  
1. The effect of central set on automatic postural responses was studied in humans exposed to horizontal support-surface perturbations causing forward sway. Central set was varied by providing subjects with prior experience of postural stimulus velocities or amplitudes under 1) serial and random conditions, 2) expected and unexpected conditions, and 3) practiced and unpracticed conditions. In particular, the influence of central-set conditions was examined on the pattern and magnitude of six leg and trunk electromyograph (EMG) activations and associated ankle torque responses to postural perturbations with identical stimulus parameters. 2. The scaling of initial agonist integrated EMG (IEMG) and torque responses to postural perturbation amplitude disappeared when perturbation amplitudes were randomized. This finding suggests that the initial magnitude of postural responses were centrally set to anticipated postural perturbation amplitudes based on sequential experience with the stimulus. 3. Expectation of postural stimulus amplitude had a significant effect on initial torque responses; subjects overresponded when a larger perturbation was expected and underresponded when a smaller perturbation was expected. Expectation of postural stimulus velocity had a smaller effect on initial torque responses, and subjects consistently overresponded when the velocity of the perturbation was unexpected. This difference in amplitude and velocity expectation may be because of the capacity to encode stimulus velocity, but not amplitude information, into the earliest postural responses of the current trial. The relative strength of amplitude and velocity central-set effects varied widely with individual subjects. 4. Central-set conditions did not affect initial EMG response latencies (100 +/- 20 ms, mean +/- SD) or the relative onset of proximal and distal agonists and antagonists. Unexpected or unpracticed stimulus amplitudes, however, were associated with significant late activation of ankle antagonist, tibialis. Thus errors in initial response magnitude because of central-set effects appear to be partially corrected by reciprocal antagonist activity. Agonist IEMG, however, did not always reflect significant changes in torque responses with central-set conditions. 5. Expectation of postural stimulus amplitude and velocity had two different types of effects on the magnitudes of postural responses: 1) a directionally specific, central-set effect consisting of either increased or decreased responses, depending on expectation of stimulus amplitude; and 2) a nonspecific enhanced response to novel stimulus velocities with a gradual reduction when a velocity was presented repeatedly. Two different neural mechanisms are proposed for these two adaptive effects. 6. Reduction of postural response magnitude and antagonist activity during practice may be partially explained by adaptive mechanisms based on expectation because of prior experience with stimulus velocity and amp  相似文献   

5.
The effects of predictability of load magnitude on anticipatory and triggered grip-force adjustments were studied as nine normal subjects used a precision grip to lift, hold, and replace an instrumented test object. Experience with a predictable stimulus has been shown to enhance magnitude scaling of triggered postural responses to different amplitudes of perturbations. However, this phenomenon, known as a central-set effect, has not been tested systematically for grip-force responses in the hand. In our study, predictability was manipulated by applying load perturbations of different magnitudes to the test object under conditions in which the upcoming load magnitude was presented repeatedly or under conditions in which the load magnitudes were presented randomly, each with two different pre-load grip conditions (unconstrained and constrained). In constrained conditions, initial grip forces were maintained near the minimum level necessary to prevent pre-loaded object slippage, while in unconstrained conditions, no initial grip force restrictions were imposed. The effect of predictable (blocked) and unpredictable (random) load presentations on scaling of anticipatory and triggered grip responses was tested by comparing the slopes of linear regressions between the imposed load and grip response magnitude. Anticipatory and triggered grip force responses were scaled to load magnitude in all conditions. However, regardless of pre-load grip force constraint, the gains (slopes) of grip responses relative to load magnitudes were greater when the magnitude of the upcoming load was predictable than when the load increase was unpredictable. In addition, a central-set effect was evidenced by the fewer number of drop trials in the predictable relative to unpredictable load conditions. Pre-load grip forces showed the greatest set effects. However, grip responses showed larger set effects, based on prediction, when pre-load grip force was constrained to lower levels. These results suggest that anticipatory processes pertaining to load magnitude permit the response gain of both voluntary and triggered rapid grip force adjustments to be set, at least partially, prior to perturbation onset. Comparison of anticipatory set effects for reactive torque and lower extremity EMG postural responses triggered by surface translation perturbations suggests a more general rule governing anticipatory processes.  相似文献   

6.
A wealth of studies highlight the importance of rapid corrective responses during voluntary motor tasks. These studies used relatively large perturbations to evoke robust muscle activity. Thus it remains unknown whether these corrective responses (latency 20-100 ms) are evoked at perturbation levels approaching the inherent variability of voluntary control. To fill this gap, we examined responses for large to small perturbations applied while participants either performed postural or reaching tasks. To address multijoint corrective responses, we induced various amounts of single-joint elbow motion with scaled amounts of combined elbow and shoulder torques. Indeed, such perturbations are known to elicit a response at the unstretched shoulder muscle, which reflects an internal model of arm intersegmental dynamics. Significant muscle responses were observed during both postural control and reaching, even when perturbation-related joint angle, velocity, and acceleration overlapped in distribution with deviations encountered in unperturbed trials. The response onsets were consistent across the explored range of perturbation loads, with short-latency onset for the muscles spanning the elbow joints (20-40 ms), and long-latency for shoulder muscles (onset > 45 ms). In addition, the evoked activity was strongly modulated by perturbation magnitude. These results suggest that multijoint responses are not specifically engaged to counter motor errors that exceed a certain threshold. Instead, we suggest that these corrective processes operate continuously during voluntary motor control.  相似文献   

7.
Is human balance control dominated by time invariant continuous feedback mechanisms or do noncontinuous mechanisms play a significant role like intermittent control? The goal of this paper is to quantify how much of the postural responses evoked by pseudorandom external periodic perturbations can be explained by continuous time invariant feedback control. Nine healthy subjects participated in this study. Center of mass and ankle torque responses were elicited by periodic platform perturbations in forward-backward directions containing energy in the 0.06- to 4.5-Hz frequency band. Subjects had their eyes open (EO) or eyes closed (EC). Responses were decomposed into a periodic component and a remnant (stochastic) component using spectral analysis. It is concluded that periodic responses can explain most of the evoked responses, although the remnant power spectral densities (PSDs) were significant especially for slow responses (<0.2 Hz) and largest for EC. The found remnant PSD did depend on the sensory condition but not on the platform perturbation amplitude. The ratio of the body sway and ankle torque remnant PSD reflects the body dynamics. Both findings are consistent with the idea that estimation of body orientation is part of a continuous feedback loop and that (stochastic) estimation errors increase when one source of sensory information is removed. The findings are not consistent with the idea that discrete or discontinuous intermittent feedback mechanisms significantly shape postural responses.  相似文献   

8.
There is considerable evidence that lower-limb somatosensation contributes to the control of upright balance. In this study, we investigated the specific role of foot sole cutaneous afferents in the generation of balance corrections following lateral accelerations of the support surface. Participants were subjected to balance perturbations before and after targeted anesthesia of the cutaneous soles induced by intradermal injections of local anesthetic. Subject responses were quantified in terms of net joint torques at the ankles, hips and trunk. Contrary to the conclusions drawn in earlier studies, response torque impulses at the ankles and hips were clearly scaled with the perturbation impulse under both control and anesthetized conditions. Reduced plantar sensitivity produced a relative shift in compensatory torque production from the ankles and trunk to the hips. These findings demonstrate that plantar cutaneous afferents play an important role in the shaping of dynamic postural responses. Furthermore, the results suggest that loss of plantar sensation may be an important contributor to the dynamic balance deficits and increased risk of falls associated with peripheral neuropathies.  相似文献   

9.
Although feedback models have been used to simulate body motions in human postural control, it is not known whether muscle activation patterns generated by the nervous system during postural responses can also be explained by a feedback control process. We investigated whether a simple feedback law could explain temporal patterns of muscle activation in response to support-surface translations in human subjects. Previously, we used a single-link inverted-pendulum model with a delayed feedback controller to reproduce temporal patterns of muscle activity during postural responses in cats. We scaled this model to human dimensions and determined whether it could reproduce human muscle activity during forward and backward support-surface perturbations. Through optimization, we found three feedback gains (on pendulum acceleration, velocity, and displacement) and a common time delay that allowed the model to best match measured electromyographic (EMG) signals. For each muscle and each subject, the entire time courses of EMG signals during postural responses were well reconstructed in muscles throughout the lower body and resembled the solution derived from an optimal control model. In ankle muscles, >75% of the EMG variability was accounted for by model reconstructions. Surprisingly, >67% of the EMG variability was also accounted for in knee, hip, and pelvis muscles, even though motion at these joints was minimal. Although not explicitly required by our optimization, pendulum kinematics were well matched to subject center-of-mass (CoM) kinematics. Together, these results suggest that a common set of feedback signals related to task-level control of CoM motion is used in the temporal formation of muscle activity during postural control.  相似文献   

10.
Summary Load perturbations were applied to the arm of human subjects under conditions where both limb segments (upper arm and forearm) were free to move. The perturbations consisted of pulses of torque 50 ms in duration and of pseudo-random sequences of such pulses. They were applied to either the forearm or the upper arm. Under all conditions, the perturbations resulted in angular motion at the shoulder and elbow joints and evoked consistent responses in muscles acting about these joints (biceps, triceps, anterior and posterior deltoid). Activity in biceps and triceps was not related simply to angular motion at the elbow joint. For example, activation of biceps could be evoked during elbow flexion (by applying a torque perturbation at the shoulder) as well as during elbow extension (by applying a torque perturbation at the elbow). The effect of varying degrees of dynamic coupling between upper arm and forearm on EMG responses was investigated by applying torque perturbations to the upper arm over a wide range of elbow angles. When the forearm is extended, such a perturbation induces a greater amount of elbow flexion than when the forearm is in a flexed position. The results of these experiments showed that the larger was the amount of flexion of the forearm induced by the perturbation, the larger was the activation of biceps. The results are incompatible with the notion of a negative feedback of total muscle length as being responsible for the EMG activity following the load perturbations. It is suggested that the EMG responses can best be interpreted functionally in terms of parameters more global than muscle length. Among such global parameters, changes in net torque at a joint resulting from the perturbation gave the best correlation with the pattern of EMG activities observed.  相似文献   

11.
The cerebral cortex may play a role in the control of compensatory balance reactions by optimizing these responses to suit the task conditions and/or to stimulus (i.e. perturbation) characteristics. These possible contributions appear to be reflected by pre-perturbation and post-perturbation cortical activity. While studies have explored the characteristics and possible meaning of these different events (pre- vs. post-) there is little insight into the possible association between them. The purpose of this study was to explore whether pre- and post-perturbation cortical events are associated or whether they reflect different control processes linked to the control of balance. Twelve participants were presented temporally-predictable postural perturbations under four test conditions. The Block/Random tasks were designed to assess modifiability in CNS gain prior to instability, while the Unconstrained/Constrained tasks assessed responsiveness to the magnitude of instability. Perturbations were evoked by releasing a cable which held the participant in a forward lean position. The magnitude of pre-perturbation cortical activity scaled to perturbation amplitude when the magnitude of the perturbation was predictable [F(3,11)=2.906, P<0.05]. The amplitude of pre-perturbation cortical activity was large when the size of the forthcoming perturbation was unknown (13.8±7.9, 11.4±9.9, 16.9±9.3, and 16.1±10.6 μV for the Block Unconstrained and Constrained and Random Unconstrained and Constrained, respectively). In addition, N1 amplitude scaled to perturbation amplitude regardless of whether the size of the forthcoming perturbation was known (30.1±17.7, 11.4±7.1, 30.9±18.4, 12.4±6.1 μV). This is the first work to examine modifiability in the pre-perturbation cortical activity related to postural set alterations. The cerebral cortex differentially processes independent components prior to and following postural instability to generate compensatory responses linked to the conditions under which instability is experienced.  相似文献   

12.
Quadrupeds and bipeds respond to horizontal perturbations of the support surface with muscular responses that are broadly tuned and directionally sensitive. Since the discovery of this directional sensitivity, interest has turned toward the critical sensory systems necessary to generate these responses. We hypothesize that cutaneous feedback affects the magnitude of muscle responses to postural perturbation but has little effect on the directionality of the muscle response. We developed a modified premammillary decerebrate cat preparation to evaluate the sensory mechanisms driving this directionally sensitive muscle activation in response to support surface perturbation. This preparation allows us the flexibility to isolate the proprioceptive (cutaneous and muscle receptors) system from other sensory influences. We found that loss of cutaneous feedback leads to a significant loss in background activity causing a smaller muscular response to horizontal perturbations. However, the directional properties of the muscular responses remained intact.  相似文献   

13.
Recent experiments in healthy subjects have demonstrated that automatic postural responses can be suppressed when subjects are instructed to step instead of maintain stance in response to the surface translation. The aim of the present study was to investigate the role of the cerebellum in coordinating this interaction between the central command to step and peripherally triggered automatic postural responses. Eight subjects with cerebellar degeneration and eight control subjects were instructed to either maintain stance or step forward in response to a backward translation. In order to determine whether prediction of perturbation amplitude assisted suppression of postural responses, three platform translations were presented in both a serial (predictable) and a random (unpredictable) order. Cerebellar subjects were able to suppress their initial postural responses to the same amount as control subjects when instructed to step forward in response to backward translations, despite their hypermetria and inability to scale responses to predictable perturbation amplitudes. Control, but not cerebellar, subjects scaled the size of their postural responses to predictable perturbation amplitudes. The perturbation amplitude, however, had no effect on the size of early automatic responses when they were suppressed by instruction to step. The size of the suppressed postural response was independent of predictability of perturbation amplitudes in both control and cerebellar subjects. The dynamic interaction between automatic postural responses to an external perturbation and anticipatory postural adjustments for step initiation seems independent of prediction of perturbation amplitude and the integrity of the cerebellum. Although cerebellar subjects show larger-than-normal magnitude and variability of postural responses and an inability to scale the size of responses to predictable perturbation amplitudes, the cerebellum does not seem to be critical for suppression of the early postural response with a centrally intended movement. Received: 2 September 1996 / Accepted: 18 August 1997  相似文献   

14.
During standing balance, kinematics of postural behaviors have been previously observed to change across visual conditions, perturbation amplitudes, or perturbation frequencies. However, experimental limitations only allowed for independent investigation of such parameters. Here, we adapted a pseudorandom ternary sequence (PRTS) perturbation previously used in rotational support-surface perturbations (Peterka in J Neurophysiol 88(3):1097–1118, 2002) to a translational paradigm, allowing us to concurrently examine the effects of vision, perturbation amplitude, and frequency on balance control. Additionally, the unpredictable PRTS perturbation eliminated effects of feedforward adaptations typical of responses to sinusoidal stimuli. The PRTS perturbation contained a wide spectral bandwidth (0.08–3.67 Hz) and was scaled to 4 different peak-to-peak amplitudes (3–24 cm). Root mean square (RMS) of hip displacement and velocity increased relative to RMS ankle displacement and velocity in the absence of vision across all subjects, especially at higher perturbation amplitudes. Gain and phase lag of center of mass (CoM) sway relative to the perturbation also increased with perturbation frequency; phase lag further increased when vision was absent. Together, our results suggest that visual input, perturbation amplitude, and perturbation frequency can concurrently and independently modulate postural strategies during standing balance. Moreover, each factor contributes to the difficulty of maintaining postural stability; increased difficulty evokes a greater reliance on hip motion. Finally, despite high degrees of joint angle variation across subjects, CoM measures were relatively similar across subjects, suggesting that the CoM is an important controlled variable for balance.  相似文献   

15.
To clarify the role of somatosensory information from the lower limbs of humans in triggering and scaling the magnitude of automatic postural responses, patients with diabetic peripheral neuropathy and agematched normal controls were exposed to posterior horizontal translations of their support surface. Translation velocity and amplitude were varied to test the patients' ability to scale their postural responses to the magnitude of the translation. Postural response timing was quantified by measuring the onset latencies of three shank, thigh, and trunk muscles and response magnitude was quantified by measuring torque at the support surface. Neuropathy patients showed the same distalto-proximal muscle activation pattern as normal subjects, but the electromyogram (EMG) onsets in patients were delayed by 20–30 ms at all segments, suggesting an important role for somatosensory information from the lower limb in triggering centrally organized postural synergies. Patients showed an impaired ability to scale torque magnitude to both the velocity and amplitude of surface translations, suggesting that somatosensory information from the legs may be utilized for both direct sensory feedback and use of prior experience in scaling the magnitude of automatic postural responses.  相似文献   

16.
Concurrent demands for postural and cognitive control processes are now known to induce interference, e.g., information processing speed may decrease during postural adjustment. It is less clear whether postural control may, at least in many situations, take precedence over cognitive control (“postural prioritization”). The purpose of this study was to determine if postural dual-task effects are the result of a postural prioritization effect. Twelve young subjects (6 female; 24.1 ± 4.1) performed a discrete choice reaction time (RT) task in combination with a platform perturbation. To assess the effect of postural prioritization on RT and center of pressure (COP) parameters, destabilizing perturbations were randomly interspersed with non-destabilizing perturbations. Furthermore, stimulus order and the time interval of the RT stimulus relative to the platform perturbation were manipulated. COP and RT data obtained in these manipulations were compared to single-task baseline data. The results suggested that, irrespective of the degree of threat to postural stability, postural task processes are prioritized. Furthermore, anticipation of a postural stimulus negatively affects RT. However, once a perturbation commences subsequent RTs are speeded. Postural reactions were unaffected by a concurrent RT task, however. The RT stimulus acted as a cue to initiate biomechanical adaptations for an upcoming perturbation.  相似文献   

17.
The aim of the study was to investigate the differences in anticipatory postural adjustments (APAs) between young and older adults and its effect on subsequent control of posture. Ten healthy older adults and thirteen healthy young adults were exposed to predictable external perturbations using the pendulum impact paradigm. Electromyographic activity of the trunk and leg muscles, the center of pressure (COP), and center of mass (COM) displacements in the anterior–posterior direction were recorded and analyzed during the anticipatory and compensatory postural adjustments (CPAs) phases of postural control. The effect of aging was seen as delayed anticipatory muscle activity and larger compensatory muscle responses in older adults as compared to young adults. Moreover, in spite of such larger reactive responses, older adults were still more unstable, exhibiting larger COP and COM peak displacements after the perturbation than young adults when exposed to similar postural disturbances. Nonetheless, while APAs are impaired in older adults, the ability to recruit muscles anticipatorily is largely preserved; however, due to their smaller magnitudes and delayed onsets, it is likely that their effectiveness in reducing the magnitude of CPAs is smaller. The outcome of the study lends support toward investigating the ways of improving anticipatory postural control in people with balance impairments due to aging or neurological disorders.  相似文献   

18.
Individuals with a history of non-specific low back pain (LBP) while in a quiescent pain period demonstrate altered automatic postural responses (APRs) characterized by reduced trunk torque contributions and increased co-activation of trunk musculature. However, it is unknown whether these changes preceded or resulted from pain. To further delineate the relationship between cyclic pain recurrence and APRs, we quantified postural responses following multi-directional support surface translations, in individuals with non-specific LBP, following an active pain episode. Sixteen subjects with and 16 without LBP stood on two force plates that were translated unexpectedly in 12 directions. Net joint torques of the ankles, knees (sagittal only), hips, and trunk, in the frontal and sagittal planes, were quantified and the activation of 12 muscles of the lower limb unilaterally and the dorsal and ventral trunk, bilaterally, were recorded using surface electromyography (EMG). Peaks and latencies to peak joint torques, rates of torque development (slopes), and integrated EMGs characterizing baseline and active muscle contributions were analyzed for group by perturbation direction (torques) and group by perturbation by epoch interaction (EMG) effects. In general, the LBP cohort demonstrated APRs that were of similar torque magnitude and rate but peaked earlier compared to individuals without LBP. Individuals with LBP also demonstrated increased muscle activity following perturbation directions in which the muscle was acting as a prime mover and reduced muscle activity in opposing directions, proximally and distally, with some proximal asymmetries. These altered postural responses may reflect increased muscle spindle sensitivity. Given that these motor alterations are demonstrated proximally and distally, they likely reflect the influence of central nervous system processing in this cohort.  相似文献   

19.
Vision of the hand during reaching provides dynamic feedback that can be used to control movement. We investigated the relative contributions of feedback about the direction and distance of the hand relative to a target. Subjects made pointing movements in a 3-D virtual environment, in which a small sphere provided dynamic visual feedback about the position of their unseen fingertip. On a subset of trials, the position of the virtual fingertip was smoothly shifted by 2 cm during movement, either (1) in the direction of movement, which would require adjustments to the distance moved, or (2) orthogonal to the direction of movement, which would require adjustments to the direction moved. Despite not noticing the perturbations, subjects adjusted their movements to compensate for both types of visual shifts. Corrective responses to direction perturbations were observed within 117 ms, and response latencies were invariant to movement speed and perturbation onset time. Initial corrections to distance perturbations were smaller and appeared after longer delays of 130–200 ms, and both the speed and magnitude of responses were reduced for early onset perturbations. Simulations of a feedback control model that optimally integrates visual information over time show that the results can be explained by differences in the sensory noise levels in the visual dimensions relevant for direction and distance control.  相似文献   

20.
In this study, we describe and compare the compensatory responses of healthy young and older adults to sequentially increasing upper-body perturbations. The scaling of plantarflexor muscular activity and minimum time-to-contact (TtCMIN) was examined, and we determined whether TtCMIN predictions of instability (stepping transitions) for the older subjects were similar to those we previously reported for younger subjects (Hasson et al. in J Biomech 41:2121–2129, 2008). We found that the older subjects stepped at a lower perturbation level than the younger subjects; however, this response was appropriate based on their greater center of mass (CoM) accelerations, which may have been caused by differences in pre-perturbation states between the age groups. Although the CoM acceleration increased linearly with perturbation magnitude, the amount of gastrocnemius and soleus muscular activity increased nonlinearly in both age groups. There were no differences in the maximum plantarflexor torque responses, suggesting that the maximum torque capabilities of the older subjects were not limiting factors. As previously demonstrated in the younger subjects, the older subjects showed a quadratic decrease in TtCMIN with increasing perturbation magnitude. The vertices of the quadratics gave accurate predictions of stepping transitions in both age groups, even though the older subjects stepped at lower perturbation magnitudes. By probing the postural system’s behavior through sequentially increasing upper-body perturbations, we observed a complementary nonlinear scaling of muscle activity and TtCMIN, which suggests that subjects could use TtC or a correlate as an informational variable to help determine whether a step is necessary.
Christopher J. HassonEmail:
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号