首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Brain stimulation》2021,14(3):622-634
BackgroundtDCS modulates cortical plasticity and has shown potential to improve cognitive/motor functions in healthy young humans. However, age-related alterations of brain structure and functions might require an adaptation of tDCS-parameters to achieve a targeted plasticity effect in older humans and conclusions obtained from young adults might not be directly transferable to older adults. Thus, our study aimed to systematically explore the association between tDCS-parameters and induced aftereffects on motor cortical excitability to determine optimal stimulation protocols for older individuals, as well as to investigate age-related differences of motor cortex plasticity in two different age groups of older adults.Methods32 healthy, volunteers from two different age groups of Young-Old (50–65 years, n = 16) and Old-Old (66–80 years, n = 16) participated in this study. Anodal tDCS was applied over the primary motor cortex, with respective combinations of three intensities (1, 2, and 3 mA) and durations (15, 20, and 30 min), in a sham-controlled cross-over design. Cortical excitability alterations were monitored by single-pulse TMS-induced MEPs until the next day morning after stimulation.ResultsAll active stimulation conditions resulted in a significant enhancement of motor cortical excitability in both age groups. The facilitatory aftereffects of anodal tDCS did not significantly differ between age groups. We observed prolonged plasticity in the late-phase range for two protocols with the highest stimulation intensity (i.e., 3 mA-20 min, 3 mA-30 min).ConclusionsOur study highlights the role of stimulation dosage in tDCS-induced neuroplastic aftereffects in the motor cortex of healthy older adults and delivers crucial information about optimized tDCS protocols in the domain of the primary motor cortex. Our findings might set the grounds for the development of optimal stimulation protocols to reinstate neuroplasticity in different cortical areas and induce long-lasting, functionally relevant plasticity in normal aging and in pathological conditions, which would require however systematic tDCS titration studies over respective target areas.  相似文献   

2.
《Clinical neurophysiology》2021,132(5):1018-1024
ObjectivesNon-invasive brain stimulation (NIBS) is beneficial to many neurological and psychiatric disorders by modulating neuroplasticity and cortical excitability. However, recent studies evidence that single type of NIBS such as transcranial direct current stimulation (tDCS) does not have meaningful clinical therapeutic responses due to their small effect size. Transcranial near-infrared stimulation (tNIRS) is a novel form of NIBS. Both tNIRS and tDCS implement its therapeutic effects by modulating cortical excitability but with different mechanisms. We hypothesized that simultaneous tNIRS and tDCS is superior to single stimulation, leading to a greater cortical excitability.MethodsSixteen healthy subjects participated in a double-blind, sham-controlled, cross-over designed study. Motor evoked potentials (MEPs) were used to measure motor cortex excitability. The changes of MEP were calculated and compared in the sham condition, tDCS stimulation condition, tNIRS condition and the simultaneous tNIRS and anodal tDCS condition.ResultstDCS alone and tNIRS alone both elicited higher MEP after stimulation, while the MEP amplitude in the simultaneous tNIRS and tDCS condition was significantly higher than either tNIRS alone or tDCS alone. The enhancement lasted up to at least 30 minutes after stimulation, indicating simultaneous 820 nm tNIRS with 2 mA anodal tDCS have a synergistic effect on cortical plasticity.ConclusionsSimultaneous application of tNIRS with tDCS produces a stronger cortical excitability effect.SignificanceThe simultaneous tNIRS and tDCS is a promising technology with exciting potential as a means of treatment, neuro-enhancement, or neuro-protection.  相似文献   

3.
《Clinical neurophysiology》2021,132(10):2519-2531
ObjectiveTo test the hypothesis that intermittent theta burst stimulation (iTBS) variability depends on the ability to engage specific neurons in the primary motor cortex (M1).MethodsIn a sham-controlled interventional study on 31 healthy volunteers, we used concomitant transcranial magnetic stimulation (TMS) and electroencephalography (EEG). We compared baseline motor evoked potentials (MEPs), M1 iTBS-evoked EEG oscillations, and resting-state EEG (rsEEG) between subjects who did and did not show MEP facilitation following iTBS. We also investigated whether baseline MEP and iTBS-evoked EEG oscillations could explain inter and intraindividual variability in iTBS aftereffects.ResultsThe facilitation group had smaller baseline MEPs than the no-facilitation group and showed more iTBS-evoked EEG oscillation synchronization in the alpha and beta frequency bands. Resting-state EEG power was similar between groups and iTBS had a similar non-significant effect on rsEEG in both groups. Baseline MEP amplitude and beta iTBS-evoked EEG oscillation power explained both inter and intraindividual variability in MEP modulation following iTBS.ConclusionsThe results show that variability in iTBS-associated plasticity depends on baseline corticospinal excitability and on the ability of iTBS to engage M1 beta oscillations.SignificanceThese observations can be used to optimize iTBS investigational and therapeutic applications.  相似文献   

4.
BACKGROUND: Rapid-rate repetitive transcranial magnetic stimulation (rTMS) can produce a lasting increase in cortical excitability in healthy subjects or induce beneficial effects in patients with neuropsychiatric disorders; however, the conditioning effects of rTMS are often subtle and variable, limiting therapeutic applications. Here we show that magnitude and direction of after-effects induced by rapid-rate rTMS depend on the state of cortical excitability before stimulation and can be tuned by preconditioning with transcranial direct current stimulation (tDCS). METHODS: Ten healthy volunteers received a 20-sec train of 5-Hz rTMS given at an intensity of individual active motor threshold to the left primary motor hand area. This interventional protocol was preconditioned by 10 min of anodal, cathodal, or sham tDCS. We used single-pulse TMS to assess corticospinal excitability at rest before, between, and after the two interventions. RESULTS: The 5-Hz rTMS given after sham tDCS failed to produce any after-effect, whereas 5-Hz rTMS led to a marked shift in corticospinal excitability when given after effective tDCS. The direction of rTMS-induced plasticity critically depended on the polarity of tDCS conditioning. CONCLUSIONS: Preconditioning with tDCS enhances cortical plasticity induced by rapid-rate rTMS and can shape the direction of rTMS-induced after-effects.  相似文献   

5.
Since the initial demonstration of linear effects of stimulation duration and intensity on the strength of after‐effects associated with transcranial direct current stimulation (tDCS), few studies have systematically assessed how varying these parameters modulates corticospinal excitability. Therefore, the objective of this study was to systematically evaluate the effects of anodal tDCS on corticospinal excitability at two stimulation intensities (1 mA, 2 mA) and durations (10 min, 20 min), and determine the value of several variables in predicting response. Two groups of 20 individuals received, in two separate sessions, 1 and 2 mA anodal tDCS (left primary motor cortex (M1)‐right supra‐orbital montage) for either 10‐ or 20‐min. Transcranial magnetic stimulation was delivered over left M1 and motor evoked potentials (MEPs) of the contralateral hand were recorded prior to tDCS and every 5 min for 20‐min post‐tDCS. The following predictive variables were evaluated: I‐wave recruitment, stimulation intensity, baseline M1 excitability and inter‐trial MEP variability. Results show that anodal tDCS failed to significantly modulate corticospinal excitability in all conditions. Furthermore, low response rates were identified across all parameter combinations. No baseline measure was significantly correlated with increases in MEP amplitude. However, a decrease in inter‐trial MEP variability was linked to response to anodal tDCS. In conclusion, the present findings are consistent with recent reports showing high levels of inter‐subject variability in the neurophysiological response to tDCS, which may partly explain inconsistent group results. Furthermore, the level of variability in the neurophysiological outcome measure, i.e. MEPs, appears to be related to response.  相似文献   

6.
《Brain stimulation》2021,14(4):974-986
BackgroundSocial Anxiety Disorder (SAD) is the most common anxiety disorder while remains largely untreated. Disturbed amygdala-frontal network functions are central to the pathophysiology of SAD, marked by hypoactivity of the lateral prefrontal cortex (PFC), and hypersensitivity of the medial PFC and the amygdala. The objective of this study was to determine whether modulation of the dorsolateral and medial PFC activity with a novel intensified stimulation protocol reduces SAD core symptoms, improves treatment-related variables, and reduces attention bias to threatening stimuli.MethodsIn this randomized, sham-controlled, double-blind trial, we assessed the efficacy of an intensified stimulation protocol (20 min, twice-daily sessions with 20 min intervals, 5 consecutive days) in two intensities (1 vs 2 mA) compared to sham stimulations. 45 patients with SAD were randomized in three tDCS arms (1-mA, 2-mA, sham). SAD symptoms, treatment-related variables (worries, depressive state, emotion regulation, quality of life), and attention bias to threatening stimuli (dot-probe paradigm) were assessed before and right after the intervention. SAD symptoms were also assessed at 2-month follow-up.ResultsBoth 1-mA and 2-mA protocols significantly reduced fear/avoidance symptoms, worries and improved, emotion regulation and quality of life after the intervention compared to the sham group. Improving effect of the 2-mA protocol on avoidance symptoms, worries and depressive state was significantly larger than the 1-mA group. Only the 2-mA protocol reduced attention bias to threat-related stimuli, the avoidance symptom at follow-up, and depressive states, as compared to the sham group.ConclusionsModulation of lateral-medial PFC activity with intensified stimulation can improve cognitive control, motivation and emotion networks in SAD and might thereby result in therapeutic effects. These effects can be larger with 2-mA vs 1-mA intensities, though a linear relationship between intensity and efficacy should not be concluded. Our results need replication in larger trials.  相似文献   

7.
《Clinical neurophysiology》2021,132(1):191-199
ObjectivesReduced corticospinal excitability at rest is associated with post-stroke fatigue (PSF). However, it is not known if corticospinal excitability prior to a movement is also altered in fatigue which may then influence subsequent behaviour. We hypothesized that the levels of PSF can be explained by differences in modulation of corticospinal excitability during movement preparation.Methods73 stroke survivors performed an auditory reaction time task. Corticospinal excitability was measured using transcranial magnetic stimulation. Fatigue was quantified using the fatigue severity scale. The effect of time and fatigue on corticospinal excitability and reaction time was analysed using a mixed effects model.ResultsThose with greater levels of PSF showed reduced suppression of corticospinal excitability during movement preparation and increased facilitation immediately prior to movement onset (β = −0.0066, t = −2.22, p = 0.0263). Greater the fatigue, slower the reaction times the closer the stimulation time to movement onset (β = 0.0024, t = 2.47, p = 0.0159).ConclusionsLack of pre-movement modulation of corticospinal excitability in high fatigue may indicate poor sensory processing supporting the sensory attenuation model of fatigue.SignificanceWe take a systems-based approach and investigate the motor system and its role in pathological fatigue allowing us to move towards gaining a mechanistic understanding of chronic pathological fatigue.  相似文献   

8.
《Brain stimulation》2019,12(6):1490-1499
BackgroundCortical oscillatory activities play a role in regulating several brain functions in humans. However, whether motor resonant oscillations (i.e. β and γ) modulate long-term depression (LTD)-like plasticity of the primary motor cortex (M1) is still unclear.ObjectiveTo address this issue, we combined transcranial alternating current stimulation (tACS), a technique able to entrain cortical oscillations, with continuous theta burst stimulation (cTBS), a transcranial magnetic stimulation (TMS) protocol commonly used to induce LTD-like plasticity in M1.MethodsMotor evoked potentials (MEPs) elicited by single-pulse TMS, short-interval intracortical inhibition (SICI) and intracortical facilitation (ICF) were evaluated before and 5, 15 and 30 min after cTBS alone or cTBS delivered during β-tACS (cTBS-β) or γ-tACS (cTBS-γ). Moreover, we tested the effects of β-tACS (alone) on short-latency afferent inhibition (SAI) and γ-tACS on SICI in order to verify whether tACS-related interneuronal modulation contributes to the effects of tACS-cTBS co-stimulation.ResultscTBS-γ turned the expected after-effects of cTBS from inhibition to facilitation. By contrast, responses to cTBS-β were similar to those induced by cTBS alone. β- and γ-tACS did not change MEPs evoked by single-pulse TMS. β-tACS reduced SAI and γ-tACS reduced SICI. However, the degree of γ-tACS-induced modulation of SICI did not correlate with the effects of cTBS-γ.Conclusionγ-tACS reverses cTBS-induced plasticity of the human M1. γ-oscillations may therefore regulate LTD-like plasticity mechanisms.  相似文献   

9.
《Brain stimulation》2021,14(3):477-487
BackgroundAlthough evidence has indicated a positive effect of transcranial direct current stimulation (tDCS) on reducing pain, few studies have focused on the elderly population with knee osteoarthritis (KOA).ObjectiveTo evaluate whether tDCS reduces KOA pain in elderly individuals with a dysfunctional descending pain inhibitory system (DPIS).MethodsIn a double-blind trial, individuals ≥ 60 years with KOA pain and a dysfunctional DPIS, we randomly assigned patients to receive 15 daily sessions of 2 mA tDCS over the primary motor cortex (anode) and contralateral supraorbital area (cathode) (M1-SO) for 20 min or sham tDCS. Change in pain perception indexed by the Brief Pain Inventory (BPI) at the end of intervention was the primary outcome. Secondary outcomes included: disability, quantitative sensory testing, pain pressure threshold and conditioned pain modulation (CPM). Subjects were followed-up for 2 months.ResultsOf the 104 enrolled subjects, with mean (SD) age of 73.9 (8.01) years and 88 (84.6%) female, 102 finished the trial. In the intention-to-treat analysis, the active tDCS group had a significantly greater reduction in BPI compared to the sham group (difference, 1.59; 95% CI, 0.95 to 2.23; P < 0.001; Cohen’s d, 0.58); and, also a significantly greater improvement in CPM-pressure in the knee (P = 0.01) and CPM-pain in the hand (P = 0.01). These effects were not sustained at follow-up. The intervention was well tolerated, with no severe adverse effects.ConclusionM1-SO tDCS is associated with a moderate effect size in reducing pain in elderly patients with KOA after 15 daily sessions of stimulation. This intervention has also shown to modulate the DPIS.  相似文献   

10.
《Clinical neurophysiology》2020,131(2):566-573
ObjectivesSkill acquisition after motor training involves synaptic long-term potentiation (LTP) in primary motor cortex (M1). In multiple sclerosis (MS), LTP failure ensuing from neuroinflammation could contribute to worsen clinical recovery. We therefore addressed whether practice-dependent plasticity is altered in MS.MethodsEighteen relapsing-remitting (RR)-MS patients and eighteen healthy controls performed 600 fast abductions of index finger in 30 blocks of 20 movements. Before and after practice, transcranial magnetic stimulation (TMS) was delivered over the hot spot of the trained first dorsal interosseous muscle. Movements kinematics, measures of cortical excitability, and the input/output curves of motor evoked potentials (MEPs) were assessed.ResultsKinematic variables of movement improved with practice in patients and controls to a similar extent, although patients showed lower MEPs amplitude increase after practice. Practice did not change the difference in resting motor threshold values observed between patients and controls, nor did modulate short-interval intracortical inhibition. Clinical/radiological characteristics were not associated to practice-dependent effects.ConclusionsPractice-induced reorganization of M1 is altered in non-disabled RR-MS patients, as shown by impaired MEPs modulation after motor learning.SignificanceThese findings suggest that in RR-MS physiological mechanisms of practice-dependent plasticity are altered.  相似文献   

11.
《Brain stimulation》2020,13(2):343-352
BackgroundTranscranial alternating current stimulation (tACS) can entrain and enhance cortical oscillatory activity in a frequency-dependent manner. In our previous study (Nakazono et al., 2016), 20 Hz (β) tACS significantly increased excitability of primary motor cortex compared with 10 Hz (α) tACS. α oscillations are a prominent feature of the primary visual cortex (V1) in a resting electroencephalogram. Hence, we investigated whether α and β tACS can differentially influence multiple visual functions.MethodsFirstly, we evaluated the after-effects of α and β tACS on pattern-reversal (PR) and focal-flash (FF) visual evoked potentials (VEPs). Secondly, we determined the relationship between resting α oscillations and PR-VEPs modulated by tACS. Thirdly, the behavioral effects of tACS were assessed by contrast sensitivity.Resultsα tACS modulated the amplitudes of PR-VEPs, compared with β tACS, but did not modulate the FF-VEPs. Time-frequency analysis revealed that α tACS facilitated event-related α phase synchronizations without increasing power, which consequently increased the PR-VEP amplitudes. There was a significant positive correlation between PR-VEP amplitudes and resting α oscillations. These findings suggested that α tACS modulated α oscillations, and affected visual functions of contrast and spatial frequency. Indeed, α tACS also improved subjects’ contrast sensitivity at the behavioral level. Conversely, β tACS increased posterior α activity, but did not change VEP amplitudes.Conclusionsα tACS can influence different neuronal populations from those influenced by β tACS. Thus, our results provide evidence that α tACS sharpens multiple visual functions by modulating α oscillations in V1.  相似文献   

12.
《Brain stimulation》2022,15(4):902-909
BackgroundKnee osteoarthritis (OA) is a leading cause of pain in older adults. Previous studies indicated clinic-based transcranial direct current stimulation (tDCS) was effective to reduce pain in various populations, but no published studies have reported the efficacy of home-based self-administered tDCS in older adults with knee OA using a randomized clinical study.ObjectiveThe purpose of this study was to evaluate the efficacy and feasibility of tDCS on clinical pain intensity in adults with knee OA pain.MethodsOne hundred twenty participants aged 50–85 years with knee OA pain were randomly assigned to receive fifteen daily sessions of 2 mA tDCS for 20 min (n = 60) or sham tDCS (n = 60) over 3 weeks with remote supervision via telehealth. Clinical pain intensity was measured by the Numeric Rating Scale and Western Ontario and McMaster Universities Osteoarthritis Index. Also, we collected data on the tDCS experience via a questionnaire.ResultsParticipants (68% female) had a mean age of 66 years. Active tDCS significantly reduced pain intensity compared to sham tDCS after completion of the fifteen daily sessions (Cohen's d = 1.20; p-value < 0.0001). Participants showed high levels of satisfaction with their tDCS experience, and there have been no adverse events.ConclusionWe demonstrated that home-based self-administered tDCS was feasible and reduced clinical pain intensity in older adults with knee OA, which can increase its accessibility. Future studies with multi-site randomized controlled trials are needed to validate our findings.Trial registrationClinicalTrials.gov Identifier NCT04016272.  相似文献   

13.
《Brain stimulation》2020,13(2):310-317
BackgroundThe ability to manipulate the excitability of the network between the inferior parietal lobule (IPL) and primary motor cortex (M1) may have clinical value.ObjectiveTo investigate the possibility of inducing long-lasting changes in M1 excitability by applying quadripulse transcranial magnetic stimulation (QPS) to the IPL, and to ascertain stimulus condition- and site-dependent differences in the effects.MethodsQPS was applied to M1, the primary somatosensory cortex (S1), the supramarginal gyrus (SMG) and angular gyrus (AG) IPL areas, with the inter-stimulus interval (ISI) in the train of pulses set to either 5 ms (QPS-5) or 50 ms (QPS-50). QPS was repeated at 0.2 Hz for 30 min, or not presented (sham condition). Excitability changes in the target site were examined by means of single-pulse transcranial magnetic stimulation (TMS).ResultsQPS-5 and QPS-50 at M1 increased and decreased M1 excitability, respectively. QPS at S1 induced no obvious change in M1 excitability. However, QPS at the SMG induced mainly suppressive effects in M1 for at least 30 min, regardless of the ISI length. Both QPS ISIs at the AG yielded significantly different MEP compared to those at the SMG. Thus, the direction of the plastic effect of QPS differed depending on the site, even under the same stimulation conditions.ConclusionsQPS at the IPL produced long-lasting changes in M1 excitability, which differed depending on the precise stimulation site within the IPL. These results raise the possibility of noninvasive induction of functional plasticity in M1 via input from the IPL.  相似文献   

14.
《Clinical neurophysiology》2021,132(7):1444-1451
ObjectiveTo evaluate the safety and temporal dynamic of the antiepileptic effect of spaced transcranial direct current stimulation (tDCS) in different focal epilepsies.MethodsCathodal tDCS with individual electrode placement was performed in 15 adults with drug resistant focal epilepsy. An amplitude of 2 mA was applied twice for 9 minutes, with an interstimulation interval of 20 minutes. Tolerability was assessed via the Comfort Rating Questionnaire and the frequency of interictal epileptiform discharges (IEDs) was sequentially compared between the 24 hours before and after tDCS.ResultsTDCS led to a significant reduction in the total number of IEDs/24 h by up to 68% (mean ± SD: −30.4 ± 21.1%, p = 0.001) as well as in seizure frequency (p = 0.041). The maximum IED reduction was observed between the 3rd and 21st hour after stimulation. Favorable clinical response was associated with structural etiology and clearly circumscribed epileptogenic foci but did not differ between frontal and temporal epilepsies. Overall, the tDCS treatment was well tolerated and did not lead to severe adverse events.ConclusionsThe spaced stimulation approach proved to be safe and well-tolerated in patients with drug-resistant unifocal epilepsies, leading to sustained IED and seizure frequency reduction.SignificanceSpaced tDCS induces mediate antiepileptic effects with promising therapeutic potential.  相似文献   

15.
《Brain stimulation》2022,15(2):441-453
ObjectiveTo assess the prophylactic effect of anodal tDCS of the left motor cortex in patients with resistant chronic migraine (CM) and its long-term maintenance.MethodsIn a patient-assessor blinded, sham-controlled trial, 36 patients were randomized to receive anodal tDCS (active group, n = 18) or sham tDCS (sham group, n = 18). The studied population was characterized by a previous failure of at least 3 classes of preventive drugs and a mean duration of migraine history of 26 years. The tDCS procedure consisted of an induction phase of 5 consecutive daily sessions (week 1) followed by a maintenance phase of 1 weekly session during the next 4 weeks and two bimonthly sessions in the next month, for a total of 11 sessions during 2 months. Anodal tDCS was delivered at 2 mA intensity for 20 min over the left motor cortex. The primary endpoint was the reduction in the monthly number of migraine attacks from baseline to each period of follow-up (months 1, 2, 3, 5) between the active and sham groups.ResultsThe monthly number of migraine attacks expressed as the percentage of reduction from baseline was significantly reduced in the active versus the sham group, from the end of first month (?21% ± 22 vs. ?2% ±25, p = 0.019) to the end of follow-up (3-month post-treatment) (?32% ± 33 vs. ?6% ±39, p = 0.011). At this time, the rate of responders, defined as a reduction of the monthly number of migraine attacks ≥30% from baseline, was significantly higher in the active group than in the sham group (50% vs. 14%, p = 0.043).ConclusionOur results show a marked prophylactic effect of anodal tDCS of the left motor cortex in resistant CM extending several months after the stimulation period, and suggest that this neuromodulatory approach may be part of the prophylactic alternatives available for CM.  相似文献   

16.
《Brain stimulation》2022,15(1):57-62
BackgroundElectric fields generated during direct current stimulation (DCS) are known to modulate activity-dependent synaptic plasticity in-vitro. This provides a mechanistic explanation for the lasting behavioral effects observed with transcranial direct current stimulation (tDCS) in human learning experiments. However, previous in-vitro synaptic plasticity experiments show relatively small effects despite using strong fields compared to what is expected with conventional tDCS in humans (20 V/m vs. 1 V/m). There is therefore a need to improve the effectiveness of tDCS at realistic field intensities. Here we leverage the observation that effects of learning are known to accumulate over multiple bouts of learning, known as spaced learning.HypothesisWe propose that effects of DCS on synaptic long-term potentiation (LTP) accumulate over time in a spaced learning paradigm, thus revealing effects at more realistic field intensities.MethodsWe leverage a standard model for spaced learning by inducing LTP with repeated bouts of theta burst stimulation (TBS) in hippocampal slice preparations. We studied the cumulative effects of DCS paired with TBS at various intensities applied during the induction of LTP in the CA1 region of rat hippocampal slices.ResultsAs predicted, DCS applied during repeated bouts of theta burst stimulation (TBS) resulted in an increase of LTP. This spaced learning effect is saturated quickly with strong TBS protocols and stronger fields. In contrast, weaker TBS and the weakest electric fields of 2.5 V/m resulted in the strongest relative efficacies (12% boost in LTP per 1 V/m applied).ConclusionsWeak DCS causes a relatively strong cumulative effect of spaced learning on synaptic plasticity. Staturarion may have masked stronger effects sizes in previous in-vitro studies. Relative effect sizes of DCS are now closer in line with human tDCS experiments.  相似文献   

17.
《Clinical neurophysiology》2021,132(1):126-136
ObjectivesLittle evidence is available on the role of transcranial direct current stimulation (tDCS) in patients affected by chronic migraine (CM) and medication overuse headache (MOH). We aim to investigate the effects of tDCS in patients with CM and MOH as well as its role on brain activity.MethodsTwenty patients with CM and MOH were hospitalized for a 7-day detoxification treatment. Upon admission, patients were randomly assigned to anodal tDCS or sham stimulation delivered over the primary motor cortex contralateral to the prevalent migraine pain side every day for 5 days. Clinical data were recorded at baseline (T0), after 1 month (T2) and 6 months (T3). EEG recording was performed at T0, at the end of the tDCS/Sham treatment, and at T2.ResultsAt T2 and T3, we found a significant reduction in monthly migraine days (p = 0.001), which were more pronounced in the tDCS group when compared to the sham group (p = 0.016).At T2, we found a significant increase of alpha rhythm in occipital leads, which was significantly higher in tDCS group when compared to sham group.ConclusionstDCS showed adjuvant effects to detoxification in the management of patients with CM and MOH. The EEG recording showed a significant potentiation of alpha rhythm, which may represent a correlate of the underlying changes in cortico-thalamic connections.SignificanceThis study suggests a possible role for tDCS in the treatment of CM and MOH. The observed clinical improvement is coupled with a potentiation of EEG alpha rhythm.  相似文献   

18.
The posterior parietal cortex is part of the cortical network involved in motor learning and is structurally and functionally connected with the primary motor cortex (M1). Neuroplastic alterations of neuronal connectivity might be an important basis for learning processes. These have however not been explored for parieto‐motor connections in humans by transcranial direct current stimulation (tDCS). Exploring tDCS effects on parieto‐motor cortical connectivity might be functionally relevant, because tDCS has been shown to improve motor learning. We aimed to explore plastic alterations of parieto‐motor cortical connections by tDCS in healthy humans. We measured neuroplastic changes of corticospinal excitability via motor evoked potentials (MEP) elicited by single‐pulse transcranial magnetic stimulation (TMS) before and after tDCS over the left posterior parietal cortex (P3), and 3 cm posterior or lateral to P3, to explore the spatial specificity of the effects. Furthermore, short‐interval intracortical inhibition/intracortical facilitation (SICI/ICF) over M1, and parieto‐motor cortical connectivity were obtained before and after P3 tDCS. The results show polarity‐dependent M1 excitability alterations primarily after P3 tDCS. Single‐pulse TMS‐elicited MEPs, M1 SICI/ICF at 5 and 7 ms and 10 and 15 ms interstimulus intervals (ISIs), and parieto‐motor connectivity at 10 and 15 ms ISIs were all enhanced by anodal stimulation. Single pulse‐TMS‐elicited MEPs, and parieto‐motor connectivity at 10 and 15 ms ISIs were reduced by cathodal tDCS. The respective corticospinal excitability alterations lasted for at least 120 min after stimulation. These results show an effect of remote stimulation of parietal areas on M1 excitability. The spatial specificity of the effects and the impact on parietal cortex–motor cortex connections suggest a relevant connectivity‐driven effect.  相似文献   

19.
《Brain stimulation》2023,16(1):40-47
BackgroundConstraint-induced movement therapy (CIMT) and transcranial direct current stimulation (tDCS) are used to reduce interhemispheric imbalance after stroke, which is why the combination of these therapies has been used for neurological recovery, but not in the acute phase.ObjectivesTo evaluate the effectiveness of combining active or sham bihemispheric tDCS with modified CIMT (mCIMT) for the recovery of the Upper Limb (UL) in hospitalized patients with acute and subacute stroke.MethodsThis randomized controlled, double-blind, placebo-controlled, parallel group clinical trial was executed between September 2018 to March 2021 recruited 70 patients. The patients were randomized to one of two groups to receive treatment for 7 consecutive days, which included 20 min of active or sham bihemispheric tDCS daily (anodal ipsilesional and cathodal contralesional), with an mCIMT protocol. The primary outcome was the difference in the evolution of motor and functional upper limb recovery with assessment on days 0, 5, 7, 10 and 90. The secondary outcomes were independence in activities of daily living (ADL) and quality of life.ResultsThe active group presented a statistically significant gap compared to the simulated group throughout the trend in the scores of the FMA (motor function and joint pain) and WMFT (functional ability and weight to box) (p < 0.05) and showed a minimal clinically important difference (FMA: difference between groups of 4.9 points [CI: 0.007- 9.799]; WMFT: difference between groups of 6.54 points [CI: 1.10-14.15]). In the secondary outcomes, there was a significant difference between the groups in ADL independence (Functional Independence Measure: difference of 8.63 [CI: 1.37-18.64]) and perceived recovery of quality of life evaluated at 90 days (p = 0.0176).ConclusionsCombining mCIMT with bihemispheric tDCS in patients hospitalized with acute-subacute stroke allows us to maximize the motor and functional recovery of the paretic upper limb in the early stages and independence in ADL, maintaining the effects over time.  相似文献   

20.
《Brain stimulation》2020,13(3):582-593
BackgroundAccording to the neurocognitive model of addiction, the development and maintenance of drug addiction is associated with cognitive control deficits, as well as decreased activity of prefrontal regions, especially the dorsolateral prefrontal cortex (DLPFC). This study investigated how improving executive functions (EFs) impacts methamphetamine-use disorder, which has been less explored compared to craving, but might be a central aspect for the therapeutic efficacy of DLPFC stimulation in drug addiction.MethodsWe assessed the efficacy of 10 repeated sessions of transcranial direct current stimulation (tDCS) over the DLPFC on executive dysfunctions in methamphetamine-use disorder, and its association with craving alterations. 39 of 50 initially recruited individuals with methamphetamine-use disorder who were in the abstinent-course treatment were randomly assigned to “active” and “sham” stimulation groups in a randomized, double-blind parallel-group study. They received active (2 mA, 20 min) or sham tDCS for 10 sessions over 5 weeks. Performance on major EF tasks (e.g., working memory, inhibitory control, cognitive flexibility, and risk-taking behaviour) and craving were measured before, immediately after, and 1 month following the intervention. Participants reported abstinence from drug consumption throughout the experiment, verified by regular urine tests during the course of the study up to the follow-up measurement.ResultsThe group which received active DLPFC tDCS showed significantly improved task performance across all EFs immediately after and 1 month following the intervention, when compared to both pre-stimulation baseline and individuals who received sham tDCS. Similarly, a significant reduction in craving was observed immediately after and 1 month following the intervention in the active, but not sham stimulation group. A significant correlation between cognitive control improvement and craving reduction was found as well.ConclusionsImprovement of cognitive control functions is closely associated with reduced craving. Repeated DLPFC stimulation in order to improve executive control could be a promising approach for therapeutic interventions in drug addiction. However, the observed findings require further confirmation by studies that measure relapse/consumption of the respective substances over longer follow-up measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号