首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Chronic myelogenous leukemia (CML) begins with an indolent chronic phase but inevitably progresses to a fatal blast crisis. Although the Philadelphia chromosome, which generates p210(bcr/abl), is a unique chromosomal abnormality in the chronic phase, additional chromosomal abnormalities are frequently detected in the blast crisis, suggesting that superimposed genetic events are responsible for disease progression. To investigate whether loss of p53 plays a role in the evolution of CML, we crossmated p210(bcr/abl)-transgenic (BCR/ABL(tg/-)) mice with p53-heterozygous (p53(+/-)) mice and generated p210(bcr/abl)-transgenic, p53-heterozygous (BCR/ABL(tg/-)p53(+/-)) mice, in which a somatic alteration in the residual normal p53 allele directly abrogates p53 function. The BCR/ABL(tg/-)p53(+/-) mice died in a short period compared with their wild-type (BCR/ABL(-/-)p53(+/+)), p53 heterozygous (BCR/ABL(-/-)p53(+/-)), and p210(bcr/abl) transgenic (BCR/ABL(tg/-)p53(+/+)) litter mates. They had rapid proliferation of blast cells, which was preceded by subclinical or clinical signs of a myeloproliferative disorder resembling human CML. The blast cells were clonal in origin and expressed p210(bcr/abl) with an increased kinase activity. Interestingly, the residual normal p53 allele was frequently and preferentially lost in the tumor tissues, implying that a certain mechanism facilitating the loss of p53 allele exists in p210(bcr/abl)-expressing hematopoietic cells. Our study presents in vivo evidence that acquired loss of p53 contributes to the blastic transformation of p210(bcr/abl)-expressing hematopoietic cells and provides insights into the molecular mechanism for blast crisis of human CML. (Blood. 2000;95:1144-1150)  相似文献   

2.
He Y  Wertheim JA  Xu L  Miller JP  Karnell FG  Choi JK  Ren R  Pear WS 《Blood》2002,99(8):2957-2968
The bcr/abl fusion in chronic myelogenous leukemia (CML) creates a chimeric tyrosine kinase with dramatically different properties than intact c-abl. In P210 bcr/abl, the bcr portion includes a coiled-coil oligomerization domain (amino acids 1-63) and a grb2-binding site at tyrosine 177 (Tyr177) that are critical for fibroblast transformation, but give variable results in other cell lines. To investigate the role of the coiled-coil domain and Tyr177 in promoting CML, 4 P210 bcr/abl-derived mutants containing different bcr domains fused to abl were constructed. All 4 mutants, Delta(1-63) bcr/abl, (1-63) bcr/abl, Tyr177Phe bcr/abl, and (1-210) bcr/abl exhibited elevated tyrosine kinase activity and conferred factor-independent growth in cell lines. In contrast, differences in the transforming potential of the 4 mutants occurred in our mouse model, in which all mice receiving P210 bcr/abl-expressing bone marrow cells exclusively develop a myeloproliferative disease (MPD) resembling human CML. Of the 4 mutants assayed, only 1-210 bcr/abl, containing both the coiled-coil domain and Tyr177, induced MPD. Unlike full-length P210, this mutant also caused a simultaneous B-cell acute lymphocytic leukemia (ALL). The other 3 mutants, (1-63) bcr/abl, Tyr177Phe bcr/abl, and Delta(1-63) bcr/abl, failed to induce an MPD but instead caused T-cell ALL. These results show that both the bcr coiled-coil domain and Tyr177 are required for MPD induction by bcr/abl and provide the basis for investigating downstream signaling pathways that lead to CML.  相似文献   

3.
Honda  H; Fujii  T; Takatoku  M; Mano  H; Witte  ON; Yazaki  Y; Hirai  H 《Blood》1995,85(10):2853-2861
The p210bcr/abl chimeric protein is considered to be implicated in the pathogenesis of Philadelphia chromosome-positive human leukemias. To investigate its biologic function in vivo, we generated transgenic mice expressing p210bcr/abl driven by the metallothionein enhancer/promoter. Two of six founder mice and the transgenic progeny developed leukemias several months after birth. In the leukemic tissues, the expression of the p210bcr/abl transgene product was detected and the increased tyrosine-phosphorylation of cellular proteins was observed. The expressed p210bcr/abl transgene product was shown to possess an enhanced kinase activity. The leukemic cells showed rearrangements in the T-cell receptor loci, indicating that the leukemic cells were monoclonal and committed to the T-cell lineage. Polymerase chain reaction analysis for tissue distribution of p210bcr/abl expression showed that, in the transgenic line that reproducibly developed leukemias, p210bcr/abl was expressed in the hematopoietic tissues such as thymus and spleen; on the other hand, in the transgenic lines that have not developed leukemias, p210bcr/abl expression was detected only in the nonhematopoietic tissues such as the brain and kidney. These results suggest that the tumorigenicity of the p210bcr/abl chimeric protein is restricted to the hematopoietic tissues in vivo and that an event enhancing p210bcr/abl expression contributed a proliferative advantage to hematopoietic precursor cells and eventually developed T- cell leukemia in transgenic mice.  相似文献   

4.
Expression of c-abl in Philadelphia-positive acute myelogenous leukemia   总被引:6,自引:0,他引:6  
The identical cytogenetic marker, t(9;22)(q34;q11) (Philadelphia [Ph] translocation), is found in approximately 90%, 20%, and 2% of adult patients with chronic myelogenous leukemia (CML), acute lymphoblastic leukemia (ALL), and acute myelogenous leukemia (AML), respectively. In CML, the molecular events resulting from the Ph translocation include a break within the bcr locus on chromosome 22, transfer of the c-abl protooncogene from chromosome 9 to 22, and formation of an aberrant 210- kD bcr-abl fusion protein (p210bcr-abl). Recently, the absence of bcr rearrangement and expression of a distinct aberrant 190-kd abl protein (p190c-abl) has been described in Ph-positive ALL, with the suggestion that the two abl variants may be pathogenetically associated with myeloid v lymphoid leukemogenesis. Here we report that the genomic configuration and translation product of Ph-positive AML can be similar to that of Ph-positive ALL: the break at 22q11 may occur outside the 5.8 kb bcr region and result in expression of a 190-kD abl protein lacking these bcr sequences. Phosphokinase enzymatic activity, a fundamental property of p210bcr-abl, was also associated with AML- derived p190c-abl. Our current observations indicate that p190c-abl can be found in cells of lymphoid or myeloid lineage and is therefore unlikely to play a specific role in the development of lymphoid leukemias. Formation of p190c-abl instead of p210bcr-abl appears to be a characteristic of the acute rather than the chronic Ph-positive leukemic state.  相似文献   

5.
alpha-Interferon (IFN-alpha) is important in the management of chronic myelogenous leukemia (CML). The P210bcr/abl fusion protein, with enhanced tyrosine kinase activity, is implicated in the pathogenesis and progression of the disease. To elucidate the inhibitory mechanism of IFN-alpha on CML cell proliferation, we studied the effect of IFN-alpha on P210bcr/abl in K-562 cells. The phosphorylated level of P210bcr/abl was not altered by treatment with IFN-alpha alone despite its inhibiting cell proliferation. However, when K-562 cells were treated with either a low (5 x 10(2) U/ml) or high (10(4) U/ml) concentration of IFN-alpha in the presence of hemin, P210bcr/abl protein activity decreased through reduction of in vivo phosphorylation, but not through inhibition of de novo protein synthesis. Furthermore, hemoglobin content was increased by IFN-alpha at both low and high concentrations in tandem with hemin-induced erythroid differentiation and the change in P210bcr/abl. These results demonstrate that IFN-alpha synergises hemin-mediated erythroid differentiation as it reduces the in vivo tyrosine phosphorylation of P210bcr/abl in K-562 cells.  相似文献   

6.
The BCR/ABL kinase has been targeted for the treatment of chronic myelogenous leukemia (CML) by imatinib mesylate. While imatinib has been extremely effective for chronic phase CML, blast crisis CML and Ph+ acute lymphoblastic leukemia (ALL) are often resistant. In particular, mutation of the T315 residue in the bcr/abl activation loop renders cells highly resistant to imatinib and to second-generation kinase inhibitors such as BMS-354825 or AMN107. Adaphostin is a tyrphostin that was originally intended to inhibit the BCR/ABL kinase by competing with its peptide substrates. Recent findings have in addition implicated reactive oxygen species (ROS) in the cytotoxic mechanism of adaphostin. In view of this unique mode of action, we examined the effects of adaphostin on numerous imatinib-resistant leukemia models, including imatinib-resistant CML and Ph+ ALL cell lines, cells harboring point mutations in BCR/ABL, and specimens from imatinib-resistant CML patients, using assays for intracellular ROS, apoptosis, and clonogenicity. Every model of imatinib resistance examined remained fully sensitive to adaphostin-induced cell death. Collectively, these data suggest that ROS generation by adaphostin overcomes even the most potent imatinib resistance in CML and Ph+ ALL.  相似文献   

7.
Expression of the 210-kD bcr/abl fusion oncoprotein can cause achronic myelogenous leukemia (CML)-like disease in mice receiving bonemarrow cells transduced by bcr/abl-encoding retroviruses. However,previous methods failed to yield this disease at a frequency sufficientenough to allow for its use in the study of CML pathogenesis. Toovercome this limitation, we have developed an efficient and reproducible method for inducing a CML-like disease in mice receiving P210 bcr/abl-transduced bone marrow cells. All mice receiving P210bcr/abl-transduced bone marrow cells succumb to a myeloproliferative disease between 3 and 5 weeks after bone marrow transplantation. Themyeloproliferative disease recapitulates many of the hallmarks of humanCML and is characterized by high white blood cell counts and extensiveextramedullary hematopoiesis in the spleen, liver, bone marrow, andlungs. Use of a retroviral vector coexpressing P210 bcr/abl and greenfluorescent protein shows that the vast majority of bcr/abl-expressingcells are myeloid. Analysis of the proviral integration pattern showsthat, in some mice, the myeloproliferative disease is clonal. Inmultiple mice, the CML-like disease has been transplantable, inducing asimilar myeloproliferative syndrome within 1 month of transfer tosublethally irradiated syngeneic recipients. The disease in many ofthese mice has progressed to the development of acute lymphoma/leukemiaresembling blast crisis. These results demonstrate that murine CMLrecapitulates important features of human CML. As such, it should be anexcellent model for addressing specific issues relating to thepathogenesis and treatment of this disease.  相似文献   

8.
Blast crisis in a murine model of chronic myelogenous leukemia.   总被引:11,自引:1,他引:11       下载免费PDF全文
The P210bcr/abl protein is produced in cells from patients with Philadelphia chromosome-positive chronic myelogenous leukemia (CML). Retroviral transfer of the gene encoding P210bcr/abl into murine bone marrow induces a granulocytic leukemia that models the chronic phase of human CML. We have transferred the leukemic clone to syngeneic animals, albeit with surprising inefficiency, and have observed CML and clonally related acute leukemias of lymphoid or myeloid phenotype in some transplant recipients. These data show that murine CML can result from retroviral transfer of the bcr/abl gene into pluripotent hematopoietic stem cells, that infected clones repopulate poorly after adoptive transfer, and that these clones can give rise to acute leukemia, reflecting evolution to a phase resembling blast crisis in the human disease.  相似文献   

9.
The adenosine triphosphate binding-site-directed agent STI571 and the tyrphostin adaphostin are undergoing evaluation as bcr/abl kinase inhibitors. The current study compared the effects of these agents on the survival of K562 cells, bcr/abl-transduced FDC-P1 cells, and myeloid progenitors from patients with chronic myelogenous leukemia (CML) compared with healthy donors. Treatment of K562 cells with 10 microM adaphostin resulted in decreased p210(bcr/abl) polypeptide levels in the first 6 hours, followed by caspase activation and accumulation of apoptotic cells in less than 12 hours. By 24 hours, 90% of the cells were apoptotic and unable to form colonies. In contrast, 20 microM STI571 caused rapid inhibition of bcr/abl autophosphorylation without p210(bcr/abl) degradation. Although this was followed by the inhibition of Stat5 phosphorylation and the down-regulation of Bcl-x(L) and Mcl-1, only 7% +/- 3% and 25% +/- 9% of cells were apoptotic at 16 and 24 hours, respectively. Instead, the cytotoxic effects of STI571 became more pronounced with prolonged exposure, with IC90 values greater than 20 microM and 1.0 +/- 0.6 microM after 24 and 48 hours, respectively. Consistent with these results, 24-hour adaphostin exposure inhibited CML granulocyte colony-forming units (CFU-G) (median IC50, 12 microM) but not normal CFU-G (median IC50, greater than 20 microM), whereas 24-hour STI571 treatment had no effect on CML or normal CFU-G. Additional experiments revealed that STI571-resistant K562 cells remained sensitive to adaphostin. Moreover, the combination of STI571 + adaphostin induced more cytotoxicity in K562 cells and in CML CFU-G than either agent alone did. Collectively, these results identify adaphostin as a mechanistically distinct CML-selective agent that retains activity in STI571-resistant cell lines.  相似文献   

10.
P Laneuville  G Sun  M Timm  M Vekemans 《Blood》1992,80(7):1788-1797
Current evidence suggests that the expression of the tyrosine kinase p210bcr/abl in chronic myelogenous leukemia (CML) may directly induce the initial phase of granulocytic hyperplasia. However, the dysregulation of additional genes appears to be required for transition to the acute leukemic phase, as inferred by the appearance of recurrent secondary cytogenetic abnormalities in the majority of patients. To determine whether the expression of p210bcr/abl alone is responsible for this genetic instability, we introduced and expressed the bcr/abl gene from a retroviral vector in a clone of the interleukin-3 (IL-3) dependent myeloblastic 32D C13(G) cell line. Clonal and polyclonal cells transformed to IL-3 independent growth were observed for a period extending up to 6 months for changes in the expression of p210bcr/abl, cell proliferation, inhibition by prostaglandin E1 (PGE1), forskolin, and cyclic adenosine monophosphate (cAMP) analogues, regulation of the cell cycle, and karyotype. Whereas the properties of control vector infected 32D C13(G)' cells remained stable over time, cells expressing p210bcr/abl were phenotypically unstable. In cells expressing p210bcr/abl, we observed selective modulation of p210bcr/abl mRNA and protein expression, evolution from partial to full abrogation of IL-3 dependence, reduced serum requirements, increased cell proliferation, decreased inhibition by PGE1 and cAMP analogues, and the appearance of new structural and numerical chromosomal abnormalities with successive cell passages. These results indicate that expression of p210bcr/abl can directly predispose 32D C13(G)' cells to genetic instability, promotes the emergence of clones with an increased proliferative advantage, and may represent an in vitro model suitable for the study of mechanisms underlying progression to the acute leukemic phase in CML.  相似文献   

11.
The aberrant abl protein product of a chronic myelogenous leukemia (CML) blast crisis cell line (K562) and of five Philadelphia chromosome- positive CML patients in blast crisis were analyzed by an immune complex kinase assay using two antipeptide sera generated against the hydrophilic domain of v-abl and a region within the third exon of the breakpoint cluster region (bcr) respectively. Both the anti-abl and anti-bcr sera detected a 210 kd band in extracts derived from K562 cells and from two CML patients with myeloid blast crisis. p210 was detected by the anti-abl but not the anti-bcr sera in three CML patients with myeloid (one patient) and lymphoid (two patients) blast crisis, indicating the absence of bcr exon 3 in this protein. Southern blot analysis on DNA derived from one of the patients in the latter group was consistent with the break on chromosome 22 occurring 5' to bcr exon 3. Our observations demonstrate that the Philadelphia translocation results in the generation of a chimeric bcr-abl protein with at least two molecular variants, both of which are enzymatically active as protein kinases.  相似文献   

12.
Jain  SK; Susa  M; Keeler  ML; Carlesso  N; Druker  B; Varticovski  L 《Blood》1996,88(5):1542-1550
BCR/abl is a chimeric oncogene implicated in the pathogenesis of human chronic myelogenous leukemia. Expression of the BCR/abl gene induces hematologic malignancies in transgenic mice and transformation of interleukin-3-dependent hematopoietic cells. The mechanism of BCR/abl- mediated transformation of hematopoietic cells is poorly understood and involves activation of at least two signaling pathways, p21ras and PI 3- kinase. Here we report that PI 3,4-P2 and PI 3,4,5-P3, the enzymatic products of PI 3-kinase, accumulate in metabolically labeled transformed hematopoietic cells, in contrast to our previous report on the lack of accumulation of PI 3-kinase products in nontransformed NIH 3T3 fibroblasts that express p210 BCR/abl. Transformed cells also have increased PI 3-kinase activity in total cell extracts and membrane fractions. Activation of PI 3-kinase occurs by occupancy of SH2 domains of PI 3-kinase regulatory subunit, p85, by phosphorylated YXXM motifs. Therefore, we investigated whether BCR/abl binds to p85 and whether this binding is mediated by interaction of p85 SH2 domains with YXXM motif of BCR/abl. Association of p210 BCR/abl with p85 in immune complexes and with p85 SH2 domains was evident in hematopoietic cells that express the wt p210 BCR/abl. However, the binding of BCR/abl to p85 SH2 domains was abolished in cells expressing mutant, temperature- sensitive (ts) p210 BCR/abl in which the tyrosine in the YXXM motif of p210 BCR/abl was replaced by histidine. Despite lack of direct interaction with p85 SH2 domains, expression of ts p210 BCR/abl resulted in rapid, time-dependent activation of total and membrane- associated PI 3-kinase and increased PI 3-kinase activity in anti-P-tyr and anti-abl immunoprecipitates. These data suggest that BCR/abl- induced activation of PI 3-kinase in hematopoietic cells does not require binding of p85 SH2 domains to BCR/abl gene product and involves interaction with other tyrosine phosphorylated intermediate proteins.  相似文献   

13.
目的 观察bcr/abl融合基因在老年白血病的表达及其临床意义。  方法  应用逆转录聚合酶链反应 (RT PCR)一步法检测 62例老年白血病患者bcr/abl融合基因的表达。  结果   62例患者中bcr/abl融合基因阳性 5 3例 ,阳性率 85 5 % ,其中急性淋巴细胞白血病 (ALL) 17例 ,阳性 9例 (5 2 9% ) ;慢性粒细胞白血病 (CML)45例 ,阳性 44例 (97 88% )。DOCP方案治疗 7例bcr/abl ALL患者完全缓解 (CR)率 2 8 6% ,6例bcr/abl-ALL患者CR率 66 7% (P <0 0 1)。  结论 bcr/abl融合基因检测有助于CML和ALL的临床诊断、治疗选择、微小残留病变 (MRD)监测以及预后判断 ;老年ALLbcr/abl融合基因阳性率较高 ,可能是其治疗效果较差的原因之一 ;bcr/abl ALL患者CR率明显低于bcr/abl-ALL患者 ;RT PCR一步法特异性好、敏感性高、简便快速 ,尤其适用于MRD的临床监测。  相似文献   

14.
15.
16.
Herbimycin A, a benzoquinoid ansamycin antibiotic, was demonstrated to decrease intracellular phosphorylation by protein tyrosine kinase (PTK). In Philadelphia chromosome (Ph1)-positive leukemias such as chronic myelogenous leukemia (CML) and Ph1-positive acute lymphoblastic leukemia (ALL), both of which express bcr-abl fused gene products (P210bcr-abl or P190bcr-abl protein kinase) with augmented tyrosine kinase activities, herbimycin A markedly inhibited the in vitro growth of the Ph1-positive ALL cells and the leukemic cells derived from CML blast crisis. However, the same dose of herbimycin A did not inhibit in vitro growth of a broad spectrum of Ph1-negative human leukemia cells, and several other protein kinase antagonists also displayed no preferential inhibition. Furthermore, we demonstrated that herbimycin A has an antagonizing effect on the growth of transformed cells by a transfection of retroviral amphotrophic vector expressing P210bcr/abl into a murine interleukin (IL)-3-dependent myeloid FDC-P2 cell line. This inhibition was abrogated by the addition of sulfhydryl compounds, similar to the reaction previously described for Rous sarcoma virus transformation. The inhibitory effect of herbimycin A on the growth of Ph1-positive cells was associated with decreased bcr/abl tyrosine kinase activity, but no decrease of bcr-abl mRNA and protein, suggesting that the inactivation of bcr-abl tyrosine kinase activity by herbimycin A may be induced by its binding to the bcr-abl protein portion that is rich with sulfhydryl groups. The present study indicates that herbimycin A is a beneficial agent for the investigation of the role of the bcr-abl gene in Ph1-positive leukemias and further suggests that the development of agents inhibiting the bcr-abl gene product may offer a new therapeutic potential for Ph1-positive leukemias.  相似文献   

17.
18.
Seventy cases of chronic myelogenous leukemia (CML) were analyzed for the presence of ras mutations using polymerase chain reaction (PCR), oligonucleotide hybridization, and direct PCR sequencing. All cases had preceding cytogenetic and bcr rearrangement studies. Aberrant ras genes were detected in none of 39 patients with Philadelphia (Ph) chromosome or bcr/abl rearrangement positive chronic-phase CML and in only 1 of 18 patients in blast crisis, suggesting that ras mutations have little or no role in initiation or progression of common CML. Seven of 13, or 54% of patients with bcr/abl rearrangement negative chronic phase CML (atypical CML) harbored mutations in ras, however. This high incidence of ras mutations, together with the absence of bcr/abl rearrangement, provides evidence that atypical CML is an entity that is molecularly distinct from common CML. Moreover, the clinical characteristics and the high frequency of ras mutations suggest that atypical CML may constitute a subset of the myelodysplastic syndrome and may be best classified as a variant of chronic myelomonocytic leukemia (CMML).  相似文献   

19.
The Philadelphia (Ph) translocation t(9;22)(q34;q11) occurs frequently in chronic myeloid leukemia (CML) but is less common in acute lymphoblastic leukemia (ALL) and rare in acute myeloid leukemia (AML). In most cases of CML and some cases of Ph+ ALL the protooncogene ABL from 9q34 is translocated to the breakpoint cluster region (bcr) of the BCR gene at 22q11 to form a chimeric gene encoding a novel 210-kd protein (P210 BCR-ABL) with enhanced tyrosine kinase activity. In other patients with Ph+ ALL and Ph+ AML, the breakpoint probably occurs in the first intron of the BCR gene; this results in a smaller chimeric gene which encodes a P190 BCR-ABL. We studied a patient with AML (FAB M6) arising de novo who had a "masked" Ph chromosome in association with extensive karyotypic changes. The leukemic cells initially showed rearrangement of the bcr, presence of a hybrid mRNA, and expression of the P210 BCR-ABL. These changes were absent in remission. These results support the concept that the BCR-ABL chimeric gene plays a crucial role in leukemogenesis but suggest that factors other than the position of the breakpoint in the BCR gene determine the lineage of the target cell for malignant transformation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号