首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 38 毫秒
1.
Vascular endothelial growth factor (VEGF) was originally discovered as vascular permeability factor because of its ability to increase microvascular permeability to plasma proteins. Since then, it has been shown to induce proliferation and migration in endothelial cells. Placenta growth factor (PlGF) is a member of the VEGF family of growth factors, but has little or undetectable mitogenic activity on endothelial cells. Intriguingly, however, PlGF was able to potentiate the action of low concentrations of VEGF on endothelial cell growth and macromolecule permeability in vitro. Here we show that PlGF can potentiate the effects of VEGF on the hydraulic conductivity of certain endothelial cells and that the duration of pretreatment with PlGF determines the resulting response. Hydraulic conductivity (Lp) was calculated from the water flux across the monolayer of human umbilical vein endothelial cells (HUVECs) or bovine aortic endothelial cells (BAECs). After 2 h of exposure to VEGF(165), the Lp of BAEC monolayers increased threefold, but the Lp of HUVEC monolayers did not increase. PlGF alone induced a small (63%) increase in Lp in BAECs, but not in HUVECs. BAEC, but not HUVEC, monolayers exposed first to PlGF and then to VEGF exhibited a seven- to eightfold increase in Lp. This enhancement in BAEC Lp could be observed for 4 h after the administration of PlGF. PlGF also potentiated the effect of VEGF on BAEC proliferation. Thus, augmentation of VEGF action by PlGF depends on the duration of PlGF exposure and on the origin of endothelial cells.  相似文献   

2.
Basic fibroblast growth factor (bFGF) and platelet-derived growth factor-BB (PDGF-BB) modulate vascular wall cell function in vitro and angiogenesis in vivo. The aim of the current study was to determine how bovine aorta endothelial cells (BAECs) respond to the simultaneous exposure to PDGF-BB and bFGF. It was found that bFGF-dependent BAEC migration, proliferation, and differentiation into tubelike structures on reconstituted extracellular matrix (Matrigel) were inhibited by PDGF-BB. The role played by PDGF receptor alpha (PDGF-Ralpha) was investigated by selective stimulation with PDGF-AA, by blocking PDGF-BB-binding to PDGF-Ralpha with neomycin, or by transfecting cells with dominant-negative forms of the receptors to selectively impair either PDGF-Ralpha or PDGF-Rbeta function. In all cases, PDGF-Ralpha impairment abolished the inhibitory effect of PDGF-BB on bFGF-directed BAEC migration. In addition, PDGF-Ralpha phosphorylation was increased in the presence of bFGF and PDGF, as compared to PDGF alone, whereas mitogen-activated protein kinase phosphorylation was decreased in the presence of PDGF-BB and bFGF compared with bFGF alone. In vivo experiments showed that PDGF-BB and PDGF-AA inhibited bFGF-induced angiogenesis in vivo in the chick embryo chorioallantoic membrane assay and that PDGF-BB inhibited bFGF-induced angiogenesis in Matrigel plugs injected subcutaneously in CD1 mice. Taken together these results show that PDGF inhibits the angiogenic properties of bFGF in vitro and in vivo, likely through PDGF-Ralpha stimulation.  相似文献   

3.
Vascular endothelial growth factor (VEGF) is a potent enhancer of microvascular permeability in vivo. To date, its effects on hydraulic conductivity (L(p)) and diffusive albumin permeability (P(e)) of endothelial monolayers have not been thoroughly assessed in vitro. We hypothesized that VEGF affects endothelial transport properties differently depending on vessel location and endothelial phenotype. Using three well-established endothelial cell culture models-human umbilical vein endothelial cells (HUVECs), bovine aortic endothelial cells (BAECs), and bovine retinal microvascular cells (BRECs)-grown on porous, polycarbonate filters we were able to produce baseline transport properties characteristic of restrictive barriers. Our results show 3.1-fold and 5.7-fold increases in endothelial L(p) for BAEC and BREC monolayers, respectively, at the end of 3 h of VEGF (100 ng/ml) exposure. HUVECs, however, showed no significant alteration in L(p) after 3 h (100 ng/ml) or 24 h (25 ng/ml) of incubation with VEGF even though they were responsive to the inflammatory mediators, thrombin (1 U/ml; 27-fold increase in L(p) in 25 min) and bradykinin (10 microM; 4-fold increase in L(p) in 20 min). Protein kinase C (PKC) and nitric oxide (NO) are downstream effectors of VEGF signaling. BAEC L(p) was responsive to activation of NO (SNAP) and PKC (PMA), whereas these agents had no effect in altering HUVEC L(p). Moreover, BAECs exposed to the PKC inhibitor, staurosporine (50 ng/ml), exhibited significant attenuation of VEGF-induced increase in L(p), but inhibition of nitric oxide synthase (NOS) with L-NMMA (100 microM) had no effect in altering the VEGF-induced increase in L(p). These data provide strong evidence that in BAECs, the VEGF-induced increase in L(p) is mediated by a PKC-dependent mechanism. Regarding diffusive albumin P(e), at the end of 3 h, BAECs and BRECs showed 6.0-fold and 9. 9-fold increases in P(e) in response to VEGF (100 ng/ml), whereas VEGF had no significant effect after 3 h (100 ng/ml) or 24 h (25 ng/ml) in changing HUVEC P(e). In summary, these data indicate that VEGF affects endothelial transport properties differently depending on the vessel type and that differences in cell signaling pathways underlie the differences in VEGF responsiveness.  相似文献   

4.
5.

Objective

Acidosis is present in several pathological conditions where vasculogenesis takes place including ischemia, tumor growth and wound healing. We have previously demonstrated that acidosis induces human CD34+ cell apoptosis. Considering that endothelial colony-forming cells (ECFC) are a subpopulation of CD34+ cells and key players in vasculogenesis, in the present study we investigated the effect of acidosis on the survival and functionality of ECFC.

Approach and results

Endothelial colony-forming cells obtained by differentiation of human cord blood CD34+ cells in endothelial growth medium-2 for 14–21 days were exposed at pH 7.4, 7.0 or 6.6. We found that acidosis failed to induce ECFC apoptosis and, although an early reduction in proliferation, chemotaxis, wound healing and capillary-like tubule formation was observed, once the medium pH was restored to 7.4, ECFC proliferation and tubulogenesis were augmented. Stromal cell derived factor-1 (SDF1)-driven migration and chemokine receptor type 4 surface expression were also increased. The maximal proangiogenic effect exerted by acidic preconditioning was observed after 6 h at pH 6.6. Furthermore, preconditioned ECFC showed an increased ability to promote tissue revascularization in a murine model of hind limb ischemia. Immunoblotting assays showed that acidosis activated AKT and ERK1/2 and inhibited p38 pathways. Proliferation rises triggered by acidic preconditioning were no longer observed after AKT or ERK1/2 inhibition, whereas p38 suppression not only mimicked but also potentiated the effect of acidosis on ECFC tubule formation abilities.

Conclusions

These results demonstrate that acidic preconditioning greatly increases ECFC-mediated angiogenesis in vitro including ECFC proliferation, tubulogenesis and SDF1-driven chemotaxis and is a positive regulator of microvessel formation in vivo.  相似文献   

6.
7.
The present study was conducted to elucidate the role of activin A in tubulogenesis of vascular endothelial cells. Activin A was produced in bovine aortic endothelial cells (BAEC). These cells also expressed the type I and type II activin receptors. When added to BAEC cultured in a collagen gel, activin A induced capillary formation. Activin A was as potent as vascular endothelial growth factor (VEGF) and markedly enhanced VEGF-induced tubulogenesis. To examine the role of endogenous activin A, we added follistatin, an inhibitor of activin A. Follistatin nearly completely blocked the VEGF-induced tubulogenesis, and the effect of follistatin was reproduced by transfection of the dominant-negative type II activin receptor gene. In BAEC, activin A increased the expression of VEGF and the VEGF receptors, Flt-1 and Flk-1. On the other hand, VEGF increased the production of activin A. Finally, addition of follistatin, which blocks the action of endogenous activin A, reduced the expression of Flt-1 and Flk-1. These results indicate that an autocrine factor activin A amplifies the effect of VEGF by up-regulating VEGF and its receptors. This effect of activin A is critical in the VEGF-induced tubulogenic morphogenesis in BAEC.  相似文献   

8.
The effect of retinoic acid (RA) on endothelial cells is still controversial and was examined in the present study. In bovine aortic endothelial cells (BAECs), all-trans RA (ATRA) and 9-cis RA (9CRA), but not 13-cis RA (13CRA), induced fibroblast growth factor-2 (FGF-2) production and exhibited a biphasic dose-dependent effect to enhance BAEC proliferation and differentiation into tubular structures on reconstituted basement membrane proteins (Matrigel); both processes were inhibited by FGF-2-neutralizing antibody. The pan RA receptor (RAR)-selective ligand (E)-4-[2-(5,5,8,8,-tetramethyl-5,6,7,8-tetrahydro-2-naphtalenyl)-1-propenyl] benzoic acid and the RARalpha-selective ligand 4-[1-(3,5,5,8,8-pentamethyl-5,6,7,8-tetrahydro-2-naphtyl)-ethenyl] benzoic acid stimulated the production of FGF-2, whereas the addition of the RARalpha-antagonist RO 41-5253 inhibited this effect. In BAECs, the forced expression of RARalpha, but not RARbeta or RARgamma, enhanced FGF-2 production, whereas the RARalpha-dominant negative, Delta403, blocked this effect. Furthermore, RARalpha overexpression directly stimulated BAEC differentiation on Matrigel and potentiated the effects of ATRA in this assay. Finally, ATRA-treated BAECs coinjected with Matrigel subcutaneously in mice induced neovascularization within the Matrigel plug, and ATRA also enhanced angiogenesis in the chicken chorioallantoic membrane assay. In conclusion, RA can stimulate endothelial cell proliferation and differentiation in vitro via enhanced RARalpha-dependent FGF-2 production, and it can also induce angiogenesis in vivo. The full text of this article is available at http://www.circresaha.org.  相似文献   

9.
Circulating endothelial progenitor cells (EPC) are incorporated into newly formed capillaries, enhance neovascularization after hind limb ischemia and improve cardiac function after ischemic injury. Incorporated progenitor cells may also promote neovascularization and cardiac regeneration by releasing factors, which act in a paracrine manner to support local angiogenesis and mobilize tissue residing progenitor cells. Therefore, we analyzed the expression profile of cytokines in human peripheral blood-derived EPC as opposed to human umbilical vein endothelial cells (HUVEC), human microvascular endothelial cells (HMVEC), and CD14(+) monocytes by microarray technology. A gene tree analysis revealed a distinct expression pattern of angiogenic growth factors in EPC, mature endothelial cells, and CD14(+) monocytes. VEGF-A, VEGF-B, SDF-1, and IGF-1 mRNA levels were higher in EPC as compared to HUVEC or HMVEC. The enhanced mRNA expression was paralleled by a significant release of VEGF, SDF-1, and IGF-1 protein into the cell culture supernatant of EPC. Moreover, immunohistological analysis of ischemic limbs from nude rats revealed that VEGF is also released from recruited human EPC in vivo. As a functional consequence, conditioned medium of EPC induced a strong migratory response of mature endothelial cells, which was significantly inhibited by VEGF and SDF-1 neutralizing antibodies. Finally, conditioned medium of EPC significantly stimulated the migration of cardiac resident c-kit(+) progenitor cells in vitro. Taken together, EPC exhibit a high expression of angiogenic growth factors, which enhanced migration of mature endothelial cells and tissue resident cardiac progenitor cells. In addition to the physical contribution of EPC to newly formed vessels, the enhanced expression of cytokines may be a supportive mechanism to improve blood vessel formation and cardiac regeneration after cell therapy.  相似文献   

10.
We demonstrated that vascular endothelial cells mechanically wounded by scraping from the substratum were able to release growth promoting factors for synovial cells as well as for endothelial cells. The wounded endothelial cell conditioned medium stimulated the proliferation of synovial cells derived from different human donors dose dependently and induced transit of growth arrested synovial cells (predominant in the G0 and G1 phases), through the S phase and into the G2 and M phases. When the wounded endothelial cell conditioned medium was applied to heparin-sepharose columns, mitogenic activity was eluted with 2.0 M NaCl. The mitogenic activity in wounded endothelial cell conditioned medium, which was heat sensitive, was inhibited by protamine sulfate and a specific mouse monoclonal antibody against basic fibroblast growth factor (bFGF). Our results are evidence that the wounded endothelial cell conditioned medium contained growth promoting factors for synovial cells, including bFGF. We also showed the presence of bFGF in the endothelial cells of the small blood vessels and stromal synovial fibroblast-like cells in patients with rheumatoid arthritis (RA). Our results suggest that the endothelial cells in the luxuriant capillaries in the synovial tissues from patients with RA may have a critical role in the stimulation of neighboring synovial cell proliferation, resulting in pronounced synovial hyperplasia.  相似文献   

11.
Interactions between integrins and growth factor receptors play a critical role in the development and healing of the vasculature. This study mapped two binding domains on fibronectin (FN) that modulate the activity of the angiogenic factor, vascular endothelial growth factor (VEGF). Using solid-phase assays and surface plasmon resonance analysis, we identified two novel VEGF binding domains within the N- and C-terminus of the FN molecule. Native FN bound to VEGF enhanced endothelial cell migration and mitogen-activated protein (MAP) kinase activity, but FN that is devoid of the VEGF binding domains failed to do so. Coprecipitation studies confirmed a direct physical association between VEGF receptor-2 (Flk-1) and the FN integrin, alpha5beta1, which required intact FN because FN fragments lacking the VEGF binding domains failed to support receptor association. Thrombin-activated platelets released intact VEGF/FN complexes, which stimulated endothelial cell migration and could be inhibited by soluble high affinity VEGF receptor 1 and antibodies to alpha5beta1 integrin. This study demonstrates that FN is potentially a physiological cofactor for VEGF and provides insights into mechanisms by which growth factor receptors and integrins cooperate to influence cellular behavior.  相似文献   

12.
OBJECTIVE: Electronegative low density lipoprotein (LDL) subfractions are cytotoxic to endothelial cells. To continue our study of homozygotic familial hypercholesterolemic (FH)-LDL, we report the effects of FH-LDL subfractions (FH-L1 to FH-L5) on the angiogenic processes in cultured endothelial cells. METHODS AND RESULTS: Subconfluent bovine aortic endothelial cells (BAEC) were treated with LDL subfractions (20 microg/ml), and the effects on angiogenic functions, including cell proliferation, migration, apoptosis, tube formation, secretion of matrix metalloproteinases (MMPs), and vascular endothelial growth factor (VEGF) were determined. The electronegative FH-L4 and FH-L5 inhibited cell proliferation while the other FH-LDL subfractions and LDL from normocholesterolemic subjects (N-LDL) had negligible effects. Like Cu2+ ox-LDL, FH-L5 strongly inhibited endothelial cell viability and FH-L4 had a milder effects. Similarly, FH-L4 and FH-L5 but not the other subfractions retarded cell migration, induced cell apoptosis, and perturbed tube formation by BAEC in matrigel. FH-L5 inhibited secretion of MMP-2 and MMP-9 by BAEC without affecting their endogenous levels. In contrast, FH-L5 increased the VEGF expression in endothelial cells. CONCLUSIONS: Our results show for the first time that FH-L5, a circulating LDL subfraction from hypercholesterolemic patients, modulates various angiogenic processes, thereby dysregulating endothelial function in a way that may be atherogenic.  相似文献   

13.
Kini AR  Peterson LA  Tallman MS  Lingen MW 《Blood》2001,97(12):3919-3924
Recent studies indicate that angiogenesis is important in the pathogenesis of leukemias, apart from its well-established role in solid tumors. In this study, the possible role of angiogenesis in acute promyelocytic leukemia (APL) was explored. Bone marrow trephine biopsies from patients with APL showed significantly increased microvessel density and hot spot density compared with normal control bone marrow biopsies. To identify the mediators of angiogenesis in APL, quantitative and functional assays were performed using the NB4 APL cell line as a model system. Conditioned media (CM) from the NB4 cells strongly stimulated endothelial cell migration. CM from the NB4 cells contained high levels of vascular endothelial growth factor (VEGF) but not basic fibroblast growth factor (bFGF). Most important, the addition of neutralizing VEGF antibodies completely inhibited the ability of NB4 CM to stimulate endothelial cell migration, suggesting that APL angiogenesis is mediated by VEGF. The effect of all-trans retinoic acid (ATRA) on APL angiogenesis was then studied. ATRA therapy resulted in a decrease in bone marrow microvessel density and hot spot density. CM from ATRA-treated APL cells did not stimulate endothelial cell migration. Finally, quantitative assays showed that ATRA treatment resulted in the abrogation of VEGF production by the NB4 cells. These results show that there is increased angiogenesis and VEGF production in APL and that ATRA therapy inhibits VEGF production and suppresses angiogenesis. The addition of specific antiangiogenic agents to differentiation therapy or chemotherapy should be explored. (Blood. 2001;97:3919-3924)  相似文献   

14.
15.
Pedram A  Razandi M  Levin ER 《Endocrinology》2001,142(4):1578-1586
Vascular endothelial cell growth factor (VEGF) is essential for angiogenesis. Atrial natriuretic peptide (ANP) inhibits the production of VEGF, but whether this important vascular peptide also inter- rupts VEGF signaling to angiogenesis is unknown. In cultured bovine aortic endothelial cells, VEGF significantly stimulated extracellular signal-regulated protein kinase activity and phosphorylation, which was inhibited 60% by coincubation with ANP or a natriuretic peptide clearance receptor specific ligand (NPRC), C-type NAP-(4-23) [C-ANP-(4-23)]. VEGF also stimulated c-Jun N-terminal kinase (JNK) and p38 activities/phosphorylation that were prevented by the two natriuretic peptides (NP). A specific NP guanylate cyclase (GC) receptor antagonist, HS-142-1, blocked the actions of ANP [but not those of C-ANP-(4-23)], supporting the involvement of both GC and NPRC receptors. VEGF and expression of constituitively active JNK each stimulated the synthesis of cyclin D1 and increased the activity of the cyclin-dependent kinase-4, which was inhibited 55% by ANP. VEGF induced endothelial cell proliferation and migration, which was significantly blocked by NP or by expressing a dominant negative JNK-1. VEGF stimulated human microvascular endothelial cells to form capillary tubes, which was significantly inhibited by expressing dominant negative JNK-1 and by NP. Therefore, VEGF induction of critical steps in angiogenesis is enhanced through JNK activation. The actions are significantly prevented by NP, which act through both the NPRC and GC receptors to block growth factor signaling. Thus, NP are candidate antiangiogenesis factors that inhibit both the synthesis and function of VEGF.  相似文献   

16.
Wajih N  Sane DC 《Blood》2003,101(5):1857-1863
Angiostatin, an inhibitor of angiogenesis, contains 3 to 4 kringle domains that are derived from proteolytic cleavage of plasminogen. The antiangiogenic effects of angiostatin occur, in part, from its inhibition of endothelial cell surface adenosine triphosphate synthase, integrin functions, and pericellular proteolysis. Angiostatin has structural similarities to hepatocyte growth factor (HGF; "scatter factor"), a promoter of angiogenesis, that induces proliferation and migration of both endothelial and smooth muscle cells via its cell surface receptor, c-met. We hypothesized that angiostatin might block HGF-induced signaling in endothelial and smooth muscle cells. Angiostatin inhibited HGF-induced phosphorylation of c-met, Akt, and ERK1/2. Angiostatin also significantly inhibited proliferation of human umbilical vein endothelial cells (HUVECs) induced by HGF. In contrast, angiostatin did not inhibit vascular endothelial growth factor (VEGF)-or basic fibroblast growth factor (bFGF)-induced signaling events or HUVEC proliferation. Angiostatin bound to immobilized truncated c-met produced by A431 cells and could be immunoprecipitated as a complex with soluble c-met. HGF inhibited the binding of (125)I-angiostatin to HUVECs. Soluble c-met, produced by several tumor cell lines, could inhibit the antiangiogenic effect of angiostatin. The disruption of HGF/c-met signaling is a novel mechanism for the antiangiogenic effect of angiostatin.  相似文献   

17.
Abstract: Melatonin is an important natural oncostatic agent, and our previous studies have found its inhibitory action on tumor angiogenesis, but the mechanism remains unclear. It is well known that vascular endothelial growth factor (VEGF) plays key roles in tumor angiogenesis and has become an important target for antitumor therapy. Pancreatic cancer is a representative of the most highly vascularized and angiogenic solid tumors, which responds poorly to chemotherapy and radiation. Thus, seeking new treatment strategies targeting which have anti‐angiogenic capability is urgent in clinical practice. In this study, a co‐culture system between human umbilical vein endothelial cells (HUVECs) and pancreatic carcinoma cells (PANC‐1) was used to investigate the direct effect of melatonin on the tumor angiogenesis and its possible action on VEGF expression. We found HUVECs exhibited an increased cell proliferation and cell migration when co‐cultured with PANC‐1 cells, but the process was prevented when melatonin added to the incubation medium. Melatonin at concentrations of 1 μm and 1 mm inhibited the cell proliferation and migration of HUVECs and also decreased both the VEGF protein secreted to the cultured medium and the protein produced by the PANC‐1 cells. In addition, the VEGF mRNA expression was also down‐regulated by melatonin. Taken together, our present study shows that melatonin at pharmacological concentrations inhibited the elevated cell proliferation and cell migration of HUVECs stimulated by co‐culturing them with PANC‐1 cells; this was associated with a suppression of VEGF expression in PANC‐1 cells.  相似文献   

18.
The roles of vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF [FGF-2]) in early postnatal regulation of coronary angiogenesis were investigated by administering neutralizing antibodies to these growth factors between postnatal days 5 and 12. Immunohistochemistry and Western blotting both revealed decreases in VEGF protein in the hearts of rats treated with either antibody. In contrast, bFGF mRNA increased in both treated groups, whereas VEGF mRNA was unchanged. Using stereological assessment of perfusion-fixed hearts, we found that both anti-VEGF and anti-bFGF inhibited the rapid and marked capillary growth that occurs during this time period and that the effects of the two neutralizing antibodies are not additive. Arteriolar growth, as indicated by a lower length density, was inhibited by anti-bFGF, but not anti-VEGF. When both anti-VEGF and anti-bFGF were administered, arteriolar length density was not significantly lower, but the population of small arterioles (<15 microm) was markedly reduced, whereas the percentage of large arterioles (26 to 50 microm) more than doubled. Thus, inhibition of both growth factors negated or limited the formation of small arterioles and facilitated an expansion of the largest arterioles. These in vivo data are the first to document that during the early neonatal period, (1) both VEGF and bFGF modulate capillary growth, (2) bFGF facilitates arteriolar growth, and (3) the two growth factors interact to establish the normal hierarchy of the arteriolar tree.  相似文献   

19.
AIM: To develop an in vitro three-dimensional (3-D) angiogenesis system to analyse the capillary sprouts induced in response to the concentration ranges of basic fibroblast growth factor (bFGF) and vascular endothelial growth factor (VEGF) and to quantify their synergistic activity.METHODS: Microcarriers (MCs) coated with human microvascular endothelial cells (HMVECs) were embedded in fibrin gel and cultured in 24-well plates with assay media. The growth factors bFGF, or VEGF, or both were added to the system. The wells (n = 8/group) were digitally photographed and the average length of capillary-like sprouts (ALS) from each microcarrier was quantitated.RESULTS: In aprotinin-stabilized fibrin matrix, human microvascular endothelial cells on the MCs invaded fibrin,forming sprouts and capillary networks with lumina. The angiogenic effects of bFGF or VEGF were dose-clependent in bhe range from 10 to 40 ng/mL. At d 1, 10 ng/mL of bFGF and VEGF induced angiogenesis with an ALS of 32.13&#177;16.6 μm and 43.75&#177;27.92 μm, respectively, which were significantly higher than that of the control (5.88&#177;4.45 μm, P&lt;0.01),and the differences became more significant as the time increased. In addition, the combination of 10 ng/mL of bFGF and VEGF each induced a more significant effect than the summed effects of bFGF (10 ng/mL) alone and VEGF (10 ng/mL) alone when analyzed using SPSS system for general linear model (GLM) (P= 0.011), and bhat also exceeded the effects by 20 ng/mL of either bFGF or VEGF.CONCLUSION: A microcarrier-based in vitro threedimensional angiogenesis model can be developed in fibrin.It offers a unique system for quantitative analysis of angiogenesis. Both bFGF and VEGF exert their angiogenic effects on HMVECs synergistically and in a dose-dependent manner.  相似文献   

20.
Activation of endothelial cells, important in processes such as angiogenesis, is regulated by cell surface receptors, including those in the tyrosine kinase (RTK) family. Receptor activity, in turn, can be modulated by phosphorylation, turnover, or proteolytic release of a soluble extracellular domain. Previously, we demonstrated that release of soluble tie-1 receptor from endothelial cells by phorbol myristate acetate (PMA) is mediated through protein kinase C and a Ca2+-dependent protease. In this study, the release of soluble tie-1 was shown to be stimulated by inflammatory cytokines and vascular endothelial growth factor (VEGF), but not by growth factors such as basic fibroblast growth factor (bFGF) or transforming growth factor alpha (TGFalpha). Release of soluble tie by tumor necrosis factor alpha (TNFalpha) or VEGF occurred within 10 minutes of stimulation and reached maximal levels within 60 minutes. Specificity was shown by fluorescence-activated cell sorting (FACS) analysis; endothelial cells exhibited a significant decrease in cell surface tie-1 expression in response to TNF, whereas expression of epidermal growth factor receptor (EGF-R) and CD31 was stable. In contrast, tie-1 expression on megakaryoblastic UT-7 cells was unaffected by PMA or TNFalpha. Sequence analysis of the cleaved receptor indicated that tie-1 was proteolyzed at the E749/S750 peptide bond in the proximal transmembrane domain. Moreover, the hydroxamic acid derivative BB-24 demonstrated dose-dependent inhibition of cytokine-, PMA-, and VEGF-stimulated shedding, suggesting that the tie-1 protease was a metalloprotease. Protease activity in a tie-1 peptide cleavage assay was (1) associated with endothelial cell membranes, (2) specifically activated in TNFalpha-treated cells, and (3) inhibited by BB-24. Additionally, proliferation of endothelial cells in response to VEGF, but not bFGF, was inhibited by BB-24, suggesting that the release of soluble tie-1 receptor plays a role in VEGF-mediated proliferation. This study demonstrated that the release of soluble tie-1 from endothelial cells is stimulated by inflammatory cytokines and VEGF through the activation of an endothelial membrane-associated metalloprotease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号