首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
目的亚克隆弓形虫RH株表面抗原P22编码基因,构建表达质粒pBK/P22,并对其在大肠杆菌(E.coli)中的表达作初步研究. 方法以限制性内切酶BamHⅠ和KpnⅠ双酶切质粒pBCG5.6/P22,获得弓形虫表面抗原P22编码基因目的片段,在以低熔点琼脂糖回收纯化后,插入表达质粒载体pBK-CMV的多克隆位点,构建重组体pBK/P22,并转化大肠杆菌DH 5α,快速酚法初筛阳性重组子,阳性克隆以PCR法与限制性酶切分析鉴定后,以IPTG进行诱导在E.coli DH 5α中表达,表达产物以SDS-PAGE与免疫印迹分析. 结果双酶切质粒pBCG5.6/P22,获得约593 bp的P22编码基因片段,与预期片段大小相符;所构建pBK/P22重组体阳性克隆经双酶切和PCR鉴定与预期结果一致;SDS-PAGE与免疫印迹显示,表达产物的大小约28 ku. 结论成功亚克隆并构建了弓形虫表面抗原P22编码基因pBK/P22表达质粒,诱导表达了弓形虫P22表面抗原蛋白,为抗原免疫特性的研究奠定了基础.  相似文献   

2.
弓形虫表面抗原P22编码基因片段的克隆及序列测定   总被引:13,自引:4,他引:13  
目的克隆弓形虫表面抗原P22编码基因片段并进行序列测定。方法设计合成1对引物,采用PCR法扩增出P22目的基因片段,以低熔点琼脂糖回收纯化,并以限制性内切酶BamHI和KpnI双酶切后,插入质粒载体p5.6的多克隆位点,构建重组体p5.6/P22,并转化大肠杆菌DH5α,快速酸法初筛阳性重组子,并以PCR法与限制性酶切分析对阳性克隆进一步鉴定。被鉴定的重组子以双脱氧链终止法进行序列测定。结果从弓形虫核酸提取物中扩增出约593bpDNA条带,与预期扩增片段大小相符,空白对照无特异性扩增条带;所构建p5.6/P22重组体阳性克隆经双酶切与PCR鉴定与预期结果一致;序列测定的结果确证了插入片段的正确性。结论体外成功扩增、克隆了弓形虫表面抗原P22编码基因片段,并经序列分析所验证,为弓形虫P22表面抗原的表达以及弓形虫疫苗的制备作好铺垫。  相似文献   

3.
弓形虫表面抗原P22基因片段的克隆、表达及鉴定   总被引:1,自引:0,他引:1  
目的 扩增弓形虫表面抗原P22基因编码序列,并进行表达和鉴定。方法 设计合成引物,PCR法从RH株弓形虫基因组DNA中扩增P22基因编码序列,克隆人载体pET-32a,转化大肠埃希菌BL21,IPTG诱导表达,表达产物进行SDS-PAGE和Western blot鉴定。结果 从弓形虫基因组DNA中扩增出P22基因编码序列,并诱导表达出能被兔抗弓形虫血清识别的重组P22。结论 成功获得弓形虫表面抗原P22的表达产物,为弓形虫病的诊断和疫苗研究创造了条件。  相似文献   

4.
目的 扩增弓形虫表面抗原P2 2基因编码序列 ,并进行表达和鉴定。 方法 设计合成引物 ,PCR法从RH株弓形虫基因组DNA中扩增P2 2基因编码序列 ,克隆入载体pET 3 2a ,转化大肠埃希菌BL2 1,IPTG诱导表达 ,表达产物进行SDS PAGE和Westernblot鉴定。 结果 从弓形虫基因组DNA中扩增出P2 2基因编码序列 ,并诱导表达出能被兔抗弓形虫血清识别的重组P2 2。 结论 成功获得弓形虫表面抗原P2 2的表达产物 ,为弓形虫病的诊断和疫苗研究创造了条件。  相似文献   

5.
弓形虫表面抗原P22蛋白的研究进展   总被引:1,自引:0,他引:1  
弓形虫(Toxoplasma gondii)是专性寄生于人和多种动物组织有核细胞内的原虫,呈世界性分布。近年来关于弓形虫细胞表面抗原作为诊断试剂及免疫疫苗的双重潜在价值得到广泛研究,主要发现有5种表面抗原:P22、P23、P30、P35、P43。其中P22基因依据克隆的顺序也被称为SAG2。本文就弓形虫重要抗原P22的基因和蛋白结构,及该抗原在弓形虫虫株的分型、血清诊断、疫苗方面的研究作简要介绍。  相似文献   

6.
目的制备具有免疫活性的弓形虫表面抗原P35基因片段的重组蛋白,并对其抗原性进行分析。方法根据弓形虫RH株表面抗原P35的cDNA序列设计一对引物,利用PCR技术从RH株弓形虫基因组中扩增出P35的基因片段,将其克隆到T载体中,并通过基因测序加以证实;将其亚克隆至原核表达载体pET KDO中,在大肠杆菌中经IPTG诱导表达。采用免疫印迹法对表达产物进行抗原性分析。结果从弓形虫RH株基因组中成功扩增到P35目的基因,该基因在原核系统中经诱导表达出分子量约42 000 Da大小的融合蛋白,经免疫印迹实验表明,表达产物具有良好的抗原性,经亲和层析纯化后得到了重组蛋白。结论运用基因工程技术得到了高纯度并具有良好抗原性的弓形虫重组P35融合蛋白。  相似文献   

7.
目的 构建编码弓形虫RH株表面抗原P30、P22复合基因的真核表达重组质粒,为进一步表达融合蛋白及研制核酸疫苗做准备。方法 用弓形虫RH株腹腔接种小鼠,收集腹水,酚/氯仿法抽提弓形虫基因组DNA;用PCR技术从基因组DNA中扩增编码表而抗原P30、P22的基因片段,分别重组入pMD18T载体中。将pMD18-T载体中的P30、P22基因片段分别酶切,定向克隆入pUC18克隆载体中,pUC18-P30-P22中的P30P22片段经酶切、纯化后,亚克隆入pcDNA3.1(-)真核表达载体,用酶切、PCR及测序的方法对重组子进行鉴定。结果 从弓形虫RH株基因组DNA中扩增出特异的P30及P22片段;大小均与预测值相符;克隆pUC18-P30P22重组质粒的酶切片段分别与P30、P22基冈大小一敛:经亚克隆、筛选鉴定获得了pcDNA3.1-P30-P22重组质粒,所测P30、P22基因序列与文献报道一致。结论 成功构建弓形虫pUC8-P30P21重组质粒和pcDNA3.1-P30-P22重组质粒,为研制弓形虫DNA疫苗奠定了基础。  相似文献   

8.
目的 克隆表达ZS株弓形虫表膜抗原P2 2编码基因的巨噬细胞株。方法 扩增P2 2编码基因ORF的全长 5 6 1bp片段 ,经PstI、XbaI双酶切后 ,定向克隆于质粒 pBudCE 4 .1,构建真核重组表达质粒 pBudCE 4 .1/P2 2 ,通过脂质体介导转染入小鼠巨噬细胞RAW2 6 4 .7,以RT PCR方法鉴定目的基因在巨噬细胞中的表达。结果 成功获取pBudCE 4 .1/P2 2转染的巨噬细胞阳性克隆 ,并证实P2 2 mRNA在阳性克隆细胞中的表达 ,为P2 2蛋白对巨噬细胞的免疫调节功能作用的研究奠定基础。  相似文献   

9.
目的 构建编码弓形虫RH株表面抗原P30、P22复合基因的真核表达重组质粒, 为进一步表达融合蛋白及研制核酸疫苗做准备。 方法 用弓形虫RH株腹腔接种小鼠,收集腹水,酚/氯仿法抽提弓形虫基因组 DNA;用 PCR技术从基因组DNA中扩增编码表面抗原 P30、P22 的基因片段,分别重组入 pMD18 T载体中。将 pMD18 T载体中的P30、P22基因片段分别酶切,定向克隆入 pUC18克隆载体中, pUC18 P30 P22 中的 P30 P22 片段经酶切、纯化后,亚克隆入 pcDNA3.1( )真核表达载体,用酶切、PCR及测序的方法对重组子进行鉴定。 结果 从弓形虫 RH株基因组DNA中扩增出特异的P30及P22片段;大小均与预测值相符;克隆 pUC18 P30 P22 重组质粒的酶切片段分别与 P30、P22基因大小一致;经亚克隆、筛选鉴定获得了 pcDNA3.1 P30 P22重组质粒,所测P30、P22基因序列与文献报道一致。结论 成功构建弓形虫 pUC18 P30 P22重组质粒和 pcDNA3.1 P30 P22 重组质粒,为研制弓形虫 DNA疫苗奠定了基础。  相似文献   

10.
目的克隆表达弓形虫RH株SAG3基因,为深入研究其结构及功能奠定基础。方法从弓形虫RH株基因组DNA中特异性扩增出编码SAG3基因的片段,相应酶切后克隆入原核表达载体pET-30a(+)中,构建pET-SAG3重组质粒。将pET30-SAG3重组质粒转化大肠杆菌BL21(DE3)菌株。经EcoRⅠ、Hind III酶切及测序鉴定后,异丙基硫代-β-D-半乳糖苷(IPTG)诱导表达融合蛋白,用SDS-PAGE和Western blot鉴定蛋白表达情况。结果体外扩增的SAG3基因片段与目的片段大小相符约1 155bp,成功构建了重组表达质粒pET30-SAG3,SDS-PAGE、Western blot显示SAG3-His融合蛋白的分子量大小约为50kd。结论弓形虫表面抗原SAG3基因在大肠杆菌中成功表达,为进一步研究SAG3的结构和功能奠定基础。  相似文献   

11.
编码弓形虫表面抗原P30基因的克隆及在E.coli中的表达   总被引:3,自引:0,他引:3  
目的 构建编码弓形虫RH株表面抗原P30基因重组表达质粒 ,初步观察P30基因在E coli表达。方法 将P30基因定向克隆到分支杆菌 -大肠杆菌穿梭表达质粒热休克蛋白 70 (hsp70 )起动基因的下游的多克隆位点 ,构建重组表达质粒pBCG -P30 ;采用亚克隆技术 ,将含P30和hsp70起动基因的复合片段 ,插入表达载体 pBK -CMV质粒 ,转化大肠杆菌DH5α ,在卡那霉素阳性LB培养基平板筛选阳性重组子 ,并经双酶切及PCR扩增鉴定。重组质粒 pBK -P30转化大肠杆菌 ,IPTG诱导表达后进行SDS -PAGE和Westernboltting分析。 结果  1)阳性重组质粒 pBCG -P30、pBK -P30经酶切和PCR鉴定 ,与预期的结果相符合。 2 )序列测定证实克隆的基因为编码P30抗原的基因。 3)P30基因在大肠杆菌诱导表达后获得4 5kDa融合蛋白 ,此抗原未被弓形虫高免兔血清识别。结论 成功构建编码弓形虫表面抗原P30重组表达质粒 ,并在大肠杆菌中获得表达 ,为弓形虫DNA疫苗的研制奠定基础  相似文献   

12.
弓形虫主要表面抗原P30的克隆、表达与纯化   总被引:2,自引:0,他引:2       下载免费PDF全文
目的通过分子克隆技术获取弓形虫主要表面抗原P30蛋白。方法自行设计引物,通过PCR扩增获得P30基因片段,采用EcoRⅠ、XhoⅠ双酶切,定向克隆到载体pThioHis中,转化大肠杆菌Top10,利用酶切、DNA序列分析鉴定阳性克隆,异丙基硫代-β-D-半乳糖苷(IPTG)诱导表达,融合蛋白通过镍结合树脂(ProBond~(TM)Resin)进行纯化,并用十二烷基硫酸钠-聚丙烯酰胺凝胶电泳(SDS-PAGE)和蛋白质印迹(Westernblotting)鉴定。结果PCR、酶切、连接的产物经电泳鉴定,均与预期设计相符合。DNA序列分析结果表明,除一个同义突变,其余均与文献报道相符。IPTG诱导表达后经层析纯化获得46kDa含P30的融合蛋白。结论通过定向克隆、表达与纯化,获得含P30的融合蛋白。  相似文献   

13.
根据已发表的弓形虫主要表面抗原(P30)的基因的序列,设计合成了一对引物,通过聚合酶链反应,扩增出P30基因,将P30基因克隆入表达质粒pGEMEX-1中,经酶切鉴定后,阳性重组质粒转化宿主菌JM109(DE3),宿主菌经IPTG诱导表达后,产物进行SDS-PAGE和Western-blot分析。结果显示,P30基因以融合蛋白的形式表达,实物具有特异的免疫反应性。  相似文献   

14.
含有弓形虫表面抗原P22、P30复合基因的载体构建   总被引:1,自引:0,他引:1  
目的 选择弓形虫表面抗原P2 2、P30的有效基因片段 ,共同构建在同一克隆载体pUC19和表达载体 pGE MEXTM- 1上 ,并保证其连接方向及开放读码框的正确。方法 根据已发表P30基因序列 ,用PCR技术调取所需基因片段 ,P2 2基因片段来自重组质粒pGEX - 2T -v2 2 ,将两片段定向克隆于克隆载体 pUC19及表达质粒pGEMEXTM- 1上 ,用酶切及测序的方法对重组子进行鉴定。结果 酶切产物经电泳显示条带清晰 ,P2 2、P30基因片段的泳动位置分别在 4 4 6bp和 86 0bp的位置 ,与预计结果一致 ;测序结果表明插入的复合基因片段方向及序列均正确。结论 成功构建的含有P2 2、P30基因片段的质粒重组体 ,保证了两基因连接方向、序列及开放读码框的正确 ,为今后两基因的进一步复合表达研究奠定了基础。  相似文献   

15.
弓形虫昆山分离株P30抗原基因的克隆与表达   总被引:6,自引:0,他引:6  
目的 在大肠杆菌中高效表达P30抗原。方法 采用聚合酶链反应(PCR)从弓形虫昆山分离株cDNA文库中扩增得到编码P30抗原的基因,经DNA序列分析后导入表达载体pGEX-5x-3,然后在大肠杆菌BL21中进行表达,用亲和层析柱纯化表达产物,并以SDS-PAGE和Western blotting进行鉴定。结果 1、在我们比较的783个碱基中,弓形虫昆山分离株与RH株之间只有两个碱基不同;2、得到-分子量为54kDa的融合蛋白,占大肠杆菌总蛋白的38%。结论 1、弓形虫昆山分离株与RH株的P30基因没有大的差异;2、在大肠杆菌中得到了P30融合蛋白的高效表达。  相似文献   

16.
弓形虫表面抗原SAG2基因片段的克隆与原核表达   总被引:5,自引:1,他引:5  
目的 扩增弓形虫主要表面抗原 (SAG2 )编码基因片段并进行重组表达。方法 设计合成 1对引物 ,从弓形虫基因组DNA中扩增SAG2基因序列 ,以低熔点琼脂糖回收纯化 ,并以限制性内切酶BamHⅠ和SalⅠ进行双酶切、纯化后 ,再插入表达载体 pGEX - 4T - 2 ,经PCR和双酶切筛选 ,测序验证后 ,在大肠杆菌中进行表达 ,并用SDS -PAGE和Westernblot鉴定。结果 从弓形虫核酸提取物中扩增出约 477bp的SAG2基因 ,构建成功了重组质粒 pGEX - 4T - 2 -SAG2 ;SAG2基因在大肠杆菌中得到高效表达。SDS -PAGE电泳 pGEX - 4T - 2 -SAG2的融合蛋白条带的分子量约为 42kD ,Westen -blot显示融合蛋白能被兔抗弓形虫血清识别。结论 GST融合表达载体的构建和SAG2基因片段成功表达 ,为进一步为SAG2重组疫苗及重组诊断抗原的研制奠定了基础。  相似文献   

17.
目的 观察分析弓形虫表面抗原 P2 2编码基因真核表达质粒 (p BK/P2 2 )接种小鼠诱导的细胞免疫效果。方法 采用肌肉注射免疫接种 BAL B/c小鼠 ,5周后 ,取鼠脾细胞作 Con A刺激淋转试验 (MTT法 )及 T细胞亚群的测定。结果 MTT试验中 ,p BK/P2 2免疫组、空质粒 p BK- CMV对照组与 NS对照组的 Con A孔的光密度值与不加 Con A孔的光密度值的差值疫苗免疫组略高于二对照组 ,统计学分析无明显差异 (P>0 .0 5 ) ;CD+4 细胞数量变化无显著性差异 (P>0 .0 5 ) ,而 CD+8细胞数量则明显增多 ,p BK/P2 2免疫组、空质粒 p BK- CMV均高于 NS对照组 ,其差异有显著性 (P<0 .0 1) ;p BK/P2 2免疫组与空质粒组间无显著性差异 (P>0 .0 5 )。结论  p BK/P2 2对 Con A刺激的淋巴细胞增殖功能作用不明显 ;T淋巴细胞亚群测定结果表明 ,p BK/P2 2免疫后小鼠 CD+4 淋巴细胞增殖不明显 ,而 CD+8淋巴细胞则显著增殖  相似文献   

18.
根据已发表的弓形虫主要表面抗原( P30)的基因序列,设计合成了一对引物,通过聚合酶链反应,扩增出 P30 基因,将 P30 基因克隆入表达质粒p G E M E X1 中,经酶切鉴定后,阳性重组质粒转化宿主菌 J M 109( D E3 ),宿主菌经 I P T G 诱导表达后,产物进行 S D S P A G E和 W esternblot分析。结果显示, P30 基因以融合蛋白的形式表达,表达产物具有特异的免疫反应性。  相似文献   

19.
目的构建弓形虫表面抗原2(SAG2)基因重组质粒并在大肠埃希菌中表达。方法根据SAG2基因序列设计并合成引物,用PCR法从弓形虫基因组DNA中扩增SAG2基因片段,再克隆到p GEX-4T载体中,构建重组质粒。重组质粒经酶切鉴定并测序后,在大肠埃希菌BL21中诱导表达,产物经SDS-PAGE分析并纯化,以Western blotting分析其反应原性。结果 SAG2基因PCR产物大小约为561 bp,与预期相符。重组质粒经酶切及PCR鉴定构建成功,测序结果与已知序列吻合。重组质粒转化菌经IPTG诱导后表达的SAG2融合蛋白分子量约为47 ku,该蛋白可被GST标签抗体识别。结论成功重组了弓形虫SAG2基因,表达蛋白具有反应原性。  相似文献   

20.
弓形虫表面抗原SAG3基因片段克隆及序列测定   总被引:4,自引:0,他引:4  
目的 克隆弓形虫ZS2及RH株SAG3表面抗原基因片段,并进行序列分析。方法 设计合成引物,从弓形虫ZS2、RH及ZS1株基因组DNA中分别特异扩增出编码SAG3抗原的基因片段。扩增的目的片段经纯化后用EcoRⅠ和BamH Ⅰ双酶切后,克隆到原核表达质检pGEX-47-2中,转化入大肠杆菌JMl09,用PCR初筛,将PCR扩增阳性的重组子用EooRⅠ和BamH Ⅰ双酶切鉴定,并进行序列的测定。结果 从弓形虫ZS2、RH和ZS1株DNA中扩增出1176bp的SAG3基因,构建重组质检pGEX-47-2-SAG3(pGEX—SAG3),酶切产物的大小分别与预期相符。结论 成功地对弓形虫ZS2、RH和ZS1株SAG3基因进行体外扩增及构建原核表达重组质检pGEX-SAG3,并经酶切及序列分析所验证,为弓形虫SAG3表面抗原的表达、体外诊断研究做好准备。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号