首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The ability to inhibit action tendencies is vital for adaptive human behaviour. Various paradigms are supposed to assess action inhibition and are often used interchangeably. However, these paradigms are based on different conceptualizations (action restraint vs. action cancellation) and the question arises as to what extent different conceptualizations of inhibitory processing are mirrored in a distinct neural activation pattern. We used functional magnetic resonance imaging to investigate the neural correlates of action restraint vs. action cancellation. Analyses of local activity changes as well as network connectivity measures revealed a strong overlap of activation within a common action inhibition network including inferior frontal, pre‐supplementary motor and thalamic brain areas as well as the anterior cingulate cortex. Furthermore, our findings pointed to additional neural networks that are distinct for action restraint (i.e. right superior frontal gyrus, left middle frontal gyrus, and bilateral anterior cingulate cortex) and action cancellation (i.e. right middle frontal gyrus, posterior cingulate cortex, and parietal regions). Our connectivity analyses showed that different inhibitory modalities largely relied on a task‐independent global inhibition network within the brain. Furthermore, they suggested that the conceptually distinct inhibitory aspects of action restraint vs. action cancellation also activated additional specific brain regions in a task‐dependent manner. This has implications for the choice of tasks in an empirical setting, but is also relevant for various clinical contexts in which inhibition deficits are considered a diagnostic feature.  相似文献   

2.
There is still no clear consensus as to which of the many functional and structural changes in the brain in schizophrenia are of most importance, although the main focus to date has been on those in the frontal and cingulate cortices. In the present study, we have used a novel holistic approach to identify brain‐wide functional connectivity changes in medicated schizophrenia patients, and functional connectivity changes were analyzed using resting‐state fMRI data from 69 medicated schizophrenia patients and 62 healthy controls. As far as we are aware, this is the largest population reported in the literature for a resting‐state study. Voxel‐based morphometry was also used to investigate gray and white matter volume changes. Changes were correlated with illness duration/symptom severity and a support vector machine analysis assessed predictive validity. A network involving the inferior parietal lobule, superior parietal gyrus, precuneus, superior marginal, and angular gyri was by far the most affected (68% predictive validity compared with 82% using all connections) and different components correlated with illness duration and positive and negative symptom severity. Smaller changes occurred in emotional memory and sensory and motor processing networks along with weakened interhemispheric connections. Our findings identify the key functional circuitry altered in schizophrenia involving the default network midline cortical system and the cortical mirror neuron system, both playing important roles in sensory and cognitive processing and particularly self‐processing, all of which are affected in this disorder. Interestingly, the functional connectivity changes with the strongest links to schizophrenia involved parietal rather than frontal regions. Hum Brain Mapp 35:123–139, 2014. © 2012 Wiley Periodicals, Inc.  相似文献   

3.
Essential tremor (ET) is a neurological disease with both motor and nonmotor manifestations; however, little is known about its underlying brain basis. Furthermore, the overall organization of the brain network in ET remains largely unexplored. We investigated the topological properties of brain functional network, derived from resting‐state functional magnetic resonance imaging (MRI) data, in 23 ET patients versus 23 healthy controls. Graph theory analysis was used to assess the functional network organization. At the global level, the functional network of ET patients was characterized by lower small‐worldness values than healthy controls—less clustered functionality of the brain. At the regional level, compared with the healthy controls, ET patients showed significantly higher values of global efficiency, cost and degree, and a shorter average path length in the left inferior frontal gyrus (pars opercularis), right inferior temporal gyrus (posterior division and temporo‐occipital part), right inferior lateral occipital cortex, left paracingulate, bilateral precuneus bilaterally, left lingual gyrus, right hippocampus, left amygdala, nucleus accumbens bilaterally, and left middle temporal gyrus (posterior part). In addition, ET patients showed significant higher local efficiency and clustering coefficient values in frontal medial cortex bilaterally, subcallosal cortex, posterior cingulate cortex, parahippocampal gyri bilaterally (posterior division), right lingual gyrus, right cerebellar flocculus, right postcentral gyrus, right inferior semilunar lobule of cerebellum and culmen of vermis. Finally, the right intracalcarine cortex and the left orbitofrontal cortex showed a shorter average path length in ET patients, while the left frontal operculum and the right planum polare showed a higher betweenness centrality in ET patients. In conclusion, the efficiency of the overall brain functional network in ET is disrupted. Further, our results support the concept that ET is a disorder that disrupts widespread brain regions, including those outside of the brain regions responsible for tremor.  相似文献   

4.
BACKGROUND: Autistic spectrum disorders (ASD) are neurodevelopmental conditions that may be caused by abnormal connectivity between brain regions constituting neurocognitive networks for specific aspects of social cognition. METHODS: We used three-way multidimensional scaling of regionally parcellated functional magnetic resonance imaging (fMRI) data to explore the hypothesis of abnormal functional connectivity in people with ASD. Thirteen high-functioning individuals with Asperger's syndrome and 13 healthy volunteers were scanned during incidental processing of fearful facial expressions. RESULTS: Using permutation tests for inference, we found evidence for significant abnormality of functional integration of amygdala and parahippocampal gyrus (p < .05, false discovery rate [FDR] corrected) in people with Asperger's syndrome. There were less salient abnormalities in functional connectivity of anterior cingulate, inferior occipital, and inferior frontal cortex, but there was no significant difference between groups in whole brain functional connectivity. CONCLUSIONS: We conclude there is evidence that functional connectivity of medial temporal lobe structures specifically is abnormal in people with Asperger's syndrome during fearful face processing.  相似文献   

5.
Neuroimaging studies have revealed functional brain network abnormalities in attention deficit hyperactivity disorder (ADHD), but the results have been inconsistent, potentially related to confounding medication effects. Furthermore, specific topological alterations in functional networks and their role in behavioral inhibition dysfunction remain to be established. Resting‐state functional magnetic resonance imaging was performed on 51 drug‐naïve children with ADHD and 55 age‐matched healthy controls. Brain functional networks were constructed by thresholding the partial correlation matrices of 90 brain regions, and graph theory was used to analyze network topological properties. The Stroop test was used to assess cognitive inhibitory abilities. Nonparametric permutation tests were used to compare the topological architectures in the two groups. Compared with healthy subjects, brain networks in ADHD patients demonstrated altered topological characteristics, including lower global (FDR q = 0.01) and local efficiency (p = 0.032, uncorrected) and a longer path length (FDR q = 0.01). Lower nodal efficiencies were found in the left inferior frontal gyrus and anterior cingulate cortex in the ADHD group (FDR both q < 0.05). Altered global and nodal topological efficiencies were associated with the severity of inhibitory cognitive control deficits and hyperactivity symptoms in ADHD (p <0 .05). Alterations in network topologies in drug‐naïve ADHD patients indicate weaker small‐worldization with decreased segregation and integration of functional brain networks. Deficits in the cingulo‐fronto‐parietal attention network were associated with inhibitory control deficits.  相似文献   

6.
The human capacity to integrate sensory signals has been investigated with respect to different sensory modalities. A common denominator of the neural network underlying the integration of sensory clues has yet to be identified. Additionally, brain imaging data from patients with autism spectrum disorder (ASD) do not cover disparities in neuronal sensory processing. In this fMRI study, we compared the underlying neural networks of both olfactory–visual and auditory–visual integration in patients with ASD and a group of matched healthy participants. The aim was to disentangle sensory‐specific networks so as to derive a potential (amodal) common source of multisensory integration (MSI) and to investigate differences in brain networks with sensory processing in individuals with ASD. In both groups, similar neural networks were found to be involved in the olfactory–visual and auditory–visual integration processes, including the primary visual cortex, the inferior parietal sulcus (IPS), and the medial and inferior frontal cortices. Amygdala activation was observed specifically during olfactory–visual integration, with superior temporal activation having been seen during auditory–visual integration. A dynamic causal modeling analysis revealed a nonlinear top‐down IPS modulation of the connection between the respective primary sensory regions in both experimental conditions and in both groups. Thus, we demonstrate that MSI has shared neural sources across olfactory–visual and audio–visual stimulation in patients and controls. The enhanced recruitment of the IPS to modulate changes between areas is relevant to sensory perception. Our results also indicate that, with respect to MSI processing, adults with ASD do not significantly differ from their healthy counterparts.  相似文献   

7.
A functional decline of brain regions underlying memory processing represents a hallmark of cognitive aging. Although a rich literature documents age‐related differences in several memory domains, the effect of aging on networks that underlie multiple memory processes has been relatively unexplored. Here we used functional magnetic resonance imaging during working memory and incidental episodic encoding memory to investigate patterns of age‐related differences in activity and functional covariance patterns common across multiple memory domains. Relative to younger subjects, older subjects showed increased activation in left dorso‐lateral prefrontal cortex along with decreased deactivation in the posterior cingulate. Older subjects showed greater functional covariance during both memory tasks in a set of regions that included a positive prefronto‐parietal‐occipital network as well as a negative network that spanned the default mode regions. These findings suggest that the memory process‐invariant recruitment of brain regions within prefronto‐parietal‐occipital network increases with aging. Our results are in line with the dedifferentiation hypothesis of neurocognitive aging, thereby suggesting a decreased specialization of the brain networks supporting different memory networks.  相似文献   

8.
Several recent studies have compared episodic and spatial memory in neuroimaging paradigms in order to understand better the contribution of the hippocampus to each of these tasks. In the present study, we build on previous findings showing common neural activation in default network areas during episodic and spatial memory tasks based on familiar, real‐world environments (Hirshhorn et al. (2012) Neuropsychologia 50:3094–3106). Following previous demonstrations of the presence of functionally connected sub‐networks within the default network, we performed seed‐based functional connectivity analyses to determine how, depending on the task, the hippocampus and prefrontal cortex differentially couple with one another and with distinct whole‐brain networks. We found evidence for a medial prefrontal‐parietal network and a medial temporal lobe network, which were functionally connected to the prefrontal and hippocampal seeds, respectively, regardless of the nature of the memory task. However, these two networks were functionally connected with one another during the episodic memory task, but not during spatial memory tasks. Replicating previous reports of fractionation of the default network into stable sub‐networks, this study also shows how these sub‐networks may flexibly couple and uncouple with one another based on task demands. These findings support the hypothesis that episodic memory and spatial memory share a common medial temporal lobe‐based neural substrate, with episodic memory recruiting additional prefrontal sub‐networks. © 2014 Wiley Periodicals, Inc.  相似文献   

9.
Children can learn the meaning of a new word from context during normal reading or listening, without any explicit instruction. It is unclear how such meaning acquisition is supported and achieved in human brain. In this functional magnetic resonance imaging (fMRI) study we investigated neural networks supporting word learning with a functional connectivity approach. Participants were exposed to a new word presented in two successive sentences and needed to derive the meaning of the new word. We observed two neural networks involved in mapping the meaning to the new word. One network connected the left inferior frontal gyrus (LIFG) with the middle frontal gyrus (MFG), medial superior frontal gyrus, caudate nucleus, thalamus, and inferior parietal lobule. The other network connected the left middle temporal gyrus (LMTG) with the MFG, anterior and posterior cingulate cortex. The LIFG network showed stronger interregional interactions for new than real words, whereas the LMTG network showed similar connectivity patterns for new and real words. We proposed that these two networks support different functions during word learning. The LIFG network appears to select the most appropriate meaning from competing candidates and to map the selected meaning onto the new word. The LMTG network may be recruited to integrate the word into sentential context, regardless of whether the word is real or new. The LIFG and the LMTG networks share a common node, the MFG, suggesting that these two networks communicate in working memory. Hum Brain Mapp, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

10.
Neuroimaging studies indicate that children with attention‐deficit/hyperactivity disorder (ADHD) present alterations in several functional networks of the sensation‐to‐cognition spectrum. These alterations include functional overconnectivity within sensory regions and underconnectivity between sensory regions and neural hubs supporting higher order cognitive functions. Today, it is unknown whether this same pattern of alterations persists in adult patients with ADHD who had never been medicated for their condition. The aim of the present study was to assess whether medication‐naïve adults with ADHD presented alterations in functional networks of the sensation‐to‐cognition spectrum. Thirty‐one medication‐naïve adults with ADHD and twenty‐two healthy adults underwent resting‐state functional magnetic resonance imaging (rs‐fMRI). Stepwise functional connectivity (SFC) was used to characterize the pattern of functional connectivity between sensory seed regions and the rest of the brain at direct, short, intermediate, and long functional connectivity distances, thus covering the continuum from the sensory input to the neural hubs supporting higher order cognitive functions. As compared to controls, adults with ADHD presented increased SFC degree within primary sensory regions and decreased SFC degree between sensory seeds and higher order integration nodes. In addition, they exhibited decreased connectivity degree between sensory seeds and regions of the default‐mode network. Consistently, the higher the score in clinical severity scales the lower connectivity degree between seed regions and the default mode network.  相似文献   

11.
The occipital and parietal lobes contain regions that are recruited for both visual and haptic object processing. The purpose of the present study was to characterize the underlying neural mechanisms for bimodal integration of vision and haptics in these visuo‐haptic object‐selective brain regions to find out whether these brain regions are sites of neuronal or areal convergence. Our sensory conditions consisted of visual‐only (V), haptic‐only (H), and visuo‐haptic (VH), which allowed us to evaluate integration using the superadditivity metric. We also presented each stimulus condition at two different levels of signal‐to‐noise ratio or salience. The salience manipulation allowed us to assess integration using the rule of inverse effectiveness. We were able to localize previously described visuo‐haptic object‐selective regions in the lateral occipital cortex (lateral occipital tactile‐visual area) and the intraparietal sulcus, and also localized a new region in the left anterior fusiform gyrus. There was no evidence of superadditivity with the VH stimulus at either level of salience in any of the regions. There was, however, a strong effect of salience on multisensory enhancement: the response to the VH stimulus was more enhanced at higher salience across all regions. In other words, the regions showed enhanced integration of the VH stimulus with increasing effectiveness of the unisensory stimuli. We called the effect “enhanced effectiveness.” The presence of enhanced effectiveness in visuo‐haptic object‐selective brain regions demonstrates neuronal convergence of visual and haptic sensory inputs for the purpose of processing object shape. Hum Brain Mapp, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

12.
Mental imagery is a complex cognitive process that resembles the experience of perceiving an object when this object is not physically present to the senses. It has been shown that, depending on the sensory nature of the object, mental imagery also involves correspondent sensory neural mechanisms. However, it remains unclear which areas of the brain subserve supramodal imagery processes that are independent of the object modality, and which brain areas are involved in modality‐specific imagery processes. Here, we conducted a functional magnetic resonance imaging study to reveal supramodal and modality‐specific networks of mental imagery for auditory and visual information. A common supramodal brain network independent of imagery modality, two separate modality‐specific networks for imagery of auditory and visual information, and a common deactivation network were identified. The supramodal network included brain areas related to attention, memory retrieval, motor preparation and semantic processing, as well as areas considered to be part of the default‐mode network and multisensory integration areas. The modality‐specific networks comprised brain areas involved in processing of respective modality‐specific sensory information. Interestingly, we found that imagery of auditory information led to a relative deactivation within the modality‐specific areas for visual imagery, and vice versa. In addition, mental imagery of both auditory and visual information widely suppressed the activity of primary sensory and motor areas, for example deactivation network. These findings have important implications for understanding the mechanisms that are involved in generation of mental imagery.  相似文献   

13.
Atypical spontaneous activities in resting‐state networks may play a role in auditory hallucinations (AHs), but networks relevant to AHs are not apparent. Given the debating role of the default mode network (DMN) in AHs, a parietal memory network (PMN) may better echo cognitive theories of AHs in schizophrenia, because PMN is spatially adjacent to the DMN and more relevant to memory processing or information integration. To examine whether PMN is more relevant to AHs than DMN, we characterized these intrinsic networks in AHs with 59 first‐episode, drug‐naïve schizophrenics (26 AH+ and 33 AH?) and 60 healthy participants in resting‐state fMRI. We separated the PMN, DMN, and auditory network (AN) using independent component analysis, and compared their functional connectivity across the three groups. We found that only AH+ patients displayed dysconnectivity in PMN, both AH+ and AH? patients exhibited dysfunctions of AN, but neither patient group showed abnormal connectivity within DMN. The connectivity of PMN significantly correlated with memory performance of the patients. Further region‐of‐interest analyses confirmed that the connectivity between the core regions of PMN, the left posterior cingulate gyrus and the left precuneus, was significantly lower only in the AH+ group. In exploratory correlation analysis, this functional connectivity metric significantly correlated with the severity of AH symptoms. The results implicate that compared to the DMN, the PMN is more relevant to the AH symptoms in schizophrenia, and further provides a more precise potential brain modulation target for the intervention of AH symptoms.  相似文献   

14.
Disease association studies have characterized altered resting‐state functional connectivities describing schizophrenia, but failed to model symptom expression well. We developed a model that could account for symptom severity and meanwhile relate this to disease‐related functional pathology. We correlated BOLD signal across brain regions and tested separately for associations with disease (disease edges) and with symptom severity (symptom edges) in a prediction‐based scheme. We then integrated them in an “edge bi‐color” graph, and adopted mediation analysis to test for causality between the disease and symptom networks and symptom scores. For first‐episode schizophrenics (FES, 161 drug‐naïve patients and 150 controls), the disease network (with inferior frontal gyrus being the hub) and the symptom‐network (posterior occipital‐parietal cortex being the hub) were found to overlap in the temporal lobe. For chronic schizophrenis (CS, 69 medicated patients and 62 controls), disease network was dominated by thalamocortical connectivities, and overlapped with symptom network in the middle frontal gyrus. We found that symptom network mediates the relationship between disease network and symptom scores in FEP, but was unable to define a relationship between them for the smaller CS population. Our results suggest that the disease network distinguishing core functional pathology in resting‐state brain may be responsible for symptom expression in FES through a wider brain network associated with core symptoms. We hypothesize that top–down control from heteromodal prefrontal cortex to posterior transmodal cortex contributes to positive symptoms of schizophrenia. Our work also suggests differences in mechanisms of symptom expression between FES and CS, highlighting a need to distinguish between these groups.  相似文献   

15.
Multivariate functional connectivity analyses of neuroimaging data have revealed the importance of complex, distributed interactions between disparate yet interdependent brain regions. Recent work has shown that topological properties of functional brain networks are associated with individual and group differences in cognitive performance, including in episodic memory. After constructing functional whole‐brain networks derived from an event‐related fMRI study of memory retrieval, we examined differences in functional brain network architecture between forgotten and remembered words. This study yielded three main findings. First, graph theory analyses showed that successfully remembering compared to forgetting was associated with significant changes in the connectivity profile of the left hippocampus and a corresponding increase in efficient communication with the rest of the brain. Second, bivariate functional connectivity analyses indicated stronger interactions between the left hippocampus and a retrieval assembly for remembered versus forgotten items. This assembly included the left precuneus, left caudate, bilateral supramarginal gyrus, and the bilateral dorsolateral superior frontal gyrus. Integrative properties of the retrieval assembly were greater for remembered than forgotten items. Third, whole‐brain modularity analyses revealed that successful memory retrieval was marginally significantly associated with a less segregated modular architecture in the network. The magnitude of the decreases in modularity between remembered and forgotten conditions was related to memory performance. These findings indicate that increases in integrative properties at the nodal, retrieval assembly, and whole‐brain topological levels facilitate memory retrieval, while also underscoring the potential of multivariate brain connectivity approaches for providing valuable new insights into the neural bases of memory processes. Hum Brain Mapp 38:2242–2259, 2017. © 2017 Wiley Periodicals, Inc.  相似文献   

16.
Language comprehension depends on tight functional interactions between distributed brain regions. While these interactions are established for semantic and syntactic processes, the functional network of speech intonation – the linguistic variation of pitch – has been scarcely defined. Particularly little is known about intonation in tonal languages, in which pitch not only serves intonation but also expresses meaning via lexical tones. The present study used psychophysiological interaction analyses of functional magnetic resonance imaging data to characterise the neural networks underlying intonation and tone processing in native Mandarin Chinese speakers. Participants categorised either intonation or tone of monosyllabic Mandarin words that gradually varied between statement and question and between Tone 2 and Tone 4. Intonation processing induced bilateral fronto‐temporal activity and increased functional connectivity between left inferior frontal gyrus and bilateral temporal regions, likely linking auditory perception and labelling of intonation categories in a phonological network. Tone processing induced bilateral temporal activity, associated with the auditory representation of tonal (phonemic) categories. Together, the present data demonstrate the breadth of the functional intonation network in a tonal language including higher‐level phonological processes in addition to auditory representations common to both intonation and tone.  相似文献   

17.
Functional brain imaging studies have shown abnormal neural activity in individuals recovered from anorexia nervosa (AN) during both cognitive and emotional task paradigms. It has been suggested that this abnormal activity which persists into recovery might underpin the neurobiology of the disorder and constitute a neural biomarker for AN. However, no study to date has assessed functional changes in neural networks in the absence of task‐induced activity in those recovered from AN. Therefore, the aim of this study was to investigate whole brain resting state functional connectivity in nonmedicated women recovered from anorexia nervosa. Functional magnetic resonance imaging scans were obtained from 16 nonmedicated participants recovered from anorexia nervosa and 15 healthy control participants. Independent component analysis revealed functionally relevant resting state networks. Dual regression analysis revealed increased temporal correlation (coherence) in the default mode network (DMN) which is thought to be involved in self‐referential processing. Specifically, compared to healthy control participants the recovered anorexia nervosa participants showed increased temporal coherence between the DMN and the precuneus and the dorsolateral prefrontal cortex/inferior frontal gyrus. The findings support the view that dysfunction in resting state functional connectivity in regions involved in self‐referential processing and cognitive control might be a vulnerability marker for the development of anorexia nervosa. Hum Brain Mapp 35:483–491, 2014. © 2012 Wiley Periodicals, Inc.  相似文献   

18.
Recently, graph theoretical approaches applied to neuroimaging data have advanced understanding of the human brain connectome and its abnormalities in psychiatric disorders. However, little is known about the topological organization of brain white matter networks in posttraumatic stress disorder (PTSD). Seventy‐six patients with PTSD and 76 age, gender, and years of education‐matched trauma‐exposed controls were studied after the 2008 Sichuan earthquake using diffusion tensor imaging and graph theoretical approaches. Topological properties of brain networks including global and nodal measurements and modularity were analyzed. At the global level, patients showed lower clustering coefficient (p = .016) and normalized characteristic path length (p = .035) compared with controls. At the nodal level, increased nodal centralities in left middle frontal gyrus, superior and inferior temporal gyrus and right inferior occipital gyrus were observed (p < .05, corrected for false‐discovery rate). Modularity analysis revealed that PTSD patients had significantly increased inter‐modular connections in the fronto‐parietal module, fronto‐striato‐temporal module, and visual and default mode modules. These findings indicate a PTSD‐related shift of white matter network topology toward randomization. This pattern was characterized by an increased global network integration, reflected by increased inter‐modular connections with increased nodal centralities involving fronto‐temporo‐occipital regions. This study suggests that extremely stressful life experiences, when they lead to PTSD, are associated with large‐scale brain white matter network topological reconfiguration at global, nodal, and modular levels.  相似文献   

19.
The human left inferior parietal lobule (LIPL) plays a pivotal role in many cognitive functions and is an important node in the default mode network (DMN). Although many previous studies have proposed different parcellation schemes for the LIPL, the detailed functional organization of the LIPL and the exact correspondence between the DMN and LIPL subregions remain unclear. Mounting evidence indicates that spontaneous fluctuations in the brain are strongly associated with cognitive performance at the behavioral level. However, whether a consistent functional topographic organization of the LIPL during rest and under task can be revealed remains unknown. Here, they used resting‐state functional connectivity (RSFC) and task‐related coactivation patterns separately to parcellate the LIPL and identified seven subregions. Four subregions were located in the supramarginal gyrus (SMG) and three subregions were located in the angular gyrus (AG). The subregion‐specific networks and functional characterization revealed that the four anterior subregions were found to be primarily involved in sensorimotor processing, movement imagination and inhibitory control, audition perception and speech processing, and social cognition, whereas the three posterior subregions were mainly involved in episodic memory, semantic processing, and spatial cognition. The results revealed a detailed functional organization of the LIPL and suggested that the LIPL is a functionally heterogeneous area. In addition, the present study demonstrated that the functional architecture of the LIPL during rest corresponds with that found in task processing. Hum Brain Mapp 38:1659–1675, 2017. © 2017 Wiley Periodicals, Inc.  相似文献   

20.
Faces and voices are key features of human recognition but the way the brain links them together is still unknown. In this study, we measured brain activity using functional magnetic resonance imaging (fMRI) while participants were recognizing previously learned static faces, voices and voice–static face associations. Using a subtraction method between bimodal and unimodal conditions, we observed that voice–face associations activated both unimodal visual and auditory areas, and specific multimodal regions located in the left angular gyrus and the right hippocampus. Moreover, a functional connectivity analysis confirmed the connectivity of the right hippocampus with the unimodal areas. These findings demonstrate that binding faces and voices rely on a cerebral network sustaining different aspects of integration such as sensory inputs processing, attention and memory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号