首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The functional neuroanatomy and connectivity of reward processing in adults are well documented, with relatively less research on adolescents, a notable gap given this developmental period's association with altered reward sensitivity. Here, a large sample (n = 1,510) of adolescents performed the monetary incentive delay (MID) task during functional magnetic resonance imaging. Probabilistic maps identified brain regions that were reliably responsive to reward anticipation and receipt, and to prediction errors derived from a computational model. Psychophysiological interactions analyses were used to examine functional connections throughout reward processing. Bilateral ventral striatum, pallidum, insula, thalamus, hippocampus, cingulate cortex, midbrain, motor area, and occipital areas were reliably activated during reward anticipation. Bilateral ventromedial prefrontal cortex and bilateral thalamus exhibited positive and negative activation, respectively, during reward receipt. Bilateral ventral striatum was reliably active following prediction errors. Previously, individual differences in the personality trait of sensation seeking were shown to be related to individual differences in sensitivity to reward outcome. Here, we found that sensation seeking scores were negatively correlated with right inferior frontal gyrus activity following reward prediction errors estimated using a computational model. Psychophysiological interactions demonstrated widespread cortical and subcortical connectivity during reward processing, including connectivity between reward‐related regions with motor areas and the salience network. Males had more activation in left putamen, right precuneus, and middle temporal gyrus during reward anticipation. In summary, we found that, in adolescents, different reward processing stages during the MID task were robustly associated with distinctive patterns of activation and of connectivity.  相似文献   

2.
Although neural signals of reward anticipation have been studied extensively, the functional relationship between reward and attention has remained unclear: Neural signals implicated in reward processing could either reflect attentional biases towards motivationally salient stimuli, or proceed independently of attentional processes. Here, we sought to disentangle reward and attention‐related neural processes by independently modulating reward value and attentional task demands in a functional magnetic resonance imaging study in healthy human participants. During presentation of a visual reward cue that indicated whether monetary reward could be obtained in a subsequent reaction time task, participants either attended to the reward cue or performed an unrelated attention‐demanding task at two different levels of difficulty. In ventral striatum and ventral tegmental area, neural responses were modulated by reward anticipation irrespective of attentional demands, thus indicating attention‐independent processing of reward cues. By contrast, additive effects of reward and attention were observed in visual cortex. Critically, reward‐related activations in right anterior insula strongly depended on attention to the reward cue. Dynamic causal modelling revealed that the attentional modulation of reward processing in insular cortex was mediated by enhanced effective connectivity from ventral striatum to anterior insula. Our results provide evidence for distinct functional roles of the brain regions involved in the processing of reward‐indicating information: While subcortical structures signal the motivational salience of reward cues even when attention is fully engaged elsewhere, reward‐related responses in anterior insula depend on available attentional resources, likely reflecting the conscious evaluation of sensory information with respect to motivational value. Hum Brain Mapp 35:3036–3051, 2014. © 2013 Wiley Periodicals, Inc.  相似文献   

3.
It is argued that the mesolimbic system has a more general function in processing all salient events, including and extending beyond rewards. Saliency was defined as an event that is unexpected due to its frequency of occurrence and elicits an attentional‐behavioral switch. Using functional magnetic resonance imaging (fMRI), signals were measured in response to the modulation of salience of rewarding and nonrewarding events during a reward‐based decision making task, the so called desire‐reason dilemma paradigm (DRD). Replicating previous findings, both frequent and infrequent, and therefore salient, reward stimuli elicited reliable activation of the ventral tegmental area (VTA) and ventral striatum (vStr). When immediate reward desiring contradicted the superordinate task‐goal, we found an increased activation of the VTA and vStr when the salient reward stimuli were presented compared to the nonsalient reward stimuli, indicating a boosting of activation in these brain regions. Furthermore, we found a significantly increased functional connectivity between the VTA and vStr, confirming the boosting of vStr activation via VTA input. Moreover, saliency per se without a reward association led to an increased activation of brain regions in the mesolimbic reward system as well as the orbitofrontal cortex (OFC), inferior frontal gyrus (IFG), and anterior cingulate cortex (ACC). Finally, findings uncovered multiple increased functional interactions between cortical saliency‐processing brain areas and the VTA and vStr underlying detection and processing of salient events and adaptive decision making.  相似文献   

4.
The precise understanding of the dopaminergic (DA) system and its pharmacological modifications is crucial for diagnosis and treatment of neuropsychiatric disorders, as well as for understanding basic processes, such as motivation and reward. We probed the functional connectivity (FC) of subcortical nuclei related to the DA system according to seed regions defined according to an atlas of subcortical nuclei. We conducted a large pharmaco‐fMRI study using a double‐blind, placebo‐controlled design, where we examined the effect of l ‐DOPA, a dopamine precursor, and amisulpride, a D2/D3‐receptor antagonist on resting‐state FC in 45 healthy young adults using a cross‐over design. We examined the FC of subcortical nuclei with connection to the reward system and their reaction to opposing pharmacological probing. Amisulpride increased FC from the putamen to the precuneus and from ventral striatum to precentral gyrus. l ‐DOPA increased FC from the ventral tegmental area (VTA) to the insula/operculum and between ventral striatum and ventrolateral prefrontal cortex and it disrupted ventral striatal and dorsal caudate FC with the medial prefrontal cortex. In an exploratory analysis, we demonstrated that higher self‐rated impulsivity goes together with a significant increase in VTA‐mid‐cingulate gyrus FC during l ‐DOPA‐challenge. Therefore, our DA challenge modulated distinct large‐scale subcortical connectivity networks. A dopamine‐boost can increase midbrain DA nuclei connectivity to the cortex. The involvement of the VTA‐cingulum connectivity in dependence of impulsivity has implications for diagnosis and therapy in disorders like ADHD.  相似文献   

5.
Formal thought disorder (FTD) refers to a psychopathological dimension characterized by disorganized and incoherent speech. Whether symptoms of FTD arise from aberrant processing in language‐related regions or more general cognitive networks, however, remains debated. Here, we addressed this question by a quantitative meta‐analysis of published functional neuroimaging studies on FTD. The revised Activation Likelihood Estimation (ALE) algorithm was used to test for convergent aberrant activation changes in 18 studies (30 experiments) investigating FTD, of which 17 studies comprised schizophrenia patients and one study healthy subjects administered to S‐ketamine. Additionally, we analyzed task‐dependent and task‐independent (resting‐state) functional connectivity (FC) of brain regions showing convergence in activation changes. Subsequent functional characterization was performed for the initial clusters and the delineated connectivity networks by reference to the BrainMap database. Consistent activation changes were found in the left superior temporal gyrus (STG) and two regions within the left posterior middle temporal gyrus (p‐MTG), ventrally (vp‐MTG) and dorsally (dp‐MTG). Functional characterization revealed a prominent functional association of ensuing clusters from our ALE meta‐analysis with language and speech processing, as well as auditory perception in STG and with social cognition in dp‐MTG. FC analysis identified task‐dependent and task‐independent networks for all three seed regions, which were mainly related to language and speech processing, but showed additional involvement in higher order cognitive functions. Our findings suggest that FTD is mainly characterized by abnormal activation in brain regions of the left hemisphere that are associated with language and speech processing, but also extend to higher order cognitive functions. Hum Brain Mapp 38:4946–4965, 2017. © 2017 Wiley Periodicals, Inc.  相似文献   

6.
Nusslock R, Almeida JRC, Forbes EE, Versace A, Frank E, LaBarbara EJ, Klein CR, Phillips ML. Waiting to win: elevated striatal and orbitofrontal cortical activity during reward anticipation in euthymic bipolar disorder adults. Bipolar Disord 2012: 14: 249–260. © 2012 The Authors. Journal compilation © 2012 John Wiley & Sons A/S. Objective: Bipolar disorder may be characterized by a hypersensitivity to reward‐relevant stimuli, potentially underlying the emotional lability and dysregulation that characterizes the illness. In parallel, research highlights the predominant role of striatal and orbitofrontal cortical (OFC) regions in reward‐processing and approach‐related affect. We aimed to examine whether bipolar disorder, relative to healthy, participants displayed elevated activity in these regions during reward processing. Methods: Twenty‐one euthymic bipolar I disorder and 20 healthy control participants with no lifetime history of psychiatric disorder underwent functional magnetic resonance imaging (fMRI) scanning during a card‐guessing paradigm designed to examine reward‐related brain function to anticipation and receipt of monetary reward and loss. Data were collected using a 3T Siemens Trio scanner. Results: Region‐of‐interest analyses revealed that bipolar disorder participants displayed greater ventral striatal and right‐sided orbitofrontal [Brodmann area (BA) 11] activity during anticipation, but not outcome, of monetary reward relative to healthy controls (p < 0.05, corrected). Whole‐brain analyses indicated that bipolar disorder, relative to healthy, participants also displayed elevated left‐lateral OFC (BA 47) activity during reward anticipation (p < 0.05, corrected). Conclusions: Elevated ventral striatal and OFC activity during reward anticipation may represent a neural mechanism for predisposition to expansive mood and hypo/mania in response to reward‐relevant cues that characterizes bipolar disorder. Our findings contrast with research reporting blunted activity in the ventral striatum during reward processing in unipolar depressed individuals, relative to healthy controls. Examination of reward‐related neural activity in bipolar disorder is a promising research focus to facilitate identification of biological markers of the illness.  相似文献   

7.
The bed nucleus of the stria terminals (BNST) is a subcortical structure involved in anticipatory and sustained reactivity to threat and is thus essential to the understanding of anxiety and stress responses. Although chronic stress and anxiety represent a hallmark of post‐traumatic stress disorder (PTSD), to date, few studies have examined the functional connectivity of the BNST in PTSD. Here, we used resting state functional Magnetic Resonance Imaging (fMRI) to investigate the functional connectivity of the BNST in PTSD (n = 70), its dissociative subtype (PTSD + DS) (n = 41), and healthy controls (n = 50). In comparison to controls, PTSD showed increased functional connectivity of the BNST with regions of the reward system (ventral and dorsal striatum), possibly underlying stress‐induced reward‐seeking behaviors in PTSD. By contrast, comparing PTSD + DS to controls, we observed increased functional connectivity of the BNST with the claustrum, a brain region implicated in consciousness and a primary site of kappa‐opioid receptors, which are critical to the dynorphin‐mediated dysphoric stress response. Moreover, PTSD + DS showed increased functional connectivity of the BNST with brain regions involved in attention and salience detection (anterior insula and caudate nucleus) as compared to PTSD and controls. Finally, BNST functional connectivity positively correlated with default‐mode network regions as a function of state identity dissociation, suggesting a role of BNST networks in the disruption of self‐relevant processing characterizing the dissociative subtype. These findings represent an important first step in elucidating the role of the BNST in aberrant functional networks underlying PTSD and its dissociative subtype.  相似文献   

8.
Both schizophrenia (SCZ) and autism spectrum disorder (ASD) are characterized by mentalizing problems and associated neural dysfunction of the social brain. However, the deficits in mental state attribution are somehow opposed: Whereas patients with SCZ tend to over-attribute intentions to agents and physical events (“hyper-intentionality”), patients with autism treat people as devoid of intentions (“hypo-intentionality”). Here we aimed to investigate whether this hypo-hyper-intentionality hypothesis can be supported by neural evidence during a mentalizing task. Using functional magnetic resonance imaging (fMRI), we investigated the neural responses and functional connectivity during reading others intention. Scanning was performed in 23 individuals with ASD, 18 with paranoid SCZ and 23 gender and IQ matched control subjects. Both clinical groups showed reduced brain activation compared to controls for the contrast intentional vs physical information processing in left posterior superior temporal sulcus (pSTS) and ventral medial prefrontal cortex (vMPFC) for SCZ, and right pSTS in ASD. As predicted, these effects were caused in a group specific way: Relative increased activation for physical information processing in SCZ that was also correlated with positive PANNS score and relative decreased activation for intentional information processing in ASD. Additionally, we could demonstrate opposed connectivity patterns between the right pSTS and vMPFC in the clinical groups, ie, increased for SCZ, decreased for ASD. These findings represent opposed neural signatures in key regions of the social brain as predicted by the hyper-hypo-intentionality hypothesis.  相似文献   

9.
Schizophrenia is characterized by substantial dysfunctions of reward processing, leading to detrimental consequences for decision-making. The neurotransmitter dopamine is responsible for the transmission of reward signals and also known to be involved in the mechanism of psychosis. Using functional magnetic resonance imaging (fMRI), sixteen medicated patients with schizophrenia and sixteen healthy controls performed the ‘desire-reason dilemma’ (DRD) paradigm. This paradigm allowed us to directly investigate reward-related brain activations depending on the interaction of bottom–up and top–down mechanisms, when a previously conditioned reward stimulus had to be rejected to achieve a superordinate long-term goal. Both patients and controls showed significant activations in the mesolimbic reward system. In patients with schizophrenia, however, we found a significant hyperactivation of the left ventral striatum (vStr) when they were allowed to accept the conditioned reward stimuli, and a reduced top–down regulation of activation in the ventral striatum (vStr) and ventral tegmental area (VTA) while having to reject the immediate reward to pursue the superordinate task-goal. Moreover, while healthy subjects exhibited a negative functional coupling of the vStr with both the anteroventral prefrontal cortex (avPFC) and the ventromedial prefrontal cortex (VMPFC) in the dilemma situation, this functional coupling was significantly impaired in the patient group. These findings provide evidence for an increased ventral striatal activation to reward stimuli and an impaired top–down control of reward signals by prefrontal brain regions in schizophrenia.  相似文献   

10.
Schizophrenia is a psychiatric disorder that is associated with impaired functioning of the fronto-striatal network, in particular during reward processing. However, it is unclear whether this dysfunction is related to the illness itself or whether it reflects a genetic vulnerability to develop schizophrenia. Here, we examined reward processing in unaffected siblings of schizophrenia patients using functional magnetic resonance imaging. Brain activity was measured during reward anticipation and reward outcome in 27 unaffected siblings of schizophrenia patients and 29 healthy volunteers using a modified monetary incentive delay task. Task performance was manipulated online so that all subjects won the same amount of money. Despite equal performance, siblings showed reduced activation in the ventral striatum, insula, and supplementary motor area (SMA) during reward anticipation compared to controls. Decreased ventral striatal activation in siblings was correlated with sub-clinical negative symptoms. During the outcome of reward, siblings showed increased activation in the ventral striatum and orbitofrontal cortex compared to controls. Our finding of decreased activity in the ventral striatum during reward anticipation and increased activity in this region during receiving reward may indicate impaired cue processing in siblings. This is consistent with the notion of dopamine dysfunction typically associated with schizophrenia. Since unaffected siblings share on average 50% of their genes with their ill relatives, these deficits may be related to the genetic vulnerability for schizophrenia.Key words: ventral striatum, orbitofrontal cortex, ventromedial prefrontal cortex, monetary incentive delay task, genetic vulnerability, cue processing  相似文献   

11.
In humans, food is considered a powerful primary reinforcer, whereas money is a secondary reinforcer, as it gains a value through learning experience. Here, we aimed to identify the neural regions supporting the processing of food-related reinforcers, relate it to the neural underpinnings of monetary reinforcers, and explore their modulation by metabolic state (hunger vs satiety). Twenty healthy male participants were tested in two experimental sessions, once hungry and once satiated, using functional magnetic resonance imaging. Participants performed an associative learning task, receiving food or monetary rewards (in the form of images) on separate blocks. Irrespective of incentive type, both food and monetary rewards engaged ventral striatum, medial orbitofrontal cortex and amygdala, regions that have been previously associated with reward processing. Food incentives additionally engaged the opercular part of the inferior frontal gyrus and the insula, collectively known as a primary gustatory cortex. Moreover, in response to negative feedback (here, reward omission), robust activation was observed in anterior insula, supplementary motor area and lateral parts of the prefrontal cortex, including middle and inferior frontal gyrus. Furthermore, the interaction between metabolic state and incentive type resulted in supramarginal gyrus (SMG) activity, among other motor and sensory-related regions. Finally, functional connectivity analysis showed correlation in the hungry state between the SMG and mesolimbic regions, including the hippocampus, midbrain and cingulate areas. Also, the interaction between metabolic state and incentive type revealed coupling between SMG and ventral striatum. Whereas general purpose reward-related regions process incentives of different kinds, the current results suggest that the SMG might play a key role in integrating the information related to current metabolic state and available incentive type.  相似文献   

12.
The processing of rewards and losses are crucial to everyday functioning. Considerable interest has been attached to investigating the anticipation and outcome phases of reward and loss processing, but results to date have been inconsistent. It is unclear if anticipation and outcome of a reward or loss recruit similar or distinct brain regions. In particular, while the striatum has widely been found to be active when anticipating a reward, whether it activates in response to the anticipation of losses as well remains ambiguous. Furthermore, concerning the orbitofrontal/ventromedial prefrontal regions, activation is often observed during reward receipt. However, it is unclear if this area is active during reward anticipation as well. We ran an Activation Likelihood Estimation meta‐analysis of 50 fMRI studies, which used the Monetary Incentive Delay Task (MIDT), to identify which brain regions are implicated in the anticipation of rewards, anticipation of losses, and the receipt of reward. Anticipating rewards and losses recruits overlapping areas including the striatum, insula, amygdala and thalamus, suggesting that a generalised neural system initiates motivational processes independent of valence. The orbitofrontal/ventromedial prefrontal regions were recruited only during the reward outcome, likely representing the value of the reward received. Our findings help to clarify the neural substrates of the different phases of reward and loss processing, and advance neurobiological models of these processes.  相似文献   

13.
Ventromedial regions of the frontal lobe (vmFL) are thought to play a key role in decision‐making and emotional regulation. However, aspects of this area's functional organization, including the presence of a multiple subregions, their functional and anatomical connectivity, and the cross‐species homologies of these subregions with those of other species, remain poorly understood. To address this uncertainty, we employed a two‐stage parcellation of the region to identify six distinct structures within the region on the basis of data‐driven classification of functional connectivity patterns obtained using the meta‐analytic connectivity modeling (MACM) approach. From anterior to posterior, the derived subregions included two lateralized posterior regions, an intermediate posterior region, a dorsal and ventral central region, and a single anterior region. The regions were characterized further by functional connectivity derived using resting‐state fMRI and functional decoding using the Brain Map database. In general, the regions could be differentiated on the basis of different patterns of functional connectivity with canonical “default mode network” regions and/or subcortical regions such as the striatum. Together, the findings suggest the presence of functionally distinct neural structures within vmFL, consistent with data from experimental animals as well prior demonstrations of anatomical differences within the region. Detailed correspondence with the anterior cingulate, medial orbitofrontal cortex, and rostroventral prefrontal cortex, as well as specific animal homologs are discussed. The findings may suggest future directions for resolving potential functional and structural correspondence of subregions within the frontal lobe across behavioral contexts, and across mammalian species.  相似文献   

14.
The processes involved in value evaluation and self‐control are critical when making behavioral choices. However, the evidence linking these two types of processes to behavioral choices in intertemporal decision‐making remains elusive. As the ventromedial prefrontal cortex (vmPFC), striatum, and dorsolateral prefrontal cortex (dlPFC) have been associated with these two processes, we focused on these three regions. We employed functional magnetic resonance imaging during a delayed discounting task (DDT) using a relatively large sample size, three independent samples. We evaluated how much information about a specific choice could be decoded from local patterns in each brain area using multivoxel pattern analysis (MVPA). To investigate the relationship between the dlPFC and vmPFC/striatum regions, we performed a psychophysiological interaction (PPI) analysis. In Experiment I, we found that the vmPFC and dlPFC, but not the striatum, could determine choices in healthy participants. Furthermore, we found that the dlPFC showed significant functional connectivity with the vmPFC, but not the striatum, when making decisions. These results could be replicated in Experiment II with an independent sample of healthy participants. In Experiment III, the choice‐decoding accuracy in the vmPFC and dlPFC was lower in patients with addiction (smokers and participants with Internet gaming disorder) than in healthy participants, and decoding accuracy in the dlPFC was related to impulsivity in addicts. Taken together, our findings may provide neural evidence supporting the hypothesis that value evaluation and self‐control processes both guide the intertemporal choices, and might provide potential neural targets for the diagnosis and treatment of impulsivity‐related brain disorders.  相似文献   

15.
Dysfunctional patterns of activation in brain reward networks have been suggested as a core element in the pathophysiology of schizophrenia. However, it remains unclear whether this dysfunction is specific to schizophrenia or can be continuously observed across persons with different levels of nonclinical and clinical symptom expression. Therefore, we sought to investigate whether the pattern of reward system dysfunction is consistent with a dimensional or categorical model of psychosis-like symptom expression. 23 patients with schizophrenia and 37 healthy control participants with varying levels of psychosis-like symptoms, separated into 3 groups of low, medium, and high symptom expression underwent event-related functional magnetic resonance imaging while performing a Cued Reinforcement Reaction Time task. We observed lower activation in the ventral striatum during the expectation of high vs no reward to be associated with higher symptom expression across all participants. No significant difference between patients with schizophrenia and healthy participants with high symptom expression was found. However, connectivity between the ventral striatum and the medial orbitofrontal cortex was specifically reduced in patients with schizophrenia. Dysfunctional local activation of the ventral striatum depends less on diagnostic category than on the degree of symptom expression, therefore showing a pattern consistent with a psychosis continuum. In contrast, aberrant connectivity in the reward system is specific to patients with schizophrenia, thereby supporting a categorical view. Thus, the results of the present study provide evidence for both continuous and discontinuous neural substrates of symptom expression across patients with schizophrenia and the general population.Key words: dimensional symptom expression, psychosis-like symptom expression, functional magnetic resonance imaging, cued reinforcement reaction time task, apathy, ventral striatum  相似文献   

16.
A subgroup of Parkinson's disease (PD) patients treated with dopaminergic therapy develop compulsive reward‐driven behaviors, which can result in life‐altering morbidity. The mesocorticolimbic dopamine network guides reward‐motivated behavior; however, its role in this treatment‐related behavioral phenotype is incompletely understood. Here, mesocorticolimbic network function in PD patients who develop impulsive and compulsive behaviors (ICB) in response to dopamine agonists was assessed using BOLD fMRI. The tested hypothesis was that network connectivity between the ventral striatum and the limbic cortex is elevated in patients with ICB and that reward‐learning proficiency reflects the extent of mesocorticolimbic network connectivity. To evaluate this hypothesis, 3.0T BOLD‐fMRI was applied to measure baseline functional connectivity on and off dopamine agonist therapy in age and sex‐matched PD patients with (n = 19) or without (n = 18) ICB. An incentive‐based task was administered to a subset of patients (n = 20) to quantify positively or negatively reinforced learning. Whole‐brain voxelwise analyses and region‐of‐interest‐based mixed linear effects modeling were performed. Elevated ventral striatal connectivity to the anterior cingulate gyrus (P = 0.013), orbitofrontal cortex (P = 0.034), insula (P = 0.044), putamen (P = 0.014), globus pallidus (P < 0.01), and thalamus (P < 0.01) was observed in patients with ICB. A strong trend for elevated amygdala‐to‐midbrain connectivity was found in ICB patients on dopamine agonist. Ventral striatum‐to‐subgenual cingulate connectivity correlated with reward learning (P < 0.01), but not with punishment‐avoidance learning. These data indicate that PD‐ICB patients have elevated network connectivity in the mesocorticolimbic network. Behaviorally, proficient reward‐based learning is related to this enhanced limbic and ventral striatal connectivity. Hum Brain Mapp 39:509–521, 2018. © 2017 Wiley Periodicals, Inc.  相似文献   

17.
Emotionally‐laden tactile stimulation—such as a caress on the skin or the feel of velvet—may represent a functionally distinct domain of touch, underpinned by specific cortical pathways. In order to determine whether, and to what extent, cortical functional neuroanatomy supports a distinction between affective and discriminative touch, an activation likelihood estimate (ALE) meta‐analysis was performed. This meta‐analysis statistically mapped reported functional magnetic resonance imaging (fMRI) activations from 17 published affective touch studies in which tactile stimulation was associated with positive subjective evaluation (n = 291, 34 experimental contrasts). A separate ALE meta‐analysis mapped regions most likely to be activated by tactile stimulation during detection and discrimination tasks (n = 1,075, 91 experimental contrasts). These meta‐analyses revealed dissociable regions for affective and discriminative touch, with posterior insula (PI) more likely to be activated for affective touch, and primary somatosensory cortices (SI) more likely to be activated for discriminative touch. Secondary somatosensory cortex had a high likelihood of engagement by both affective and discriminative touch. Further, meta‐analytic connectivity (MCAM) analyses investigated network‐level co‐activation likelihoods independent of task or stimulus, across a range of domains and paradigms. Affective‐related PI and discriminative‐related SI regions co‐activated with different networks, implicated in dissociable functions, but sharing somatosensory co‐activations. Taken together, these meta‐analytic findings suggest that affective and discriminative touch are dissociable both on the regional and network levels. However, their degree of shared activation likelihood in somatosensory cortices indicates that this dissociation reflects functional biases within tactile processing networks, rather than functionally and anatomically distinct pathways. Hum Brain Mapp 37:1308‐1320, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

18.
Faces convey social information such as emotion and speech. Facial emotion processing is supported via interactions between dorsal‐movement and ventral‐form visual cortex regions. Here, we explored, for the first time, whether similar dorsal–ventral interactions (assessed via functional connectivity), might also exist for visual‐speech processing. We then examined whether altered dorsal–ventral connectivity is observed in adults with high‐functioning autism spectrum disorder (ASD), a disorder associated with impaired visual‐speech recognition. We acquired functional magnetic resonance imaging (fMRI) data with concurrent eye tracking in pairwise matched control and ASD participants. In both groups, dorsal‐movement regions in the visual motion area 5 (V5/MT) and the temporal visual speech area (TVSA) were functionally connected to ventral‐form regions (i.e., the occipital face area [OFA] and the fusiform face area [FFA]) during the recognition of visual speech, in contrast to the recognition of face identity. Notably, parts of this functional connectivity were decreased in the ASD group compared to the controls (i.e., right V5/MT—right OFA, left TVSA—left FFA). The results confirmed our hypothesis that functional connectivity between dorsal‐movement and ventral‐form regions exists during visual‐speech processing. Its partial dysfunction in ASD might contribute to difficulties in the recognition of dynamic face information relevant for successful face‐to‐face communication.  相似文献   

19.
Drugs of abuse elicit dopamine release in the ventral striatum, possibly biasing dopamine‐driven reinforcement learning towards drug‐related reward at the expense of non‐drug‐related reward. Indeed, in alcohol‐dependent patients, reactivity in dopaminergic target areas is shifted from non‐drug‐related stimuli towards drug‐related stimuli. Such ‘hijacked’ dopamine signals may impair flexible learning from non‐drug‐related rewards, and thus promote craving for the drug of abuse. Here, we used functional magnetic resonance imaging to measure ventral striatal activation by reward prediction errors (RPEs) during a probabilistic reversal learning task in recently detoxified alcohol‐dependent patients and healthy controls (N = 27). All participants also underwent 6‐[18F]fluoro‐DOPA positron emission tomography to assess ventral striatal dopamine synthesis capacity. Neither ventral striatal activation by RPEs nor striatal dopamine synthesis capacity differed between groups. However, ventral striatal coding of RPEs correlated inversely with craving in patients. Furthermore, we found a negative correlation between ventral striatal coding of RPEs and dopamine synthesis capacity in healthy controls, but not in alcohol‐dependent patients. Moderator analyses showed that the magnitude of the association between dopamine synthesis capacity and RPE coding depended on the amount of chronic, habitual alcohol intake. Despite the relatively small sample size, a power analysis supports the reported results. Using a multimodal imaging approach, this study suggests that dopaminergic modulation of neural learning signals is disrupted in alcohol dependence in proportion to long‐term alcohol intake of patients. Alcohol intake may perpetuate itself by interfering with dopaminergic modulation of neural learning signals in the ventral striatum, thus increasing craving for habitual drug intake.  相似文献   

20.
Adolescence is the transitional period between childhood and adulthood, characterized by substantial changes in reward‐driven behavior. Although reward‐driven behavior is supported by subcortical‐medial prefrontal cortex (PFC) connectivity, the development of these circuits is not well understood. Particularly, while puberty has been hypothesized to accelerate organization and activation of functional neural circuits, the relationship between age, sex, pubertal change, and functional connectivity has hardly been studied. Here, we present an analysis of resting‐state functional connectivity between subcortical structures and the medial PFC, in 661 scans of 273 participants between 8 and 29 years, using a three‐wave longitudinal design. Generalized additive mixed model procedures were used to assess the effects of age, sex, and self‐reported pubertal status on connectivity between subcortical structures (nucleus accumbens, caudate, putamen, hippocampus, and amygdala) and cortical medial structures (dorsal anterior cingulate, ventral anterior cingulate, subcallosal cortex, frontal medial cortex). We observed an age‐related strengthening of subcortico‐subcortical and cortico‐cortical connectivity. Subcortical–cortical connectivity, such as, between the nucleus accumbens—frontal medial cortex, and the caudate—dorsal anterior cingulate cortex, however, weakened across age. Model‐based comparisons revealed that for specific connections pubertal development described developmental change better than chronological age. This was particularly the case for changes in subcortical–cortical connectivity and distinctively for boys and girls. Together, these findings indicate changes in functional network strengthening with pubertal development. These changes in functional connectivity may maximize the neural efficiency of interregional communication and set the stage for further inquiry of biological factors driving adolescent functional connectivity changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号