首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In humans, visual information is processed via parallel channels: the parvocellular (P) pathway analyzes color and form information, whereas the magnocellular (M) stream plays an important role in motion analysis. Individuals with autism spectrum disorder (ASD) often show superior performance in processing fine detail, but impaired performance in processing global structure and motion information. To date, no visual evoked potential (VEP) studies have examined the neural basis of atypical visual performance in ASD. VEPs were recorded using 128-channel high density EEG to investigate whether the P and M pathways are functionally altered in ASD. The functioning of the P and M pathways within primary visual cortex (V1) were evaluated using chromatic (equiluminant red–green sinusoidal gratings) and achromatic (low contrast black–white sinusoidal gratings) stimuli, respectively. Unexpectedly, the N1 component of VEPs to chromatic gratings was significantly prolonged in ASD patients compared to controls. However, VEP responses to achromatic gratings did not differ significantly between the two groups. Because chromatic stimuli preferentially stimulate the P-color but not the P-form pathway, our findings suggest that ASD is associated with impaired P-color pathway activity. Our study provides the first electrophysiological evidence for P-color pathway impairments with preserved M function at the V1 level in ASD.  相似文献   

2.
Monkey neurophysiology and human neuroimaging studies have demonstrated that passive viewing of optic flow stimuli activates a cortical network of temporal, parietal, insular, and cingulate visual motion regions. Here, we tested whether the human visual motion areas involved in processing optic flow signals simulating self‐motion are also activated by active lower limb movements, and hence are likely involved in guiding human locomotion. To this aim, we used a combined approach of task‐evoked activity and resting‐state functional connectivity by fMRI. We localized a set of six egomotion‐responsive visual areas (V6+, V3A, intraparietal motion/ventral intraparietal [IPSmot/VIP], cingulate sulcus visual area [CSv], posterior cingulate sulcus area [pCi], posterior insular cortex [PIC]) by using optic flow. We tested their response to a motor task implying long‐range active leg movements. Results revealed that, among these visually defined areas, CSv, pCi, and PIC responded to leg movements (visuomotor areas), while V6+, V3A, and IPSmot/VIP did not (visual areas). Functional connectivity analysis showed that visuomotor areas are connected to the cingulate motor areas, the supplementary motor area, and notably to the medial portion of the somatosensory cortex, which represents legs and feet. We suggest that CSv, pCi, and PIC perform the visual analysis of egomotion‐like signals to provide sensory information to the motor system with the aim of guiding locomotion.  相似文献   

3.
Visual agnosia has been well studied by anatomical, neuropsychological and neuroimaging studies. However, functional changes in the brain have been rarely assessed by electrophysiological methods. We carried out electrophysiological examinations on a 23-year-old man with associative visual agnosia, prosopagnosia and cerebral achromatopsia to evaluate the higher brain dysfunctions of visual recognition. Electrophysiological methods consisted of achromatic, chromatic and category-specific visual evoked potentials (CS-VEPs), and event-related potentials (ERPs) with color and motion discrimination tasks. Brain magnetic resonance imaging revealed large white matter lesions in the bilateral temporo-occipital lobes involving the lingual and fusiform gyri (V4) and inferior longitudinal fasciculi due to multiple sclerosis. Examinations including CS-VEPs demonstrated dysfunctions of face and object perception while sparing semantic word perception after primary visual cortex (V1) in the ventral pathway. ERPs showed abnormal color perception in the ventral pathway with normal motion perception in the dorsal pathway. These electrophysiological findings were consistent with lesions in the ventral pathway that were detected by clinical and neuroimaging findings. Therefore, CS-VEPs and ERPs with color and motion discrimination tasks are useful methods for assessing the functional changes of visual recognition such as visual agnosia.  相似文献   

4.
Blindness induces processes of neural plasticity, resulting in recruitment of the deafferentated visual areas for non‐visual sensory functions. These processes are related to superior abilities of blind compared with sighted individuals for specific auditory and tactile tasks. Recently, an exceptional performance of the blind has been demonstrated for auditory motion perception, with a minimum audible movement angle that was half that of sighted controls (J. Lewald (2013) Neuropsychologia, 51 , 181–186). The present study revealed an electrophysiological correlate of this finding by analysing the so‐called motion‐onset response, a prominent auditory‐evoked potential to the onset of motion. The cN1 component of this response, appearing about 170 ms after motion onset, was two times higher in amplitude for blind compared with matched sighted control subjects. At the time of the cN1, electrical neuroimaging using sLORETA revealed stronger activation in blind than sighted subjects primarily in ventral visual areas (V1v, V2v, VP, V4v) of the right occipital lobe. Activation was also obtained in middle temporal area V5. These findings suggest that blindness results in stronger involvement of both non‐motion areas of the ventral visual stream and motion areas of the dorsal visual stream in processing of auditory motion at the same point in time after motion onset. This argues against the view that visual motion areas, such as area V5, are preferentially recruited for auditory motion analysis in the blind. Rather, cross‐modal reorganization of cortical areas induced by blindness seems to be largely independent of the specific visual functions of the same areas in sighted persons.  相似文献   

5.
There is controversy as to how responses to colour in the human brain are organized within the visual pathways. A key issue is whether there are modular pathways that respond selectively to colour or whether there are common neural substrates for both colour and achromatic (Ach) contrast. We used functional magnetic resonance imaging (fMRI) adaptation to investigate the responses of early and extrastriate visual areas to colour and Ach contrast. High‐contrast red–green (RG) and Ach sinewave rings (0.5 cycles/degree, 2 Hz) were used as both adapting stimuli and test stimuli in a block design. We found robust adaptation to RG or Ach contrast in all visual areas. Cross‐adaptation between RG and Ach contrast occurred in all areas indicating the presence of integrated, colour and Ach responses. Notably, we revealed contrasting trends for the two test stimuli. For the RG test, unselective processing (robust adaptation to both RG and Ach contrast) was most evident in the early visual areas (V1 and V2), but selective responses, revealed as greater adaptation between the same stimuli than cross‐adaptation between different stimuli, emerged in the ventral cortex, in V4 and VO in particular. For the Ach test, unselective responses were again most evident in early visual areas but Ach selectivity emerged in the dorsal cortex (V3a and hMT+). Our findings support a strong presence of integrated mechanisms for colour and Ach contrast across the visual hierarchy, with a progression towards selective processing in extrastriate visual areas.  相似文献   

6.
Area V3A was identified in five human subjects on both a functional and retinotopic basis using functional magnetic resonance imaging techniques. V3A, along with other visual areas responsive to motion, was then targeted for disruption by repetitive transcranial magnetic stimulation (rTMS) whilst the participants performed a delayed speed matching task. The stimuli used for this task included chromatic, isoluminant motion stimuli that activated either the L?M or S?(L+M) cone‐opponent mechanisms, in addition to moving stimuli that contained only luminance contrast (L+M). The speed matching task was performed for chromatic and luminance stimuli that moved at slow (2°/s) or faster (8°/s) speeds. The application of rTMS to area V3A produced a perceived slowing of all chromatic and luminance stimuli at both slow and fast speeds. Similar deficits were found when rTMS was applied to V5/MT+. No deficits in performance were found when areas V3B and V3d were targeted by rTMS. These results provide evidence of a causal link between neural activity in human area V3A and the perception of chromatic isoluminant motion. They establish area V3A, alongside V5/MT+, as a key area in a cortical network that underpins the analysis of not only luminance but also chromatically‐defined motion.  相似文献   

7.
Previous neuroimaging studies devoted to auditory motion processing have shown the involvement of a cerebral network encompassing the temporoparietal and premotor areas. Most of these studies were based on a comparison between moving stimuli and static stimuli placed at a single location. However, moving stimuli vary in spatial location, and therefore motion detection can include both spatial localisation and motion processing. In this study, we used fMRI to compare neural processing of moving sounds and static sounds in various spatial locations in blindfolded sighted subjects. The task consisted of simultaneously determining both the nature of a sound stimulus (pure tone or complex sound) and the presence or absence of its movement. When movement was present, subjects had to identify its direction. This comparison of how moving and static stimuli are processed showed the involvement of the parietal lobules, the dorsal and ventral premotor cortex and the planum temporale during auditory motion processing. It also showed the specific recruitment of V5, the visual motion area. These results suggest that the previously proposed network of auditory motion processing is distinct from the network of auditory localisation. In addition, they suggest that the occipital cortex can process non-visual stimuli and that V5 is not restricted to visual processing.  相似文献   

8.
Animal physiological and human psychophysical studies suggest that an early step in visual processing involves the detection and identification of features such as lines and edges, by neural mechanisms with even‐ and odd‐symmetric receptive fields. Functional imaging studies also demonstrate mechanisms with even‐ and odd‐receptive fields in early visual areas, in response to luminance‐modulated stimuli. In this study we measured fMRI BOLD responses to 2‐D stimuli composed of only even or only odd symmetric features, and to an amplitude‐matched random noise control, modulated in red–green equiluminant colour contrast. All these stimuli had identical power but different phase spectra, either highly congruent (even or odd symmetry stimuli) or random (noise). At equiluminance, V1 BOLD activity showed no preference between congruent‐ and random‐phase stimuli, as well as no preference between even and odd symmetric stimuli. Areas higher in the visual hierarchy, both along the dorsal pathway (caudal part of the intraparietal sulcus, dorsal LO and V3A) and the ventral pathway (V4), responded preferentially to odd symmetry over even symmetry stimuli, and to congruent over random phase stimuli. Interestingly, V1 showed an equal increase in BOLD activity at each alternation between stimuli of different symmetry, suggesting the existence of specialised mechanisms for the detection of edges and lines such as even‐ and odd‐chromatic receptive fields. Overall the results indicate a high selectivity of colour‐selective neurons to spatial phase along both the dorsal and the ventral pathways in humans.  相似文献   

9.
How does the visual system manage to segment a visual scene into surfaces and objects and manage to attend to a target object? Based on psychological and physiological investigations, it has been proposed that the perceptual organization and segmentation of a scene is achieved by the processing at different levels of the visual cortical hierarchy. According to this, motion onset detection, motion-defined shape segregation, and target selection are accomplished by processes which bind together simple features into fragments of increasingly complex configurations at different levels in the processing hierarchy. As an alternative to this hierarchical processing hypothesis, it has been proposed that the processing stages for feature detection and segregation are reflected in different temporal episodes in the response patterns of individual neurons. Such temporal epochs have been observed in the activation pattern of neurons as low as in area V1. Here, we present a neural network model of motion detection, figure–ground segregation and attentive selection which explains these response patterns in an unifying framework. Based on known principles of functional architecture of the visual cortex, we propose that initial motion and motion boundaries are detected at different and hierarchically organized stages in the dorsal pathway. Visual shapes that are defined by boundaries, which were generated from juxtaposed opponent motions, are represented at different stages in the ventral pathway. Model areas in the different pathways interact through feedforward and modulating feedback, while mutual interactions enable the communication between motion and form representations. Selective attention is devoted to shape representations by sending modulating feedback signals from higher levels (working memory) to intermediate levels to enhance their responses. Areas in the motion and form pathway are coupled through top-down feedback with V1 cells at the bottom end of the hierarchy. We propose that the different temporal episodes in the response pattern of V1 cells, as recorded in recent experiments, reflect the strength of modulating feedback signals. This feedback results from the consolidated shape representations from coherent motion patterns and the attentive modulation of responses along the cortical hierarchy. The model makes testable predictions concerning the duration and delay of the temporal episodes of V1 cell responses as well as their response variations that were caused by modulating feedback signals.  相似文献   

10.
To plan movements toward objects our brain must recognize whether retinal displacement is due to self‐motion and/or to object‐motion. Here, we aimed to test whether motion areas are able to segregate these types of motion. We combined an event‐related functional magnetic resonance imaging experiment, brain mapping techniques, and wide‐field stimulation to study the responsivity of motion‐sensitive areas to pure and combined self‐ and object‐motion conditions during virtual movies of a train running within a realistic landscape. We observed a selective response in MT to the pure object‐motion condition, and in medial (PEc, pCi, CSv, and CMA) and lateral (PIC and LOR) areas to the pure self‐motion condition. Some other regions (like V6) responded more to complex visual stimulation where both object‐ and self‐motion were present. Among all, we found that some motion regions (V3A, LOR, MT, V6, and IPSmot) could extract object‐motion information from the overall motion, recognizing the real movement of the train even when the images remain still (on the screen), or moved, because of self‐movements. We propose that these motion areas might be good candidates for the “flow parsing mechanism,” that is the capability to extract object‐motion information from retinal motion signals by subtracting out the optic flow components.  相似文献   

11.
The aim of this functional magnetic resonance imaging (fMRI) study was to identify human brain areas that are sensitive to the direction of auditory motion. Such directional sensitivity was assessed in a hypothesis-free manner by analyzing fMRI response patterns across the entire brain volume using a spherical-searchlight approach. In addition, we assessed directional sensitivity in three predefined brain areas that have been associated with auditory motion perception in previous neuroimaging studies. These were the primary auditory cortex, the planum temporale and the visual motion complex (hMT/V5+). Our whole-brain analysis revealed that the direction of sound-source movement could be decoded from fMRI response patterns in the right auditory cortex and in a high-level visual area located in the right lateral occipital cortex. Our region-of-interest-based analysis showed that the decoding of the direction of auditory motion was most reliable with activation patterns of the left and right planum temporale. Auditory motion direction could not be decoded from activation patterns in hMT/V5+. These findings provide further evidence for the planum temporale playing a central role in supporting auditory motion perception. In addition, our findings suggest a cross-modal transfer of directional information to high-level visual cortex in healthy humans.  相似文献   

12.
Among all of the stimuli surrounding us, food is arguably the most rewarding for the essential role it plays in our survival. In previous visual recognition research, it has already been demonstrated that the brain not only differentiates edible stimuli from non‐edible stimuli but also is endowed with the ability to detect foods’ idiosyncratic properties such as energy content. Given the contribution of the cooked diet to human evolution, in the present study we investigated whether the brain is sensitive to the level of processing food underwent, based solely on its visual appearance. We thus recorded visual evoked potentials (VEPs) from normal‐weight healthy volunteers who viewed color images of unprocessed and processed foods equated in caloric content. Results showed that VEPs and underlying neural sources differed as early as 130 ms post‐image onset when participants viewed unprocessed versus processed foods, suggesting a within‐category early discrimination of food stimuli. Responses to unprocessed foods engaged the inferior frontal and temporal regions and the premotor cortices. In contrast, viewing processed foods led to the recruitment of occipito‐temporal cortices bilaterally, consistently with other motivationally relevant stimuli. This is the first evidence of diverging brain responses to food as a function of the transformation undergone during its preparation that provides insights on the spatiotemporal dynamics of food recognition.  相似文献   

13.
Echoplanar functional magnetic resonance imaging was used to monitor activation changes of brain areas while subjects viewed apparent motion stimuli and while they were engaged in motion imagery. Human cortical areas MT (V5) and MST were the first areas of the ‘dorsal’ processing stream which responded with a clear increase in signal intensity to apparent motion stimuli as compared with flickering control conditions. Apparent motion of figures defined by illusory contours evoked greater activation in V2 and MT/MST than appropriate control conditions. Several areas of the dorsal pathway (V3A, MT/MST, areas in the inferior and superior parietal lobule) as well as prefrontal areas including FEF and BA 9/46 responded strongly when subjects merely imagined moving stimuli which they had seen several seconds before. The activation during motion imagery increased with the synaptic distance of an area from V1 along the dorsal processing stream. Area MT/MST was selectively activated during motion imagery but not during a static imagery control condition. The comparison between the results obtained with objective motion, apparent motion and imagined motion provides further insights into a complex cortical network of motion-sensitive areas driven by bottom-up and top-down neural processes.  相似文献   

14.
This study aimed to characterize the neural generators of the steady-state visual evoked potential (SSVEP) to repetitive, 6 Hz pattern-reversal stimulation. Multichannel scalp recordings of SSVEPs and dipole modeling techniques were combined with functional magnetic resonance imaging (fMRI) and retinotopic mapping in order to estimate the locations of the cortical sources giving rise to the SSVEP elicited by pattern reversal. The time-varying SSVEP scalp topography indicated contributions from two major cortical sources, which were localized in the medial occipital and mid-temporal regions of the contralateral hemisphere. Colocalization of dipole locations with fMRI activation sites indicated that these two major sources of the SSVEP were located in primary visual cortex (V1) and in the motion sensitive (MT/V5) areas, respectively. Minor contributions from mid-occipital (V3A) and ventral occipital (V4/V8) areas were also considered. Comparison of SSVEP phase information with timing information collected in a previous transient VEP study (Di Russo et al. [2005] Neuroimage 24:874-886) suggested that the sequence of cortical activation is similar for steady-state and transient stimulation. These results provide a detailed spatiotemporal profile of the cortical origins of the SSVEP, which should enhance its use as an efficient clinical tool for evaluating visual-cortical dysfunction as well as an investigative probe of the cortical mechanisms of visual-perceptual processing.  相似文献   

15.
Motion standstill leads to activation of inferior parietal lobe   总被引:1,自引:0,他引:1  
Previous studies on motion perception revealed motion-processing brain areas sensitive to changes in luminance and texture (low-level) and changes in salience (high-level). The present functional magnetic resonance imaging (fMRI) study focused on motion standstill. This phenomenon, occurring at fast presentation frequencies of visual moving objects that are perceived as static, has not been previously explored by neuroimaging techniques. Thirteen subjects were investigated while perceiving apparent motion at 4 Hz, at 30 Hz (motion standstill), isoluminant static and flickering stimuli, fixation cross, and blank screen, presented randomly and balanced for rapid event-related fMRI design. Blood oxygenation level-dependent (BOLD) signal in the occipito-temporal brain region MT/V5 increased during apparent motion perception. Here we could demonstrate that brain areas like the posterior part of the right inferior parietal lobule (IPL) demonstrated higher BOLD-signal during motion standstill. These findings suggest that the activation of higher-order motion areas is elicited by apparent motion at high presentation rates (motion standstill). We interpret this observation as a manifestation of an orienting reaction in IPL towards stimulus motion that might be detected but not resolved by other motion-processing areas (i.e., MT/V5).  相似文献   

16.
A deficit in global motion processing caused by a specific dysfunction of the visual dorsal pathway has been suggested to underlie perceptual abnormalities in subjects with autism spectrum disorders (ASD). However, the neural mechanisms associated with abnormal motion processing in ASD remain poorly understood. We investigated brain responses related to the detection of coherent and random motion in 15 male subjects with ASD and 15 age- and IQ-matched healthy controls (aged 13-19 years) using event-related functional magnetic resonance imaging (fMRI). Behaviorally, no significant group differences were observed between subjects with ASD and controls. Neurally, subjects with ASD showed increased brain activation in the left primary visual cortex across all conditions compared with controls. A significant interaction effect between group and condition was observed in the right superior parietal cortex resulting from increased neural activity in the coherent compared with the random motion conditions only in the control group. In addition, neural activity in area V5 was not differentially modulated by specific motion conditions in subjects with ASD. Functional connectivity analyses revealed positive correlations between the primary visual cortex and area V5 within both hemispheres, but no significant between-group differences in functional connectivity patterns along the dorsal stream. The data suggest that motion processing in ASD results in deviant activations in both the lower and higher processing stages of the dorsal pathway. This might reflect differences in the perception of visual stimuli in ASD, which possibly result in impaired integration of motion signals.  相似文献   

17.
Adaptation to visual or auditory motion affects within‐modality motion processing as reflected by visual or auditory free‐field motion‐onset evoked potentials (VEPs, AEPs). Here, a visual–auditory motion adaptation paradigm was used to investigate the effect of visual motion adaptation on VEPs and AEPs to leftward motion‐onset test stimuli. Effects of visual adaptation to (i) scattered light flashes, and motion in the (ii) same or in the (iii) opposite direction of the test stimulus were compared. For the motion‐onset VEPs, i.e. the intra‐modal adaptation conditions, direction‐specific adaptation was observed – the change‐N2 (cN2) and change‐P2 (cP2) amplitudes were significantly smaller after motion adaptation in the same than in the opposite direction. For the motion‐onset AEPs, i.e. the cross‐modal adaptation condition, there was an effect of motion history only in the change‐P1 (cP1), and this effect was not direction‐specific – cP1 was smaller after scatter than after motion adaptation to either direction. No effects were found for later components of motion‐onset AEPs. While the VEP results provided clear evidence for the existence of a direction‐specific effect of motion adaptation within the visual modality, the AEP findings suggested merely a motion‐related, but not a direction‐specific effect. In conclusion, the adaptation of veridical auditory motion detectors by visual motion is not reflected by the AEPs of the present study.  相似文献   

18.
Recent behavioral and neuroimaging studies using continuous flash suppression (CFS) have suggested that action‐related processing in the dorsal visual stream might be independent of perceptual awareness, in line with the “vision‐for‐perception” versus “vision‐for‐action” distinction of the influential dual‐stream theory. It remains controversial if evidence suggesting exclusive dorsal stream processing of tool stimuli under CFS can be explained by their elongated shape alone or by action‐relevant category representations in dorsal visual cortex. To approach this question, we investigated category‐ and shape‐selective functional magnetic resonance imaging‐blood‐oxygen level‐dependent responses in both visual streams using images of faces and tools. Multivariate pattern analysis showed enhanced decoding of elongated relative to non‐elongated tools, both in the ventral and dorsal visual stream. The second aim of our study was to investigate whether the depth of interocular suppression might differentially affect processing in dorsal and ventral areas. However, parametric modulation of suppression depth by varying the CFS mask contrast did not yield any evidence for differential modulation of category‐selective activity. Together, our data provide evidence for shape‐selective processing under CFS in both dorsal and ventral stream areas and, therefore, do not support the notion that dorsal “vision‐for‐action” processing is exclusively preserved under interocular suppression. Hum Brain Mapp,36:137–149, 2015. © 2014 Wiley Periodicals, Inc .  相似文献   

19.
Visual illusions have fascinated mankind since antiquity, as they provide a unique window to explore the constructive nature of human perception. The Pinna illusion is a striking example of rotation perception in the absence of real physical motion. Upon approaching or receding from the Pinna‐Brelstaff figure, the observer experiences vivid illusory counter rotation of the two rings in the figure. Although this phenomenon is well known as an example of integration from local cues to a global percept, the visual areas mediating the illusory rotary perception in the human brain have not yet been identified. In the current study we investigated which cortical area in the human brain initially mediates the Pinna illusion, using psychophysical tests and functional magnetic resonance imaging (fMRI) of visual cortices V1, V2, V3, V3A, V4, and hMT+ of the dorsal and ventral visual pathways. We found that both the Pinna‐Brelstaff figure (illusory rotation) and a matched physical rotation control stimulus predominantly activated subarea MST in hMT+ with a similar response intensity. Our results thus provide neural evidence showing that illusory rotation is initiated in human MST rather than MT as if it were physical rotary motion. The findings imply that illusory rotation in the Pinna illusion is mediated by rotation‐sensitive neurons that normally encode physical rotation in human MST, both of which may rely on a cascade of similar integrative processes from earlier visual areas. Hum Brain Mapp 37:2097–2113, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

20.
This study explores how the human brain solves the challenge of flicker noise in motion processing. Despite providing no useful directional motion information, flicker is common in the visual environment and exhibits omnidirectional motion energy which is processed by low‐level motion detectors. Models of motion processing propose a mechanism called motion opponency that reduces flicker processing. Motion opponency involves the pooling of local motion signals to calculate an overall motion direction. A neural correlate of motion opponency has been observed in human area MT+/V5, whereby stimuli with perfectly balanced motion energy constructed from dots moving in counter‐phase elicit a weaker response than nonbalanced (in‐phase) motion stimuli. Building on this previous work, we used multivariate pattern analysis to examine whether the activation patterns elicited by motion opponent stimuli resemble that elicited by flicker noise across the human visual cortex. Robust multivariate signatures of opponency were observed in V5 and in V3A. Our results support the notion that V5 is centrally involved in motion opponency and in the reduction of flicker. Furthermore, these results demonstrate the utility of multivariate analysis methods in revealing the role of additional visual areas, such as V3A, in opponency and in motion processing more generally.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号