首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The location and extent of retinorecipient areas in the cane toad, Bufo marinus, were established by anterograde transport of cobaltic-lysine complex from the cut optic nerve. Most of the labeled optic axons travelled in the marginal optic tract, while others were in the axial optic tract, and/or the basal optic tract. Retinal projections terminated in both contralateral and ipsilateral targets. In addition to the optic tectum, the main visual center, retinorecipient areas included the suprachiasmatic nucleus, rostral visual nucleus, neuropil of Bellonci, corpus geniculatum thalamicum, ventrolateral thalamic nucleus (dorsal part), posterior thalamic neuropil, uncinate neuropil, pretectal nucleus lentiformis mesencephali and basal optic nucleus. While all of these retinorecipient areas receive optic fibers from both eyes, the ipsilateral retinal projections were observed to be generally sparser than those from the contralateral retina. A sparse optic fiber projection covers the surface of the ipsilateral optic tectum and is most prominent rostromedially and caudolaterally. The position and the extent of each of the retinorecipient areas were determined in relation to a three-dimensional coordinate system. Morphometric analysis showed that 85.3% of the retinorecipient area is in the contralateral optic tectum, 10.4% in contralateral non-tectal areas, 1.6% in the ipsilateral optic tectum and 2.7% in ipsilateral non-tectal areas. The presence of an ipsilateral tectal projection and the well defined pretectal visual neuropil complex may be related to the highly developed visual behavior and visual acuity of Bufo marinus.  相似文献   

2.
The retinofugal and retinopetal connections in the green sunfish were studied by autoradiographic and horseradish peroxidase methods. All retinofugal fibers decussate in the optic chiasm. Some fibers project to contralateral preoptic and hypothalamic nuclei while others recross to project to the comparable ipsilateral nuclei. Contralaterally, the medial optic tract projects to the periventricular thalamic and pretectal nuclei and, sparsely, to the rostral optic tectum. The dorsal optic tract projects to the parvocellular portion of the superficial pretectal nucleus, the central pretectal nucleus, nucleus corticalis, and the rostral portion of the optic tectum. The ventral optic tract primarily projects to the caudal portion of the optic tectum, giving off fibers in route to innervate various nuclei, including the parvocellular superficial pretectal nucleus and the dorsal and ventral accessory optic nuclei. The axial optic tract projects to the dorsal accessory optic nucleus, the central pretectal nucleus, and the caudal optic tectum. Retinal fibers reach the ipsilateral thalamus, pretectum and other sites via a redecussation through the posterior commissure. From outgroup analysis it is concluded that such redecussating fibers are an independently derived character within actinopterygians and are homoplasous to nondecussating ipsilateral retinal projections in other vertebrates. Neurons retrogradely labeled with horseradish peroxidase were found to form a rostrocaudal column from the olfactory bulb and nerve through the ventral telencephalon to caudal diencephalic levels along the medial aspect of the optic tract. It is possible that all these neurons consist of one population of migrated ganglion cells of the nervus terminalis.  相似文献   

3.
Retinal projections in the australian lungfish   总被引:1,自引:0,他引:1  
Autoradiographic analysis of the primary retinofugal projections in the Australian lungfish reveals contralateral retinal projections to a ventral portion of the periventricular preoptic nucleus, throughout its rostrocaudal extent, and to 4 distinct terminal fields in the thalamus. Only one of these thalamic fields (t4) likely receives dendrites soley from dorsal thalamic neurons. Thalamic terminal field 1 probably receives dendrites from both dorsal and ventral thalamic neurons, and fields 2 and 3 from only ventral thalamic neurons. Contralateral retinofugal fibers terminate in the pretectum and in the superficial and central tectal zones. The central tectal terminal field is restricted to the medial one-third of the tectum. At pretectal levels a contralateral basal optic tract arises from the marginal optic tract and terminates along the lateral edge of the tegmentum, as a series of glomerular puffs, and in the rostral pole of a superficial isthmal nucleus. The Australian lungfish, unlike the African and South American lungfish, possesses ipsilateral retinal projections to all of the nuclei that receive contralateral retinal input.  相似文献   

4.
Efferent projections of the optic tectum were studied with the anterograde degeneration method in the longnose gar. Ascending projections were found bilaterally to 3 pretectal nuclei — the superficial pretectal nucleus, nucleus pretectalis centralis and nucleus pretectalis profundus — and to a number of targets which lie further rostrally — the central posterior nucleus, dorsal posterior nucleus, accessory optic nucleus, nucleus ventralis lateralis, nucleus of the ventral optic tract, rostral part of the preglomerular complex, suprachiasmatic nucleus, anterior thalamic nucleus, nucleus ventralis medialis, nucleus intermedius, nucleus prethalamicus and rostral entopeduncular nucleus. Projections of the tectum reach the contralateral side via the supraoptic decussation and are less dense contralaterally than ipsilaterally. Descending projections resulting from tectal lesions include: (1) a tectal commissural pathway to the core of the torus longitudinalis bilaterally and the contralateral tectum and torus semicircularis; and (2) a pathway leaving the tectum laterally from which fibers terminate in the ipsilateral torus semicircularis, an area lateral to the nucleus of the medial longitudinal fasciculus, lateral tegmental nucleus, nucleus lateralis valvulae, nucleus isthmi and the reticular formation. A component of this bundle decussates at the level of the lateral tegmental nucleus to project to the contralateral reticular formation.

On the basis of comparisons of these findings with the pattern of retinal projections in gars and other data, it is argued that the nuclei previously called the lateral geniculate and rotundus in fish are not the homologues of the nuclei of those names in land vertebrates but are rather pretectal cell groups. The overall organization of both retinal and tectal projections in gars is strikingly similar to that in land vertebrates; at present, the best candidate for a rotundal homologue is the dorsal posterior nucleus.  相似文献   


5.
Suction lesions were placed in the optic tecta of 36 blind cave fish. Three main bundles of tectal efferents were observed. A large, caudally directed fascicle distributes to the ipsilateral torus semicircularis, nucleus isthmi, and lateral tegmental areas of the mesencephalon and pons via the ipsilateral tectobulbar tract. Contralaterally, this fascicle descends to pontine levels as the contralateral tectobulbar tract. A second, rostrally directed bundle exits from the tectum at two levels. A small fascicle leaves from the caudal tectum and ascends rostrally as the commissura transversa. This bundle then joins with more rostrally exiting fibers and the combined fascicles collect in the area of the medial optic tract. They remain in this position until the level of the postoptic commissure where they decussate. Subsequently, this bundle moves caudally and enters the contralateral tectum at its most rostral extreme. The third bundle of tectofugal efferents leaves the tectum medially, at the level of the lesion, and enters the tectal commissure, through which it is distributed to the ipsilateral torus longitudinalis and contralateral optic tectum.  相似文献   

6.
Tectal connections were studied in two urodele species following horseradish peroxidase injections into the tectum opticum. In both species retrogradely labelled cells were observed: ipsilaterally in the corpus striatum, lateral amygdala, ventral and dorsal thalamus and nucleus of DARKSCHEWITSCH--bilaterally in the pretectal nucleus, dorsal tegmentum and nucleus reticularis medius--contralaterally in the tectum opticum and area octavo lateralis. Besides these nuclei the nucleus isthmi was bilaterally labelled. Rostral efferent projections of the tectum opticum terminated in the ipsilateral pretectal area and the ipsilateral dorsal and ventral thalamus ipsilaterally coursing to the contralateral tectum via the commissura postoptica. Caudal efferents formed the bilaterally organized tecto-bulbar tracts innervating the rhombencephalon. Comparison of the results of a series of tectal horseradish peroxidase injections differing in depth, tangential extension and location, indicated that tectal afferents from the telencephalon, the contralateral tectum opticum and the medulla were sparse and widely branching. Projections of the telencephalon and all diencephalic nuclei terminated deep in the rostral tectum opticum. Projections of the medulla terminated preferentially deep in the caudal tectum opticum. The tecto-isthmic projection was highly topographic forming a layered terminal field lateral to the nucleus isthmi. The isthmo-tectal projection innervated the whole tectum opticum on the ipsilateral side and was highly topographic. On the contralateral side the caudal part of the tectum opticum was not innervated. The isthmo-tectal fibers terminated superficially in the tectum opticum on both sides of the brain. The nucleus isthmi identified here is proposed to be homologe to that of other vertebrates.  相似文献   

7.
Crotaline snakes have detectors for infrared radiation and this information is projected to the optic tectum in a spatiotopic manner. The tectal projections were examined in Crotalus viridis with the use of silver methods for degenerating fibers and the autoradiographic and horseradish peroxidase tracing methods. Large lesions included all of the tectal layers but not the underlying structures. Projections to the thalamus include a sparse input to the ipsilateral ventral and dorsal lateral geniculate nuclei, the ventromedial nucleus, and nucleus lentiformis thalami. Nucleus rotundus was not detected. The projections to the pretectal nuclei are primarily ipsilateral to the nucleus lentiformis mesencehali and pretectal nucleus. At the level of the mesencephalon, tectal efferents are bilateral to nucleus profundus mesencephali and the tegmentum. There is minimal input to the contralateral deep tectal layers. There are ispilateral terminations in a nucleus identified as the posterolateral tegmental nucleus. Descending fibers include the two major tracts—the ventral tectobulbar tract that terminates in the ipsilateral lateral reticular formation and the predorsal bundle that distributes throughout the contralateral medial reticular formation. Two small descending tracts were noted—the intermediate and dorsal tectobulbar tracts. All of these descending tracts appear to terminate by the time they reach the caudal medulla. After superficial lesions terminals could be found in the ventral lateral geniculate nucleus, the nucleus profundus mesencephali, and the posterolateral tegmental nucleus; the two major descending tracts contained degenerated fibers as well. The areas receiving tectal input in Crotalus were compared to those of other reptiles and discussed.  相似文献   

8.
Visual projections in lamprey were investigated using two methods,--one by revealing transport of horseradish peroxidase, and the other by silver impregnation of degenerating axons and terminals after enucleation of the eye. Both methods produced similar results. The chiasm showed incomplete crossing of retinal fibres, the major part of which, as an optic tract, proceed along the contralateral thalamus up to the entry into the optic tectum, while the smaller part takes the same course on the ipsilateral side. Besides, from the posterior part of the optic chiasm an axial optic tract branches off, which proceeds through the central part of the contralateral thalamus up to the pretectal nucleus, individual fibres of which enter the central grey layer of the optic tectum. On the contralateral side, the visual projections are localized in the lateral geniculate body, pretectal nucleus, in the three upper layers of the optic tectum, in the ventrolateral area of the optic tectum and as solitary diffuse projections in the mesencephalic tegmentum. Innervation of thalamic and pretectal nuclei are realized by two tracts--the tractus opticus proper, and tractus opticus axialis. On the ipsilateral side visual projections, excepting the optic tract, are scarce and in the thalamus appear as small areas of the lateral geniculate body and pretectum adjacent to the optic tract. Solitary visual projections were found in two upper layers of the rostral optic tectum and in larger numbers in the 3rd and 4th layers of the caudal part and in ventrolateral area of the optic tectum. Projections in mesencephalic tegmentum were single. Diffuse visual projections in the lateral part of hypothalamus could be revealed only by the silver impregnation method. Using the peroxidase method two types of cells were observed in mesencephalic tegmentum where, possibly, the centrifugal fibres proceeding to retina, originate. A comparison is made of central visual projections in lampreys and other representatives of nonmammalian vertebrates.  相似文献   

9.
Afferent pathways to the optic tectum in the longnose gar were determined by unilateral tectal injections of HRP. Retrogradely labeled cells were observed in the ipsilateral caudal portion of the rostral entopeduncular nucleus and bilaterally in the rostral half of the lateral zone of area dorsalis of the telencephalon. The following diencephalic cell groups were also labeled following tectal injections: the ipsilateral anterior, ventrolateral, and ventromedial thalamic nuclei, the periventricular pretectal nucleus, and the central pretectal nucleus (bilaterally); the ventromedial thalamic and central pretectal nuclei revealed the largest number of labeled cells. At midbrain levels, retrogradely labeled cells were seen in the ipsilateral torus longitudinalis, nucleus isthmi, and accessory optic nucleus; cells were labeled bilaterally in the torus semicircularis and a rostral tegmental nucleus. Only a few cells were labeled in the contralateral optic tectum, suggesting that few of the fibers of the intertectal commissure are actually commissural to the tectum. At hindbrain levels, retrogradely labeled cells were seen bilaterally in the locus coeruleus, the superior, medial, and inferior reticular formations, the eurydendroid cells of the cerebellum, and the nucleus of the descending trigeminal tract; the contralateral dorsal funicular nucleus also exhibited labeling. Clearly, the tectum in gars receives a substantial number of nonvisual afferents from all major brain areas, most of which have been reported in other vertebrates. The functional significance of these afferent sources and their probable homologues in other vertebrate groups are discussed.  相似文献   

10.
Retinofugal pathways in the painted turtle were examined with autoradiographic and HRP methods. The majority of the retinal fibers decussate at the optic chiasm and course caudally to terminate in 12 regions of the diencephalon and mesencephalon. The pars dorsalis of the lateral geniculate nucleus is the densest target in the thalamus. Two nuclei dorsal to pars dorsalis—the dorsal optic and dorsal central nuclei—receive optic input. Three nuclei ventral to pars dorsalis are retinal targets—the ventral geniculate nucleus, nucleus ventrolateralis pars dorsalis, and nucleus ventrolateralis pars ventralis. Contralateral fibers course through the pretectum where they terminate in nucleus geniculatis pretectalis, nucleus lentiformis mesencephali, nucleus posterodorsalis, and the external pretectal nucleus. Retinal fibers also terminate within the superficial zone of the optic tectum. HRP material demonstrates three optic fiber layers—laminae 9, 12, and 14. Optic fibers leave the main optic tract as a distinct accessory tegmental optic pathway and terminate in the basal optic nucleus. Ipsilateral retinal terminals occur in a pars dorsalis and a pars ventralis of the lateral geniculate nucleus, the dorsal optic nucleus, nucleus posterodorsalis, the basal optic nucleus, and in laminae 9 and 12 of the optic tectum. Rostrally, the ipsilateral tectal fibers occupy two zones along the medial and lateral tectal roof; these zones converge caudally and are continuous along the caudal wall of the tectum.  相似文献   

11.
The freshwater butterfly fish, Pantodon buchholzi, is a member of the most primitive radiation of teleosts. The retinofugal projections were studied in this fish with autoradiographic and horseradish peroxidase (HRP) methods, and the cytoarchitecture of the retinorecipient regions in the diencephalon and pretectum was analyzed with Bodian-, cresylecht-violet- and acetylcholinesterase-reacted sections. The rostral diencephalon of Pantodon contains a large retinorecipient nucleus, not previously identified in any other fish, i.e. nucleus rostrolateralis. Other nuclei that are described correspond to those previously recognized in other species. The majority of retinorecipient nuclei are positive for acetylcholinesterase, particularly those in the pretectum, as has been found in other species of teleosts. Most of the retinofugal fibers decussate in the optic chiasm. Some fibers project via the axial optic tract to preoptic nuclei and a region in the rostral hypothalamus. Fibers leave the medial optic tract to terminate in nucleus rostrolateralis and in dorsal and ventral thalamic nuclei, accessory optic and tubercular nuclei, periventricular and central pretectal nuclei, and sparsely in the deep tectal fascicle and terminal field. Dorsal optic tract fibers project to the dorsal accessory optic nucleus, superficial and central pretectal nuclei, and superficial and deep tectal layers. Ventral optic tract fibers project to the superficial pretectum, accessory optic nuclei, posterior tuberculum, nucleus corticalis in the central pretectum, and superficial tectal layer. Fibers that remain in the ipsilateral optic tract project to most of the targets reached by contralaterally projecting fibers. A few fibers in the contralateral medial optic tract redecussate via the posterior commissure to reach the ipsilateral periventricular pretectum. No labeled retinopetal cells caudal to the olfactory bulb were identified in any of the HRP cases.  相似文献   

12.
The retinofugal and retinopetal projections of the cichlid fish Astronotus ocellatus were studied by applying cobaltous-lysine to the optic nerve. Retinal axons terminate bilaterally in a preoptic-suprachiasmatic region between the base of the third ventricle and the anterior genu of the horizontal commissure and among periventricular cells along the sides of the ventricle. Other retinal axons innervate the tuberal region of the hypothalamus anterior to the infundibulum. Targets innervated in the pretectum include nucleus lateralis geniculatus and dorsal, medial, and ventral pretectal nuclei. Three other targets (nucleus opticus dorsolateralis, nucleus opticus commissurae posterior, nucleus opticus ventrolateralis) are innervated by fibers that leave the medial edge of the dorsal optic tract. Two other targets (basal optic nucleus and accessory optic nucleus) are innervated by fibers from the ventral optic tract. These retinal projections are similar to those previously reported for goldfish in an experiment that used the cobaltous-lysine method (Springer and Gaffney, J. Comp. Neurol. 203:401-424, '81). Retinotectal optic axons were found in a superficial lamina just above the stratum opticum, in the stratum opticum, in three layers of the stratum fibrosum et griseum superficiale, in a lamina just beneath the stratum fibrosum et griseum superficiale, and in the stratum album centrale just above the stratum periventriculare. This result is similar to that previously reported for goldfish; however, the spatial relationships between the various retinorecipient laminae differ for goldfish and Astronotus ocellatus. Efferents to the retina originate in two nuclei and both project contralaterally. The first is the nucleus olfactoretinalis, which is located ventrally between the olfactory lobe and telencephalon. It consists of about 400 cells, of which, approximately 200 cells project to the retina. The second retinopetal nucleus, nucleus thalamoretinalis, is a diffuse group of about 200 cells that project to the retina.  相似文献   

13.
Retinofugal pathways in fetal and adult spiny dogfish were determined by intraocular injection of [3H]proline for autoradiography. Distribution and termination of the primary retinal efferents were identical in pups and adults. The retinal fibers decussate completely, except for a sparse ipsilateral projection to the caudal preoptic area. The decussating optic fibers terminate ventrally in the preoptic area and in two rostral thalamic areas, a lateral neuropil area of the dorsal thalamus and more ventrally in the lateral half of the ventral thalamus. At this same rostral thalamic level, a second optic pathway, the medial optic tract, splits from the lateral marginal optic tract and courses dorsomedially to terminate in the rostral tectum and the central and periventricular pretectal nuclei. The marginal optic tract continues caudally to terminate in a superficial pretectal nucleus and also innervates the superficial zone of the optic tectum. A basal optic tract arises from the ventral edge of the marginal optic tract and courses medially into the central pretectal nucleus, as well as continuing more caudally to terminate in a dorsal neuropil adjacent to nucleus interstitialis and in a more ventrally and medially located basal optic nucleus.Comparison of the retinofugal projections of Squalus with those of other sharks reveals two grades of neural organization with respect to primary vusula projections. Squalomorph sharks possess a rostral dorsal thalamic nucleus whose visual input is primarily, if not solely, axodendritic, and an optic tectum in which the majority of the cell bodies are located deep to the visual terminal zone. In contrast, galeomorph sharks are characterized by an enlarged and migrated rostrodorsal thalamic visual nucleus, and an optic tectum in which the majority of the cell bodies are located within the visual terminal zone. These data suggest that evolution of primary visual pathways in sharks occurs by migration and an increase in neuronal number, rather than by the occurence of new visual pathways.  相似文献   

14.
Efferents revealed by degeneration staining following tectal lesions in goldfish are presented. Four major projections were found. Ascending ipsilateral projections to pretectal-diencephalic areas exit the tectum rostrally and laterally and terminate in the area pretectalis (AP), lateral geniculate (LGN), nucleus pretectalis (NP), and nucleus rotundus (NR). Ascending contralateral projections exit rostrally and possibly laterally, enter the posterior and postoptic commissures and terminate in the contralateral AP, LGN, NP, NR, and rostral tectum. A medially directed projection enters the intertectal commissure, and some of these fibers may terminate sparsely in an area of the contralateral tectum homotopic to the lesion. A descending projection exits the tectum laterally and projects ipsilaterally to a dorsolateral tegmental nucleus (DLT) and the lateral reticular formation of the tegmentum and pons, and contralaterally to the medial reticular formation of the tegmentum and pons.  相似文献   

15.
The localisation of the primary visual centres in the chick mesencephalon and diencephalon was determined by autoradiographic anterograde transport and degeneration techniques. Strong visual projections were found in the tectum, lateral anterior thalamic nucleus, lateroventral geniculate nucleus, superficial synencephalic nucleus, external nucleus, ectomammillary nucleus, tectal grey, dorsolateral anterior thalamus, rostrolateral part, and the pretectal optic area. Weaker retinal projections were found in the ventrolateral thalamus, two subregions of the dorsolateral anterior thalamus, lateral part, diffuse pretectal nucleus, dorsolateral anterior thalamus, magnocellular part, and the hypothalamus. An atlas of the retinal projections was constructed from sections.  相似文献   

16.
Visual information reaches the dorsal thalamus by two distinct routes in most reptiles. Retinal efferents terminate directly in the dorsal lateral geniculate nucleus (DLGN). Retinal information is also channeled indirectly through the tectum to nucleus rotundus. Retinal projections to DLGN and tectum are also well esablished in snakes, but the status of the tecto-rotundal link of the indirect visual pathway is uncertain. Thus, tectal efferents were studied with Fink-Heimer methods in banded water snakes (Natrix sipedon). The tectum gives rise to crossed and uncrossed projections to the brainstem reticular formation. Commissural connections are effected with the contralateral tectum via the tectal and osterior commissures. tectum projects densely to the ipsilateral basal optic nucleus. Bilateral ascending projections reach the pretectal area, nucleus lentiformis mesencephali, lateral habenular nuclei, and posterodorsal nuclei. Ascending projections reach the ventral lateral geniculate and suprapeduncular nuclei. there is a diffuse projection to the central part of the caudal thalamus and a dense, bilaternal projection to the DLGN. These results indicate that the relation of the tectum to the dorsal thalamus is different in snakes than in other reptiles. Nucleus rotundus is either absent or poorly differentiated and there is a strong convergence of the direct and indirect visual pathways at DLGN.  相似文献   

17.
Retinal projections were studied in four species of gymnotid fishes, Gymnotus carapo, Hypopomus artedi, Eigenmannia virescens and Sternopygus sp. with the aid of cobalt or HRP labelling and autoradiographic techniques. The optic tract gives off a small branch, the axial optic tract and then, after crossing in the midline, splits into a dorsomedial, dorsal and ventral fascicle. E. virescens and Sternopygus sp. display in addition an accessory optic tract. In all four species retinal projections are bilateral; ipsilateral projections, however, are extremely sparse. In all four species, the retinal fibres terminate bilaterally in the suprachiasmatic nucleus, dorsolateral optic nucleus of the thalamus and the optic nucleus of the posterior commissure; a bilateral retinotectal projection was only found in E. virescens and G. carapo. Retinal projections are only contralateral to the ventromedial nucleus of the thalamus, the central pretectal nucleus and the accessory optic nucleus. The contralateral retinotectal fibres terminate in the stratum fibrosum and griseum superficiale, and in the stratum album centrale and stratum periventriculare. A small accessory optic tract and nucleus were detected in E. virescens and Sternopygus sp. but not in G. carapo and H. artedi. The results indicate that the visual system of gymnotid fish is as simple as that of mormyrids. The poor visibility in the environment where these animals live and the additional sensory system which these animals possess may explain the poor development of the visual system.  相似文献   

18.
Following horseradish peroxidase injections into the optic tectum of a teleost,Navodon modestus, reciprocal and topographic projections between the nucleus isthmi and the ipsilateral optic tectum were determined. The isthmo-tectal fibers diverge to the optic tectum while maintaining the spatial arrangements of the isthmic cells from which the fibers originate. The tecto-isthmic projections also keep the spatial arrangements in the optic tectum. The tectal fibers converge near the nucleus isthmi and terminate in the non-cellular portion of the nucleus. The reciprocal topography is apparent in the combined results of 9 experiments with one tectal injection in each region. No labeled cells and fibers were found in the contralateral nucleus isthmi.  相似文献   

19.
Cell counts in various fiber bundles of the goldfish brain have demonstrated a profound, but transient gliosis of tectal (and pretectal) efferent pathways following removal of a tectal lobe. In the majority of cases, the pathways which underwent gliosis were also those which were penetrated by regenerating optic fibers which had been sectioned by the tectal surgery. However, the dorsal trunk of the horizontal commissure on the intact side of the brain showed only a minimal gliotic response but was consistently innervated by the optic fibers. Conversely, the ansate commissure and the crossed tectobulbar tract invariably demonstrated a marked gliotic response but only rarely received more than minimal innervation by the regenerating fibers.These observations are discussed with regard to the modifications which they demand of the hypothesis that degenerating axon bundles in the goldfish brain are in some way attractive to regenerating axons.  相似文献   

20.
Retinal projections in a sturgeon were studied by injecting biocytin or HRP into the optic nerve. The target areas are the preoptic area, thalamus, area pretectalis, nucleus of posterior commissure, optic tectum, and nuclei of the accessory optic tract. Furthermore, a few labeled fibers and terminals were found in a ventrolateral area of the caudal telencephalon. All retinal projections are bilateral, although contralateral projections were more heavily labeled. Retrogradely labeled neurons were found in the ventral thalamus bilaterally. Retinal projections in sturgeons are similar to those of other non-teleost actinopterygians and chondrichthyans (sharks), in terms of the targets and extent of bilateral projections. Distribution patterns of ganglion cells in the retina were examined in Nissl-stained retinal whole mount preparations. The highest density areas were found in the temporal and nasal retinas, and a dense band of ganglion cells was observed along the horizontal axis between the nasal and temporal areas of highest density. The density of ganglion cells in the dorsal retina is the lowest. The total number of ganglion cells was estimated to be about 5 x 10(4) in a retina. The existence of a low density area in the dorsal retina suggests reduced visual acuity in the ventral visual field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号