首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of this study was to test whether screening at dopamine receptors performed with a recently described functional assay for G-protein coupled receptors (GPCRs) provides data that correlate significantly with radioligand binding data in the literature, thus possibly allowing researchers to replace radioligand binding with nonradioactive functional screening. Human dopamine receptors hD1 and hD2L (representing Gs [hD1] or G [hD2L] coupled GPCRs) were recombinantly expressed in human embryonic kidney (HEK293) cells. Cells were loaded with Oregon Green 488 BAPTA-1/AM and evenly distributed in 384 well plates. Seventeen test compounds were screened for agonistic activity by injection into the cell suspension and monitoringH of intracellular Ca2+ with a fluorescence microplate reader. Then, standard agonists (100nM SKF38393 for hD1, 30nM quinpirole for hD2L) were injected into wells preincubated with test compounds (screening for antagonism). Injection of various agonists resulted in a concentration-dependent increase in fluorescence. Further, preincubation of antagonists with dopamine receptor expressing cells inhibits concentration-dependent the agonist-induced increase in fluorescence. Calculated apparent functional Ki values correlate with radioligand binding data in the literature (r2=0.7796 for D1, r2=0.7743 for D2). The correlation between apparent functional K values and radioligand binding data for the 17 tested compounds suggests that screening of test compounds at dopamine receptors with the functional Ca2+ assay can replace radioligand binding studies. Furthermore, besides apparent K values, information about agonistic or antagonistic properties of a test compound can be obtained with the functional Ca2+ assay.  相似文献   

2.
The potent, conformationally biased C5a agonist peptide YSFKPMPLaR (C5a65–74, Y65, F67, P69, P71, D-Ala73) was used as a template to gain insight into the nature and importance of lysine at position 68 in the peptide-receptor interaction. A panel of YSFKPMPLaR analogs with systematic substitutions for Lys68 was evaluated for C5a receptor (C5aR) binding affinity and activation in two well-characterized assay systems: human polymorphonuclear leukocytes (PMNs) and human fetal artery. In addition, we determined the activity of these new analogs in transfected rat basophilic leukemia (RBL) cells in which the Glu at position 199 of the C5aR (wtGlu199) was replaced by a Gln (C5aR-Gln199) or a Lys (C5aR-Lys199). Our results indicated that Lys68 in YSFKPMPLaR plays an important role in binding the C5aR expressed on PMNs and RBL cells. Furthermore, the data indicated that Lys68 interacted with Glu199 of the C5aR in PMNs and RBL cells. In human fetal artery, however, Lys68 substitutions had little or no effect on activity, which suggested that the receptor conformation may be different in this tissue. Thus, the interaction between Lys68 of the decapeptide agonist and Glu199 of the C5aR may be cell type-specific and may form the molecular basis for tissue-specific responses to C5a agonists.  相似文献   

3.
Human C5a is a plasma protein with potent chemoattractant and pro-inflammatory properties, and its overexpression correlates with severity of inflammatory diseases. C5a binds to its G protein-coupled receptor (C5aR) on polymorphonuclear leukocytes (PMNLs) through a high-affinity helical bundle and a low-affinity C terminus, the latter being solely responsible for receptor activation. Potent and selective C5a antagonists are predicted to be effective anti-inflammatory drugs, but no pharmacophore for small molecule antagonists has yet been developed, and it would significantly aid drug design. We have hypothesized that a turn conformation is important for activity of the C terminus of C5a and herein report small cyclic peptides that are stable turn mimics with potent antagonism at C5aR on human PMNLs. A comparison of solution structures for the C terminus of C5a, small acyclic peptide ligands, and cyclic antagonists supports the importance of a turn for receptor binding. Competition between a cyclic antagonist and either C5a or an acyclic agonist for C5aR on PMNLs supports a common or overlapping binding site on the C5aR. Structure-activity relationships for 60 cyclic analogs were evaluated by competitive radioligand binding with C5a (affinity) and myeloperoxidase release (antagonist potency) from human PMNLs, with 20 compounds having high antagonist potencies (IC(50), 20 nM-1 microM). Computer modeling comparisons reveal that potent antagonists share a common cyclic backbone shape, with affinity-determining side chains of defined volume projecting from the cyclic scaffold. These results define a new pharmacophore for C5a antagonist development and advance our understanding of ligand recognition and receptor activation of this G protein-coupled receptor.  相似文献   

4.
In previous reports, [3H]5-HT has been used to characterize the pharmacology of the rat and human 5-HT2B receptors. 5-HT, the native agonist for the 5-HT2B receptor, has a limitation in its usefulness as a radioligand since it is difficult to study the agonist low-affinity state of a G protein-coupled receptor using an agonist radioligand. When using [3H]5-HT as a radioligand, rauwolscine was determined to have relatively high affinity for the human receptor (Ki human = 14.3 ± 1.2 nM, compared to Ki rat = 35.8 ± 3.8 nM). Since no known high affinity antagonist was available as a radioligand, these studies were performed to characterize [3H]rauwolscine as a radioligand for the cloned human 5-HT2B receptor expressed in AV12 cells. When [3H]rauwolscine was initially tested for its usefulness as a radioligand, complex competition curves were obtained. After testing several α2-adrenergic ligands, it was determined that there was a component of [3H]rauwolscine binding in the AV12 cell that was due to the presence of an endogenous α2-adrenergic receptor. The α2-adrenergic ligand efaroxan was found to block [3H]rauwolscine binding to the α2-adrenergic receptor without significantly affecting binding to the 5-HT2B receptor and was therefore included in all subsequent studies. In saturation studies at 37° C, [3H]rauwolscine labeled a single population of binding sites, Kd = 3.75 ± 0.23 nM. In simultaneous experiments using identical tissue samples, [3H]rauwolscine labeled 783 ± 10 fmol of 5-HT2B receptors/mg of protein, as compared to 733 ± 14 fmol of 5-HT2B receptors/mg of protein for [3H]5-HT binding. At 0° C, where the conditions for [3H]5-HT binding should label mostly the agonist high affinity state of the human 5-HT2B receptor, [3H]rauwolscine (Bmax = 951 ± 136 fmol/ mg), again labeled significantly more receptors than [3H]5-HT (Bmax = 615 ± 34 fmol/mg). The affinity of [3H]rauwolscine for the human 5-HT2B receptor at 0° C did not change, Kd = 4.93 ± 1.27 nM, while that for [3H]5-HT increased greatly (Kd at 37° C = 7.76 ± 1.06 nM; Kd at 0° C = 0.0735 ± 0.0081 nM). When using [3H]rauwolscine as the radioligand, competition curves for antagonist structures modeled to a single binding site, while agonist competition typically resulted in curves that best fit a two site binding model. In addition, many of the compounds with antagonist structures displayed higher affinity for the 5-HT2B receptor when [3H]rauwolscine was the radioligand. Typically, ∼ 85% of [3H]rauwolscine binding was specific binding. These studies display the usefulness of [3H]rauwolscine as an antagonist radioligand for the cloned human 5-HT2B receptor. This should provide a good tool for the study of both the agonist high- and low-affinity states of the human cloned 5-HT2B receptor. Received: 26 June 1997 / Accepted: 30 August 1997  相似文献   

5.
A high throughput assay for measuring tau aggregation using fluorescent resonance energy transfer (FRET) is described. Full-length recombinant tau labeled with Cy3 or Cy5 dye is used as ligand, and the induction of aggregation is accomplished by the addition of arachidonic acid. In the presence of this fatty acid, tau aggregation is measured by FRET in a 384-well format. The nature of tau aggregation is further characterized by competition with unlabeled tau and cross-linking experiments. It is concluded that the FRET observed under the experimental condition is due to the accumulation of tau dimers and tetramers. A model for tau aggregation is presented. The performance of this assay in a high throughput format is demonstrated and can be used to identify inhibitors of tau aggregation.  相似文献   

6.

Aim:

Staphylococcus aureus evades host defense through releasing several virulence proteins, such as chemotaxis inhibitory protein of staphylococcus aureus (CHIPS). It has been shown that extracellular N terminus of C5a receptor (C5aR) forms the binding domain for CHIPS, and tyrosine sulfation is emerging as a key factor in determining protein-protein interaction. The aim of this study was to evaluate the role of tyrosine sulfation of N-terminal of C5aR in its binding with CHIPS.

Methods:

Expression plasmids encoding C5aR and its mutants were prepared using PCR and site-directed mutagenesis and were used to transfect HEK 293T cells using calcium phosphate. Recombinant CHIPS protein was purified. Western blotting was used to examine the binding efficiency of CHIPS to C5aR or its mutants.

Results:

CHIPS exclusively binds to C5aR, but not to C5L2 or C3aR. A nonspecific sulfation inhibitor, sodium chlorate (50 nmol/L), diminishes the binding ability of C5aR with CHIPS. Blocking sulfation by mutation of tyrosine to phenylalanine at positions 11 and 14 of C5aR N terminus, which blocked sulfation, completely abrogates CHIPS binding. When tyrosine 14 alone was mutated to phenylalanine, the binding efficiency of recombinant CHIPS was substantially decreased.

Conclusion:

The results demonstrate a structural basis of C5aR-CHIPS association, in which tyrosine sulfation of N-terminal C5aR plays an important role. Our data may have potential significance in development of novel drugs for therapeutic intervention.  相似文献   

7.
A novel thiadiazole compound, SCH-202676 (N-(2,3-diphenyl-1,2, 4-thiadiazol-5-(2H)-ylidene)methanamine), has been identified as an inhibitor of both agonist and antagonist binding to G protein-coupled receptors (GPCRs). SCH-202676 inhibited radioligand binding to a number of structurally distinct, heterologously expressed GPCRs, including the human mu-, delta-, and kappa-opioid, alpha- and beta-adrenergic, muscarinic M1 and M2, and dopaminergic D1 and D2 receptors, but not to the tyrosine kinase epidermal growth factor receptor. SCH-202676 had no direct effect on G protein activity as assessed by [35S]guanosine-5'-O-(gamma-thio)triphosphate binding to purified recombinant G(oalpha)- or G(betagamma)-stimulated ADP-ribosylation of G(oalpha) by pertussis toxin. In addition, SCH-202676 inhibited antagonist binding to the beta2-adrenergic receptor expressed in Escherichia coli, a system devoid of classical heterotrimeric G proteins. SCH-202676 inhibited radiolabeled agonist and antagonist binding to the alpha2a-adrenergic receptor with an IC50 value of 0.5 microM, decreased the Bmax value of the binding sites with a slight increase in the KD value, and inhibited agonist-induced activation of the receptor. The effects of SCH-202676 were reversible. Incubation of plasma membranes with 10 microM SCH-202676 did not alter subsequent radioligand binding to the alpha2a-adrenergic receptor and the dopaminergic D1 receptor. Taken together, our data suggest that SCH-202676 has the unique ability to allosterically regulate agonist and antagonist binding to GPCRs in a manner that is both selective and reversible. The scope of the data presented suggests this occurs by direct interaction with a structural motif common to a large number of GPCRs or by activation/inhibition of an unidentified accessory protein that regulates GPCR function.  相似文献   

8.
The beta-adrenergic antagonist, [3H]dihydroalprenolol, was used to label binding sites in crude rat myocardial plasma membranes. The specificity of binding was dependent on the temperature of the assay. Specific binding at 22 and 37 degree C and at concentrations of radioligand less than 5 nM was consistent with binding to the myocardial beta-receptor. Binding sites labeled at 4 degree C possessed quite different properties. Binding was non-stereoselective and of lower affinity. Agonist compounds were much less effective at competing for the labeled myocardial sites at 4 degree C than at 22 degree C. Those beta-antagonists which additionally possess pharmacological "quinidine-like' activity (e.g. propranolol, alprenolol) were potent competitors at 4 degree C, but competition was non-stereoselective. In contrast atenolol, a beta-antagonist devoid of "quinidine-like' activity was ineffective at 4 degree C. Furthermore, procaine, and quinidine itself were potent competitors of [3H]dihydroalprenolol binding at 4 degree C. Thus the specificity of [3H]dihydroalprenolol binding to rat heart membranes at 4 degree C appears to be directed non-stereoselectively at that portion of the competing molecule which recognized "quinidine-like' as opposed to adrenergic activity.  相似文献   

9.
The affinities of putative serotonin receptor agonists and antagonists for 5-HT1A, 5-HT1B, 5-HT1C, and 5-HT2 receptors were assayed using radioligand binding assays. The 5-HT1 sites were labeled with the agonist radioligands [3H]-8-hydroxy-2-(di-n-propylamino)-tetralin [3H]-8-OH-DPAT, [3H]-5-HT, and [3H]mesulergine. The 5-HT2 receptor was labeled with the antagonist radioligand [3H]ketanserin or the agonist radioligand [3H]-4-bromo-2,5-dimethoxyphenylisopropylamine ([3H]DOB). The apparent 5-HT1 receptor selectivity of agonist compounds was found to be 50- to 100-fold higher when the 5-HT2 receptor affinity was determined using the antagonist radioligand [3H]ketanserin than when the agonist radioligand [3H]DOB was used. Quipazine, a putative specific 5-HT2 agonist, appeared to be only 3-fold more potent at 5-HT2 than at 5-HT1A receptors when [3H]ketanserin was used as the 5-HT2 radioligand. When [3H]DOB was used as the 5-HT2 radioligand, quipazine was determined to be 100-fold more potent at 5-HT2 receptors than at 5-HT1A receptors. 1-(3-trifluoromethylphenyl)piperazine (TFMPP), a putative specific 5-HT1B receptor agonist was apparently 10-fold more potent at 5-HT1B receptors than at 5-HT2 receptors when [3H]ketanserin was used as the 5-HT2 radioligand. When [3H]DOB was used as the 5-HT2 radioligand, TFMPP was found to be equipotent at 5-HT1B and 5-HT2 receptors. Using the 5-HT2 antagonist radioligand [3H]ketanserin, a similar pattern of underestimating 5-HT2 receptor selectivity and/or overestimating 5-HT1A or 5-HT1B receptor selectivity was observed for a series of serotonin receptor agonists. Antagonist receptor selectivity was not affected significantly by the nature of the 5-HT2 receptor assay used. These data indicate that, by using an antagonist radioligand to label 5-HT2 receptors and agonist radioligands to label 5-HT1 receptors, the 5-HT1 receptor selectivity may be overestimated. This may be an especially severe problem in serotonin drug development as drugs that interact potently with 5-HT2 receptors have been reported to be psychoactive and/or hallucinogenic.  相似文献   

10.
1. Potent and highly selective small molecule antagonists have recently been developed by us for C5a receptors (C5aR) on human polymorphonuclear leukocytes (PMN). In this study we compared a new cyclic antagonist, F-[OPdChaWR], with an acyclic derivative, MeFKPdChaWr, for their capacities to bind to C5aR on human PMN and human umbilical artery membranes. We also compared their inhibition of myeloperoxidase (MPO) secretion from human PMNs and their inhibition of human umbilical artery contraction induced by human recombinant C5a. 2. In both PMNs and umbilical artery, the cyclic and acyclic C5a antagonists displayed insurmountable antagonism against C5a. There were differences in selectivities for the C5aR with F-[OPdChaWR] (pKb 8.64+/-0.21) being 30 times more potent than MeFKPdChaWr (pKb 7.16+/-0.11, P<0.05) in PMNs, but of similar potency (pKb 8.19+/-0.38 vs pKb 8.28+/-0.29, respectively) in umbilical artery. This trend was also reflected in their relative binding affinities, both antagonists having similar affinities (-logIC50 values) for C5aR in umbilical artery membranes (F-[OPdChaWR], 7.00+/-0.46; MeFKPdChaWr, 7.23+/-0.17), whereas in PMN membranes the C5aR affinity of the cycle F-[OPdChaWR] (7.05+/-0. 06) was four times higher than that of acyclic MeFKPdChaWr (6.43+/-0. 24, P<0.05). 3. In summary, the results reveal that these antagonists are insurmountable in nature against C5a for C5aR on at least two human cell types, and the differences in relative receptor binding affinities and antagonistic potencies against C5a are consistent with differences in receptors within these cell types. The nature of these differences is yet to be elucidated.  相似文献   

11.
The time-resolved fluorescence (TRF) receptor binding assay has many advantages over the traditional radioligand binding assay in terms of sensitivity and reproducibility for the screening of receptor ligands. The TRF-based urotensin receptor (UT) binding assay with an automatic vacuum filtration system was developed and evaluated for the high-throughput screening of UT receptor antagonists. For this assay development, the human recombinant urotensin II (UII) was modified by labeling europium at its N-terminal position (Eu-UII) and used as a fluorescent tracer. The microsomal membrane fraction of UT receptor was prepared from HEK293 cells stably expressing the human UT receptor. The 50% inhibitory concentration (IC(50)) values of UII from competition binding assays with Eu-UII were 2.76 nM, which is very similar to that of fluorescence polarization (FP)-based UT receptor binding experiment (2.18 nM). Comparing with the FP-based receptor binding assay for UII (Z' factor, 0.36), the current TRF assay presented improved Z' factor (0.76) with a relatively higher signal-to-background ratio (1.5 and 2.1, respectively). The known high-affinity UT receptor antagonists, palosuran and SB657510, exhibited IC(50) values of 23.6 and 73.4 nM, respectively, which were consistent with the IC(50) values from FP-based receptor binding assay (30.6 and 78.7 nM, respectively). These results suggest that our filtration-based TRF UT receptor binding assay can achieve the desired sensitivity with higher reproducibility to adapt for the high-throughput screening of compound libraries.  相似文献   

12.
The characterization of [3H]pramipexole binding to bovine striatal membranes is reported in full experimental detail. According to kinetic experiments, saturation and competition studies a single binding site can be selectively labeled which turned out to be the high affinity D2 receptor. Addition of GPP(NH)P resulted in almost complete loss of specific binding. The bovine D2 subtype shows high sequence identity with the human D2 receptor indicating that the heterologous competition assays are of interest for the evaluation of neurotropic drug candidates. Using the representative D2 agonists (+)-7-OH-DPAT, (-)-3-PPP and (S)-7-dipropylaminotetrahydroindolizine the same rank order of affinities was determined as described for rat striata labeled with [3H]pramipexole, however, the Ki values turned out to be significantly higher. Furthermore, the system facilitates structure activity relationship studied on D2 affinity modulating peptides. Using L-prolyl-L-leucyl-glycinamide as an example a significant increase of specific radioligand binding could be measured.  相似文献   

13.
C5a是最重要的补体活化产物之一,它与相应的C5a受体结合被激活后,参与了多种疾病的病理过程,如急性肺损伤、脓毒血症、类风湿性关节炎、肾小球肾炎等疾病。如何阻断C5a信号的下传,从而减轻炎症反应一直是免疫学研究的热点问题。目前C5a和C5a受体的拮抗剂主要分为抗C5a抗体、小分子拮抗剂、C5a反义肽、C5a突变体和细菌来源的趋化抑制蛋白等。本文着重介绍C5a和C5a受体的结构与功能,以及相关拮抗剂的研究进展。  相似文献   

14.
BACKGROUND AND PURPOSE The adenosine A(2A) receptor belongs to the superfamily of GPCRs and is a promising therapeutic target. Traditionally, the discovery of novel agents for the A(2A) receptor has been guided by their affinity for the receptor. This parameter is determined under equilibrium conditions, largely ignoring the kinetic aspects of the ligand-receptor interaction. The aim of this study was to assess the binding kinetics of A(2A) receptor agonists and explore a possible relationship with their functional efficacy. EXPERIMENTAL APPROACH We set up, validated and optimized a kinetic radioligand binding assay (a so-called competition association assay) at the A(2A) receptor from which the binding kinetics of unlabelled ligands were determined. Subsequently, functional efficacies of A(2A) receptor agonists were determined in two different assays: a novel label-free impedance-based assay and a more traditional cAMP determination. KEY RESULTS A simplified competition association assay yielded an accurate determination of the association and dissociation rates of unlabelled A(2A) receptor ligands at their receptor. A correlation was observed between the receptor residence time of A(2A) receptor agonists and their intrinsic efficacies in both functional assays. The affinity of A(2A) receptor agonists was not correlated to their functional efficacy. CONCLUSIONS AND IMPLICATIONS This study indicates that the molecular basis of different agonist efficacies at the A(2A) receptor lies within their different residence times at this receptor.  相似文献   

15.
Fluorescence polarization (FP) assay has many advantages over the traditional radioreceptor binding studies. We developed an A2A adenosine receptor (AR) FP assay using a newly synthesized fluorescent antagonist of the A2AAR (MRS5346), a pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidin-5-amine derivative conjugated to the fluorescent dye Alexa Fluor-488. MRS5346 displayed a Ki value of 111 ± 16 nM in radioligand binding using [3H]CGS21680 and membranes prepared from HEK293 cells stably expressing the human A2AAR. In a cyclic AMP functional assay, MRS5346 was shown to be an A2AAR antagonist. MRS5346 did not show any effect on A1 and A3 ARs in binding or the A2BAR in a cyclic AMP assay at 10 μM. Its suitability as a fluorescent tracer was indicated in an initial observation of an FP signal following A2AAR binding. The FP signal was optimal with 20 nM MRS5346 and 150 μg protein/mL HEK293 membranes. The association and dissociation kinetic parameters were readily determined using this FP assay. The Kd value of MRS5346 calculated from kinetic parameters was 16.5 ± 4.7 nM. In FP competition binding experiments using MRS5346 as a tracer, Ki values of known AR agonists and antagonists consistently agreed with Ki values from radioligand binding. Thus, this FP assay, which eliminates using radioisotopes, appears to be appropriate for both routine receptor binding and high-throughput screening with respect to speed of analysis, displaceable signal and precision. The approach used in the present study could be generally applicable to other GPCRs.  相似文献   

16.
GPCRs represent important targets for drug discovery because GPCRs participate in a wide range of cellular signaling pathways that play a role in a variety of pathological conditions. A large number of screening assays have been developed in HTS laboratories for the identification of hits or lead compounds acting on GPCRs. One type of assay that has found relatively widespread application, due to its at least in part generic nature, relies on the use of a radioactive GTP analogue, [(35)S]GTPgammaS. The G-protein alpha subunit is an essential part of the interaction between receptor and G proteins in transmembrane signaling, where the activated receptor catalyzes the release of GDP from Galpha, thereby enabling the subsequent binding of GTP or a GTP analogue. [(35)S]GTPgammaS allows the extent of this interaction to be followed quantitatively by determining the amount of radioactivity associated with cell membranes. However, with the increased desire to move assays to nonradioactive formats, there is a considerable need to develop a nonradioactive GTP binding assay to monitor ligand-induced changes in GPCR activity. The Eu-GTP binding assay described here is based on TRF that exploits the unique fluorescence properties of lanthanide chelates, and provides a powerful alternative to assays using radioisotopes. In this article, we have used the human alpha(2A)-AR as a model GPCR system to evaluate the usefulness of this Eu-GTP binding assay.  相似文献   

17.
The novel, selective dopamine D3 receptor antagonist, S33084 [(3aR,9bS)-N[4-(8-cyano- 1,3a,4,9b-tetrahydro-3H-benzopyrano[3,4-c]pyrrole-2-yl)-butyl] (4-phenyl)benzamide], was tritium-labelled to 59 Ci/mmol specific activity. Determination of association and dissociation rate constants at recombinant, human (h) D3 receptors stably expressed in Chinese hamster ovary (CHO) cells yielded a Kd value (0.16 nM) comparable to that observed in saturation binding experiments (0.17 nM). The competition binding profile of [3H]S33084 with diverse D3 receptor agonists and antagonists correlated highly (0.99) with that of [3H]spiperone. In conclusion, [3H]S33084 is a highly potent and selective radioligand at dopamine D3 receptors, which should be of considerable use for their characterisation.  相似文献   

18.
The cyclic C5a receptor antagonist, phenylalanine [L-ornithine-proline-D-cyclohexylalanine-tryptophan-arginine] (F-[OPchaWR]), has approximately 1000-fold less affinity for the C5a receptor (C5aR) on murine polymorphonuclear leukocytes than on human. Analysis of C5aR from different species shows that a possible cause of this difference is the variation in the sequence of the first extracellular loop of the receptor. The mouse receptor contains Y at a position analogous to P(103) in the human receptor, and D at G(105). To test this hypothesis, we expressed human C5aR mutants (P(103)Y, G(105)D and the double mutant, P(103)Y/G(105)D) in RBL-2H3 cells and investigated the effects of these mutations on binding affinity and receptor activation. All three mutant receptors had a higher affinity for human C5a than the wild-type receptor, but showed no significant difference in the ability of F-[OPchaWR] to inhibit human C5a binding. However, all of the mutant receptors had substantially lower affinities for the weak agonist, C5a des Arg(74) (C5adR(74)), and two altered receptors (G(105)D and P(103)Y/G(105)D) had much lower affinities for the C-terminal C5a agonist peptide analogue, L-tyrosine-serine-phenylalanine-lysine-proline-methionine-proline-leucine-D-alanine-arginine (YSFKPMPLaR). Although it is unlikely that differences at these residues are responsible for variations in the potency of F-[OPchaWR] across species, residues in the first extracellular loop are clearly involved in the recognition of both C5a and C5a agonists. The complex effects of mutating these residues on the affinity and response to C5a, C5adR(74), and the peptide analogues provide evidence of different binding modes for these ligands on the C5aR.  相似文献   

19.
INTRODUCTION: A large number of drugs from a variety of pharmacological classes have been demonstrated to cause adverse effects on cardiac rhythm, including the life-threatening arrhythmia Torsades de Pointes. These side effects are often associated with prolongation of the QT interval and are mediated via blockade of the human ether-a-go-go related gene (hERG) encoded potassium channel. In order to manage this risk in the pharmaceutical industry it is desirable to evaluate QT prolongation as early as possible in the drug discovery process. METHODS: Here we describe the development of a 384-well fluorescence polarization (FP) binding assay compatible with high-throughput assessment of compound blockade of the hERG channel during the lead optimisation process. To characterise the fluorescent ligand that was developed, competition binding studies, kinetic studies and electrophysiology studies were performed. Furthermore, to validate the assay as a key screening method a series of competition binding studies were performed and correlated with functional data obtained via patch-clamp. RESULTS: Evaluation of the assay indicates that high quality data is obtained (Z'>0.6), that the K(i) values determined are equivalent to more traditional radiometric methods and that it is predictive for functional hERG blockade as assessed by patch clamp. DISCUSSION: Whilst FP assays, utilizing a variety of fluors, have become well established for the evaluation of G-protein-coupled receptor (GPCRs) and kinase ligand interactions, this technique has not been applied widely to the study of ion channels. Therefore, this represents a novel assay format that is amenable to the evaluation of thousands of compounds per day. Whilst other assay formats have proven predictive or high throughput, this assay represents one of few that combines both attributes, moreover it represents the most cost effective assay, making it truly amenable to early assessment of hERG blockade.  相似文献   

20.
A series of 5-N-methyl quindoline (cryptolepine) derivatives (2a- x) as telomeric quadruplex ligands was synthesized and evaluated. The designed ligands possess a positive charge at the 5- N position of the aromatic quindoline scaffold. The quadruplex binding of these compounds was evaluated by circular dichroism (CD) spectroscopy, fluorescence resonance energy transfer (FRET) melting assay, polymerase chain reaction (PCR) stop assay, nuclear magnetic resonance (NMR), and molecular modeling studies. Introduction of a positive charge not only significantly improved the binding ability but also induced the selectivity toward antiparallel quadruplex, whereas the nonmethylated derivatives tended to stabilize hybrid-type quadruplexes. NMR and molecular modeling studies revealed that the ligands stacked on the external G-quartets and the positively charged 5- N atom could contribute to the stabilizing ability. Long-term exposure of human cancer cells to 2r showed a remarkable cessation in population growth and cellular senescence phenotype and accompanied by a shortening of the telomere length.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号