首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
MLL gene rearrangements are associated with an extremely poor prognosis in infants with acute lymphoblastic leukemia (ALL), but little is known about their clinical significance in older children. Therefore, we studied 45 cases of childhood ALL with abnormalities of chromosome 11q23 for rearrangement of the MLL gene to determine if this feature confers a uniformly poor prognosis. MLL gene rearrangements were detected in all 18 cases with the common t(4;11), t(9;11) or t(11;19) translocations, whereas only 5 of 12 patients with either unbalanced or uncommon balanced translocations demonstrated a rearrangement. Abnormalities of the MLL gene were not detected in any of the 15 cases with a deletion or inversion of the chromosomes 11q23 region. The presence of an MLL rearrangement was significantly associated with age less than 1 year (P < .001), leukocyte count >50 x 10(9)/L (P = .003), and the absence of leukemic cell CD10 expression (P < .001). In a stratified statistical analysis adjusted for age and treatment protocol, MLL gene rearrangement was correlated with an inferior treatment outcome (P = .028). The 4-year event-free survival estimate (+/- SE) was 10% +/- 6.5% for cases with a rearranged MLL gene and 64% +/- 19.2% for other cases. When infants were excluded from the analysis, MLL rearrangement was still significantly associated with a poor outcome (P = .02), and remained so with the exclusion of t(4;11)- positive cases (P = .05). Thus, regardless of presenting age, MLL gene rearrangement identifies a high-risk subgroup of patients who are not likely to be cured with conventional treatment.  相似文献   

3.
Tumor-specific activation of the TAL1 gene occurs in approximately 25% of patients with T-cell acute lymphoblastic leukemia (T-ALL). The TAL1 gene products possess a basic helix-loop-helix (bHLH) domain that interacts in vitro with the bHLH proteins (E12 and E47) encoded by the E2A locus. We have now applied two independent methods, the two-hybrid procedure and co-immunoprecipitation analysis, to demonstrate that TAL1 and E2A polypeptides also associate in vivo. These studies show that the bHLH domain of TAL1 selectively interacts with the bHLH domains of E12 and E47, but not with the Id1 helix-loop-helix protein. TAL1 does not self-associate to form homodimeric complexes, implying that the in vivo functions of TAL1 depend on heterologous interaction with other bHLH proteins such as E12 and E47. Co-immunoprecipitation analysis revealed the presence of endogenous TAL1/E2A complexes in Jurkat cells, a leukemic line derived from a T-ALL patient. Thus, the malignant properties of TAL1 may be due to obligate interaction with the E2A polypeptides.  相似文献   

4.
Clonal T-cell receptor (TCR) gamma and delta gene rearrangements were studied in 40 T-ALL cases (pediatrics, 29; adults, 11) using PCR with homo-heteroduplex analysis. At least one clonal TCRG or TCRD rearrangement was detected in 34 (85%) cases. TCR gamma (TCRG) rearrangement was detected in 25 (62.5%) cases that included 16 (55%) pediatrics and 9 (81.8%) adults. TCR delta (TCRD) rearrangement was detected in 14/40 (35%) cases, which included 12 (41%) pediatrics and 2 (18%) adults. The frequency of VgammaI-Jgamma1.3/2.3 was significantly more in adults than pediatrics (81.8% vs. 41.3%, P=0.02). In TCRD, Vdelta1-Jdelta1 was rearranged in 10 (25%) cases. The surface membrane CD3 positive cases are significantly associated with absence of TCRD rearrangements (surface membrane CD3+ TCRdelta- 84% vs. surface membrane CD3- TCRdelta- 48%, P value=0.03). Junctional region sequence analyzed with 10 cases each, of TCRG and TCRD, revealed an average junctional region of 7.4 nucleotides (range 2-18 nucleotides) in TCRG and 27 nucleotides (range 14-42 nucleotides) in TCRD-complete rearrangements. In TCRG, trimming at the ends of Vgamma and Jgamma germline nucleotides resulted in deletion, on an average of 9.2 nucleotides. In TCRD, deletion of nucleotides of the Vdelta and Jdelta gene segments on an average was 3.5 nucleotides. The junctional region of TCRD is more diverse than TCRG; nevertheless, the frequency of TCRG was more than that of TCRD and hence we rely more on TCRG clonal markers to quantitate the minimal residual disease in T-ALL.  相似文献   

5.
Rearrangements of the T-cell receptor (TCR) and immunoglobulin genes are considered as useful clonal markers in lymphoproliferative disorders of B- and T-cell lineage, and are frequently used for the detection of minimal residual disease (MRD). In this paper, we report on the unexpected results of an extensive analysis of TCR-delta chain gene rearrangement frequencies and patterns in leukaemic bone marrow DNA samples collected from 438 children with initial (n = 112) or relapsed (n = 326) acute lymphoblastic leukaemia (ALL). By applying a previously described multiplex polymerase chain reaction, the overall incidence of non-deleted TCR-delta gene rearrangements in ALL was 47% (206/438), 52% in initial ALL (58/112) and 45% in relapsed ALL (148/326). As expected, the majority of B-cell precursor (BCP) ALL had incomplete Vdelta2-Ddelta3 or Ddelta2-Ddelta3 TCR-delta gene rearrangements, whereas most T-ALL showed complete rearrangements of the TCR-delta gene locus (Vdelta1-Jdelta1, Vdelta2-Jdelta1, Vdelta3-Jdelta1). However, unexpectedly, 5/206 rearranged TCR-delta alleles in BCP-ALL showed a complete Vdelta-(Ddelta)-Jdelta gene rearrangement pattern, and 3/31 T-ALL had an incomplete recombination. Theoretically, complete TCR-delta gene rearrangements should not occur in cells other than T-lymphocytes and have only been reported once previously in BCP-ALL. The data contribute to the discussion about the reliable screening for clonal markers in ALL.  相似文献   

6.
7.
Rearranged IGH genes were detected by Southern blotting in 22% of 118 cases of T-cell acute lymphoblastic leukemia (ALL) and involved monoallelic and biallelic rearrangements in 69% (18/26) and 31% (8/26) of these cases, respectively. IGH gene rearrangements were found in 19% (13/69) of CD3(-) T-ALL and in 50% of TCRgammadelta+ T-ALL (12/24), whereas only a single TCRalpha beta+ T-ALL (1/25) displayed a monoallelic IGH gene rearrangement. The association with the T-cell receptor (TCR) phenotype was further supported by the striking relationship between IGH and TCR delta (TCRD) gene rearrangements, ie, 32% of T-ALL (23/72) with monoallelic or biallelic TCRD gene rearrangements had IGH gene rearrangements, whereas only 1 of 26 T-ALL with biallelic TCRD gene deletions contained a monoallelic IGH gene rearrangement. Heteroduplex polymerase chain reaction (PCR) analysis with VH and DH family-specific primers in combination with a JH consensus primer showed a total of 39 clonal products, representing 7 (18%) VH-(DH-)JH joinings and 32 (82%) DH-JH rearrangements. Whereas the usage of VH gene segments was seemingly random, preferential usage of DH6-19 (45%) and DH7-27 (21%) gene segments was observed. Although the JH4 and JH6 gene segments were used most frequently (33% and 21%, respectively), a significant proportion of joinings (28%) used the most upstream JH1 and JH2 gene segments, which are rarely used in precursor-B-ALL and normal B cells (1% to 4%). In conclusion, the high frequency of incomplete DH-JH rearrangements, the frequent usage of the more downstream DH6-19 and DH7-27 gene segments, and the most upstream JH1 and JH2 gene segments suggests a predominance of immature IGH rearrangements in immature (non-TCRalpha beta+) T-ALL as a result of continuing V(D)J recombinase activity. More mature alpha beta-lineage T-ALL with biallelic TCRD gene deletions apparently have switched off their recombination machinery and are less prone to cross-lineage IGH gene rearrangements. The combined results indicate that IGH gene rearrangements in T-ALL are postoncogenic processes, which are absent in T-ALL with deleted TCRD genes and completed TCR alpha (TCRA) gene rearrangements.  相似文献   

8.
The large majority of childhood B-precursor cell acute lymphoblastic leukaemia cases present IgH and TCRδ gene rearrangements. These rearrangements have been widely used as specific markers for monitoring minimal residual disease. However, their prognostic value still remains unclear. In order to determine whether IgH and TCRδ gene rearrangements have any influence on relapse and event-free survival (EFS), we analysed the clinical impact of these genetic characteristics in 51 B-precursor acute lymphoblastic leukaemia patients. 46/51 patients (90.2%) showed IgH gene rearrangements by Southern blot and/or polymerase chain reaction (PCR) analysis. No statistically significant associations were found between IgH gene rearrangement pattern and age, sex, WBC count, immunophenotype, risk factor, relapse or EFS. 27/41 patients (66%) showed Vδ23 recombination by Southern blot and/or PCR analysis. At a median follow-up of 53 months the estimated 5-year EFS probability was 78 ± 3% for the whole group. The EFS probability among patients with a Vδ23 recombination pattern in the TCRδ locus was 90 ± 3%, whereas for patients without Vδ23 recombination was 39 ± 13% ( P  < 0.005).
IgH rearrangement patterns do not appear to influence relapse or EFS probability. However, TCRδ gene rearrangement patterns have a relevant impact on the relapse rate and the EFS probability. Patients with Vδ23 recombination have better clinical outcome than patients without this recombination, independent of any other prognostic factors.  相似文献   

9.
A 31 year-old male who was treated with radiation under the diagnosis of malignant lymphoma was admitted to our hospital because of systemic erythema and tumor of bilateral upper arms in October, 1987. Leucocyte count of peripheral blood showed 4,400/microliters with 36% leukemic cells and bone marrow was hypercellular with 85.6% leukemic cells. Leukemic cells were negative for peroxidase reaction and lineage specific monoclonal antibodies such as CD3, CD4, CD8, CD10, CD19 and CD20. T cell receptor (TCR) delta gene was rearranged but TCR beta, TCR gamma and immunoglobulin (Ig) genes were in germline configuration. He was treated with combination regimen of doxorubicin, vindesine, prednisolone and L-asparaginase, and complete remission was obtained. These observations suggest that TCR delta gene rearrangement is useful for determination of clonality in cases without rearrangements of the other TCR and Ig genes.  相似文献   

10.
Greenberg  JM; Kersey  JH 《Blood》1987,69(1):356-360
The nuclear enzyme terminal deoxynucleotidyl transferase (TdT) is thought to contribute to the diversity of certain immunoglobulin and T cell receptor gene rearrangements through the addition of random nucleotides at their variable (V)-joining (J) region junctions. An acute lymphoblastic leukemia (ALL) with an immature T cell phenotype (CD7+, CD5+, CD1+/-, CD2+/-, CD3-, CD4-, CD8-) was found to be TdT+ with germline immunoglobulin heavy chain, T cell receptor beta chain, and T cell gamma chain genes. The data indicate that TdT expression can precede T gamma and T beta rearrangement during T lymphoid ontogeny consistent with its proposed association with the T cell receptor rearrangement process. Southern analysis of certain cases of T-ALL may not result in the detection of a monoclonal population of cells.  相似文献   

11.
Fetal bone marrow B lineage cells representing multiple stages of B cell development were isolated by two-color cell sorting and analyzed for immunoglobulin H and T-cell receptor (TCR) gamma and delta gene rearrangements. Analysis of CD10+/surface mu- cells using a JH probe revealed a high frequency of rearrangements; some of these rearrangements used the 3' D region gene DQ52. Analysis of CD10+/surface mu- cells revealed no detectable TCR-gamma or -delta rearrangements, nor were TCR-delta rearrangements detected in CD10+/surface mu+ cells, despite the limited repertoire of these genes. These observations are surprising given the high frequency of TCR delta/gamma rearrangements in B cell precursor acute lymphoblastic leukemia, and identify a potential difference in patterns of gene rearrangement that distinguish normal and leukemic B cell precursors.  相似文献   

12.
Raghavachar  A; Thiel  E; Bartram  CR 《Blood》1987,70(4):1079-1083
As a clue to the cellular origin of leukemic populations in relapse we analyzed 11 cases of acute lymphoblastic leukemia (ALL) by immunological and molecular genetic approaches. Blast cells obtained from both initial diagnosis and relapse were immunophenotyped using a variety of monoclonal antibodies; simultaneously we hybridized Southern blots of respective cell samples to immunoglobulin (Ig) heavy and light chain as well as to T-cell receptor beta-chain (T beta) sequences. While similar phenotypes were observed in both states of nine cases, comparison of Ig gene rearrangements revealed clonal variations, ie, appearance of an evoluted or novel leukemic cell clone in relapse beside identical leukemic populations in both states. One pre-T (ALL) patient, presenting with germline configuration of T beta gene sequences at diagnosis, exhibited a rearrangement of T beta gene sequences in recurrent disease. Another patient displayed T-ALL phenotype and T beta gene rearrangement at diagnosis but relapsed with a very immature phenotype and germline configuration for T beta sequences. Our results emphasize the value of molecular analyses in order to unravel the nature of leukemic relapse.  相似文献   

13.
CEACAM family members are a set of widely expressed proteins involved in several biological functions, including cell adhesion, migration, signal transduction, and the regulation of gene expression. Abnormal overexpression and downregulation of some CEACAMs have been described in tumor cells. Monoclonal antibodies grouped in the CD66 cluster recognize CEACAM members. Ectopic CD66 expression is commonly detected in B-cell lineage acute lymphoblastic leukemia (ALL). To investigate the CEACAM messenger RNA (RNA) expression in leukemic blasts, we performed a quantitative polymerase chain reaction (RQ-PCR) analysis in purified RNA samples from a consecutive series of acute leukemias (135 patients). Most B-cell lineage ALL expressed CD66 (79.5%), whereas no single case of T-cell lineage ALL disclosed CD66 reactivity (0%). All the BCR-ABL+ ALL cases showed CD66 expression. CD66 was positive even in cases without CD10 expression (72.7%) and/or with MLL rearrangements. Despite the sharp contrast between T-ALL and B-ALL in CD66 reactivity, CEACAM patterns were comparable, and only minor differences for CEACAM1 and CEACAM8 were detected. All the leukemic samples showed overexpression of CEACAM6 and 8 when compared with normal granulocytes. These results were confirmed by dilutional experiments. The leukemic pattern paralleled the normal regenerating bone marrow with lower values for CEACAM1. In line with the results for CD66 reactivity, neoplastic cell lines had a uniform low expression of CEACAM family members. It remains to be investigated whether these CEACAM disturbances provide growth advantages to tumoral cells by inhibiting the anoikis process.  相似文献   

14.
15.
We examined the prognostic impact of CD2 antigen expression for 651 patients with T-lineage acute lymphoblastic leukemia (ALL), who were enrolled in front-line Childrens Cancer Group treatment studies between 1983 and 1994. There was a statistically significant correlation between the CD2 antigen positive leukemic cell content of bone marrow and probability of remaining in bone marrow remission, as well as overall event-free survival (EFS) (P = .0003 and P = .002, log-rank tests for linear trend). When compared with patients with the highest CD2 expression level (> 75% positivity), the life table relative event rate (RER) was 1.22 for patients with intermediate range CD2 expression level (30% to 75% positivity) and 1.81 for "CD2-negative" patients (< 30% positivity). At 6 years postdiagnosis, the EFS estimates for the three CD2 expression groups (low positivity to high positivity) were 52.8%, 65.5%, and 71.9%, respectively. CD2 expression remained a significant predictor of EFS after adjustment for the effects of other covariates by multivariate regression, with a RER of 1.47 for CD2- negative patients (P = .04). Analysis of T-lineage ALL patients shows a significant separation in EFS after adjustment for the National Cancer Institute (NCI) age and white blood cell (WBC) criteria for standard and high-risk ALL (P = .002, RER = 1.67). The determination of CD2 expression on leukemic cells helped identify patients with the better and poorer prognoses in both of these risk group subsets. For standard risk T-lineage ALL, CD2-negative patients had a worse outcome (P = .0007, RER = 2.92) with an estimated 5-year EFS of 55.9% as compared with 78.3% for the CD2-positive patients. Thus, CD2 negativity in standard risk T-lineage ALL identified a group of patients who had a worse outcome than high-risk T-lineage ALL patients who were CD2 positive. The percentage of CD2 antigen positive leukemic cells from T- lineage ALL patients is a powerful predictor of EFS after chemotherapy. This prognostic relationship is the first instance in which a biological marker in T-lineage ALL has been unequivocally linked to treatment outcome.  相似文献   

16.
We have studied the arrangement of the alpha, beta and gamma T cell receptor (TCR) genes in 27 patients with T cell lymphoproliferative disorders. Nine patients had acute lymphoblastic leukaemia (T-ALL), nine patients had prolymphocytic leukaemia (PLL), six patients presented with a T-CLL/T-lymphocytosis syndrome, two patients had Sezary syndrome (SS) and one patient had HTLV-I positive T-cell leukaemia/lymphoma (ATLL). alpha TCR gene rearrangement could be demonstrated by the use of three available probes in only one case. By contrast, both beta and gamma TCR gene rearrangement could be demonstrated by Southern blot analysis of DNA samples digested with appropriate restriction enzymes in the majority of cases. In general, when rearrangements were present they involved both alleles. The proportion of rearranged chromosomes was lower in T-ALL than in other forms of T-cell leukaemia and it was lower in cases with the CD4-/CD8+ phenotype than in those with a CD4+/CD8- phenotype. In three out of 34 cases of B-cell leukaemia the TCR beta-gene but not the TCR gamma-gene was rearranged, just as in two out of 26 cases of T-cell leukaemia the immunoglobulin (Ig) heavy chain but not the light chain genes were rearranged. These data suggest that development of the machinery required for gene rearrangement may precede commitment to B or T cell lineage. The use of this technique is especially useful for the classification of cases of ALL in which the cells are negative with respect to most current phenotypic markers and in cases of T cell lymphocytosis in which the finding of a gene rearrangement identifies a monoclonal cell population.  相似文献   

17.
Enforced BCL-2 gene expression in leukemic cell lines suppresses apoptosis and confers resistance to anticancer drugs, but the clinical significance of increased BCL-2 protein levels in acute lymphoblastic leukemia (ALL) is unknown. Among 52 children with newly diagnosed ALL, BCL-2 expression in leukemic lymphoblasts ranged widely, from 4,464 to 59,753 molecules of equivalent soluble fluorochrome per cell (MESF), as determined by flow cytometry. The mean (+/- SD) level of MESF in 43 cases of B-lineage ALL (19,410 +/- 11,834) was higher than that detected in CD10+ B-lymphoid progenitors from normal bone marrow (450 +/- 314; P < .001), and CD19+ peripheral blood B lymphocytes (7,617 +/- 1,731; P = .02). Levels of BCL-2 in T-ALL cases (17,909 +/- 18,691) were also generally higher than those found in normal CD1a+ thymocytes (1,762 +/- 670), or in peripheral blood T lymphocytes (9,687 +/- 3,019). Although higher levels of BCL-2 corresponded to higher leukemic cell recoveries after culture in serum-free medium, they did not correlate with higher cell recoveries after culture on stromal layers, or with in vitro resistance to vincristine, dexamethasone, 6- thioguanine, cytarabine, teniposide, daunorubicin or methotrexate. BCL- 2 protein levels did not correlate with presenting clinical features. Unexpectedly, however, lower-than-median MESF values were significantly associated with the presence of chromosomal translocations (P = .010). Notably, all six cases with the Philadelphia chromosome, a known high- risk feature, had low levels of BCL-2 expression (P = .022). Higher levels of BCL-2 were not associated with poorer responses to therapy among 33 uniformly treated patients, and were not observed in three patients studied at relapse. In conclusion, increased BCL-2 expression in childhood ALL appears to enhance the ability of lymphoblasts to survive without essential trophic factors, and is inversely related to the presence of chromosomal translocations. However, it does not reflect increased disease aggressiveness or resistance to chemotherapy.  相似文献   

18.
Cayuela  JM; Madani  A; Sanhes  L; Stern  MH; Sigaux  F 《Blood》1996,87(6):2180-2186
No constant genetic alteration has yet been unravelled in T-cell acute lymphoblastic leukemia (T-ALL), and, to date, the most frequent alteration, the SIL-TAL1 deletion, is found in approximately 20% of cases. Recently, two genes have been identified, the multiple tumor- suppressor gene 1 (MTS1) and multiple tumor-suppressor gene 2 (MTS2), whose products inhibit cell cycle progression. A characterization of the MTS locus organization allowed to determine the incidence of MTS1 and MTS2 inactivation in T-ALL. MTS1 and MTS2 configurations were determined by Southern blotting using 8 probes in 59 patients with T- ALL (40 children and 19 adults). Biallelic MTS1 inactivation by deletions and/or rearrangements was observed in 45 cases (76%). Monoallelic alterations were found in 6 cases (10%). The second MTS1 allele was studied in the 4 cases with available material. A point mutation was found in 2 cases. The lack of MTS1 mRNA expression was observed by Northern blot analysis in a third case. A normal single- strand conformation polymorphism pattern of MTS1 exons 1alpha and 2 was found and MTS1 RNA was detected in the fourth case, but a rearrangement occurring 5' to MTS1 exon 1 alpha deleting MTS1 exon 1Beta was documented. One case presented a complex rearrangement. Germline configuration for MTS1 and MTS2 was found in only 7 cases. The localization of the 17 breakpoints occurring in the MTS locus were determined. Ten of them (59%) are clustered in a 6-kb region located 5 kb downstream to the newly identified MTS1 exon 1Beta. No rearrangement disrupting MTS2 was detected and more rearrangements spared MTS2 than MTS1 (P<.01). MTS1 but not MTS2 RNA was detected by Northern blotting in the human thymus. These data strongly suggest that MTS1 is the functional target of rearrangements in T-ALL. MTS1 inactivation, observed in at least 80% of T-ALL, is the most consistent genetic defect found in this disease to date.  相似文献   

19.
Within childhood T-cell acute lymphoblastic leukemia (T-ALL), patients with a cortical (CD1a(+)) immunophenotype have been identified as a subgroup with favorable outcome in the acute lymphoblastic leukemia-Berlin-Frankfurt-Münster (ALL-BFM), Cooperative study group for childhood acute lymphoblastic leukemia (COALL) and Pediatric Oncology Group studies. We investigated in leukemic samples of children with T-ALL (n = 81) whether the different in vivo therapy response could be linked to differential in vitro susceptibility to apoptotic cell death. The extent of dexamethasone- as well as doxorubicin-induced apoptosis, detected by annexin V staining, positively correlated with the expression levels of CD1a (Spearman correlation coefficient, r(s) = 0.3 and 0.4, respectively; P <.01). When compared to cortical T-ALL, mature (CD1a(-), surface CD3(+)) T-ALL were significantly more resistant to doxorubicin, and immature, pro-/pre-T-ALL were more resistant to both drugs (P <.05). Apoptosis-related parameters (Bax, Bcl-2, CD95, and CD95-induced apoptosis) did not account for differential susceptibility to drug-induced apoptosis. By contrast, an interleukin 7-induced rescue of leukemic cells from spontaneous apoptosis, recently proposed to reflect distinct developmental stages and apoptotic programs in T-ALL, was highly associated with susceptibility to dexamethasone- but not doxorubicin-induced apoptosis (P <.001 versus P =.08). Analysis of clinical data showed that in vitro susceptibility to dexamethasone (but not to doxorubicin) closely correlated with early in vivo therapy response characterized by percentages of blast cells in bone marrow on day 15 (r(s) = -0.46, P =.001). Taken together, the in vitro assessment of drug-induced apoptosis revealed maturation-dependent differences within childhood T-ALL. The enhanced sensitivity to both drugs in cortical T-ALL might account for the better in vivo treatment response of this prognostically favorable T-ALL subgroup.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号