首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
《Brain stimulation》2014,7(1):74-79
BackgroundTranscranial magnetic stimulation (TMS) has been used to reveal excitability changes of the primary motor cortex (M1) in Parkinson's disease (PD). Abnormal rhythmic neural activities are considered to play pathophysiological roles in the motor symptoms of PD. The cortical responses to external rhythmic stimulation have not been studied in PD. We recently reported a new method of triad-conditioning TMS to detect the excitability changes after rhythmic conditioning stimuli, which induce facilitation by 40-Hz stimulation in healthy volunteers.ObjectiveWe applied a triad-conditioning TMS to PD patients to reveal the motor cortical response characteristics to rhythmic TMS.MethodsThe subjects included 13 PD patients and 14 healthy volunteers. Three conditioning stimuli over M1 at an intensity of 110% active motor threshold preceded the test TMS at various inter-stimulus intervals corresponding to 10–200 Hz.ResultsThe triad-conditioning TMS at 40 Hz induced no MEP enhancement in PD patients in either the On or Off state, in contrast to the facilitation observed in the normal subjects. Triad-conditioning TMS at 20–33 Hz in the beta frequency elicited significant MEP suppression in PD patients. The amount of suppression at 20 Hz positively correlated with the UPDRS III score.ConclusionWe observed abnormal M1 responses to rhythmic TMS in PD. The suppression induced by beta frequency stimulation and no facilitation by 40-Hz stimulation may be related to abnormal beta and gamma band activities within the cortical-basal ganglia network in PD patients. The motor cortical response to rhythmic TMS may be an additional method to detect physiological changes in humans.  相似文献   

2.
《Brain stimulation》2020,13(5):1232-1244
BackgroundBrain activity is constrained by and evolves over a network of structural and functional connections. Corticocortical evoked potentials (CCEPs) have been used to measure this connectivity and to discern brain areas involved in both brain function and disease. However, how varying stimulation parameters influences the measured CCEP across brain areas has not been well characterized.ObjectiveTo better understand the factors that influence the amplitude of the CCEPs as well as evoked gamma-band power (70–150 Hz) resulting from single-pulse stimulation via cortical surface and depth electrodes.MethodsCCEPs from 4370 stimulation-response channel pairs were recorded across a range of stimulation parameters and brain regions in 11 patients undergoing long-term monitoring for epilepsy. A generalized mixed-effects model was used to model cortical response amplitudes from 5 to 100 ms post-stimulation.ResultsStimulation levels <5.5 mA generated variable CCEPs with low amplitude and reduced spatial spread. Stimulation at ≥5.5 mA yielded a reliable and maximal CCEP across stimulation-response pairs over all regions. These findings were similar when examining the evoked gamma-band power. The amplitude of both measures was inversely correlated with distance. CCEPs and evoked gamma power were largest when measured in the hippocampus compared with other areas. Larger CCEP size and evoked gamma power were measured within the seizure onset zone compared with outside this zone.ConclusionThese results will help guide future stimulation protocols directed at quantifying network connectivity across cognitive and disease states.  相似文献   

3.
《Clinical neurophysiology》2020,131(8):1741-1754
ObjectiveUsing interictal epileptiform discharges (IEDs), consisting of spikes and post-spike slow waves (PSSs), and IED-related high-frequency activities (HFAs), we elucidated inhibitory effects of electrical cortical stimulation (ECS) on human epileptic foci.MethodsWe recruited 8 patients with intractable focal epilepsy, and 50-Hz ECS was applied to the seizure-onset zone (SOZ) and non-SOZ. Before (5-min) and after (20-min) ECS, we evaluated the number of IED, the amplitudes of spikes and PSSs, spike-related HFA power, and PSS-related low gamma (30–50 Hz) activities.ResultsSOZ stimulation significantly decreased the number of IEDs and amplitude of spikes. Spike-related HFA power values in fast ripple (200–300 Hz) and ripple (80–150 Hz) bands were significantly suppressed only by SOZ stimulation in 4 and 3 patients, respectively. Among 4 patients with discrete PSSs, the amplitude ratio of spike/PSS decreased and the PSS-related low gamma activity power increased significantly in 2 patients and marginally in 1 patient.ConclusionsECS potentially modulates cortical excitability by reducing excitation and increasing inhibition, and monitoring IED-related HFAs may help achieve the optimal effects of ECS.SignificanceIED and IED-related HFAs are dynamic, potential surrogate markers for epileptic excitability during the interictal period.  相似文献   

4.
《Clinical neurophysiology》2021,132(8):1927-1936
ObjectiveEpilepsy surgery fails in > 30% of patients with focal cortical dysplasia (FCD). The seizure persistence after surgery can be attributed to the inability to precisely localize the tissue with an endogenous potential to generate seizures. In this study, we aimed to identify the critical components of the epileptic network that were actively involved in seizure genesis.MethodsThe directed transfer function was applied to intracranial EEG recordings and the effective connectivity was determined with a high temporal and frequency resolution. Pre-ictal network properties were compared with ictal epochs to identify regions actively generating ictal activity and discriminate them from the areas of propagation.ResultsAnalysis of 276 seizures from 30 patients revealed the existence of a seizure-related network reconfiguration in the gamma-band (25–170 Hz; p < 0.005) – ictogenic nodes. Unlike seizure onset zone, resecting the majority of ictogenic nodes correlated with favorable outcomes (p < 0.012).ConclusionThe prerequisite to successful epilepsy surgery is the accurate identification of brain areas from which seizures arise. We show that in FCD-related epilepsy, gamma-band network markers can reliably identify and distinguish ictogenic areas in macroelectrode recordings, improve intracranial EEG interpretation and better delineate the epileptogenic zone.SignificanceIctogenic nodes localize the critical parts of the epileptogenic tissue and increase the diagnostic yield of intracranial evaluation.  相似文献   

5.
《Brain stimulation》2021,14(5):1073-1080
BackgroundThe anterior nucleus of thalamus (ANT) has been suggested as an extended hippocampal system. The circuit of ANT and hippocampus has been widely demonstrated to be associated with memory function. Both lesions to each region and disrupting inter-regional information flow can induce working memory impairment. However, the role of this circuit in working memory precision remains unknown.ObjectiveTo test the role of the hippocampal-anterior thalamic pathway in working memory precision, we delivered intracranially electrical stimulation to the ANT. We hypothesize that ANT stimulation can improve working memory precision.MethodsPresurgical epilepsy patients with depth electrodes in ANT and hippocampus were recruited to perform a color-recall working memory task. Participants were instructed to point out the color they were supposed to recall by clicking a point on the color wheel, while the intracranial EEG data were synchronously recorded. For randomly selected half trials, a bipolar electrical stimulation was delivered to the ANT electrodes.ResultsWe found that compared to non-stimulation trials, working memory precision judgements were significantly improved for stimulation trials. ANT electrical stimulation significantly increased spectral power of gamma (30–100 Hz) oscillations and decreased interictal epileptiform discharges (IED) in the hippocampus. Moreover, the increased gamma power during the pre-stimulus and retrieval period predicted the improvement of working memory precision judgements.ConclusionANT electrical stimulation can improve working memory precision judgements and modulate hippocampal gamma activity, providing direct evidence on the role of the human hippocampal-anterior thalamic axis in working memory precision.  相似文献   

6.
《Brain stimulation》2020,13(6):1678-1686
BackgroundAlthough the mechanisms by which deep brain stimulation (DBS) modifies the activity of the ictal network are mostly undefined, recent studies have suggested that DBS of the anterior nucleus of the thalamus (ANT) can be an effective treatment for mesial temporal lobe epilepsy (MTLE) when resective surgery cannot be performed. In a nonhuman primate (NHP) model of MTL seizures, we showed that the ANT was actively involved during interictal and ictal periods through different patterns and that the hippocampus (HPC) and ANT synchronously oscillate in the high beta-band during seizures.ObjectiveBased on those findings, we evaluated whether the frequency of stimulation is an important parameter that interferes with seizures and how to adapt stimulation protocols to it.MethodsWe investigated the effects of low-frequency (40 Hz - determined as the ictal frequency of correlation between structures) and high-frequency (130 Hz - as commonly used in clinic) ANT stimulation in three monkeys in which MTLE seizures were initiated.ResultsLow-frequency stimulation had a strong effect on the number of seizures and the total time spent in seizure, whereas high-frequency stimulation had no effect. The coherence of oscillations between the HPC and the ANT was significantly correlated with the success of low-frequency stimulation: the greater the coherence was, the greater the antiepileptic effect of ANT-DBS.ConclusionOur results suggest that low-frequency stimulation is efficient in treating seizures in a nonhuman primate model. More importantly, the study of the coherence between the ANT and HPC during seizures can help to predict the anti-epileptic effects of ANT stimulation. Furthermore, the DBS paradigm could be customized in frequency for each patient on the basis of the coherence spectral pattern.  相似文献   

7.
ObjectiveTo evaluate the test–retest reliability of event-related power changes in the 30–150 Hz gamma frequency range occurring in the first 150 ms after presentation of an auditory stimulus.MethodsRepeat intracranial electrocorticographic (ECoG) recordings were performed with 12 epilepsy patients, at ?1-day intervals, using a passive odd-ball paradigm with steady-state tones. Time–frequency matching pursuit analysis was used to quantify changes in gamma-band power relative to pre-stimulus baseline. Test–retest reliability was estimated based on within-subject comparisons (paired t-test, McNemar’s test) and correlations (Spearman rank correlations, intra-class correlations) across sessions, adjusting for within-session variability. Reliability estimates of gamma-band response robustness, spatial concordance, and reproducibility were compared with corresponding measurements from concurrent auditory evoked N1 responses.ResultsAll patients showed increases in gamma-band power, 50–120 ms post-stimulus onset, that were highly robust across recordings, comparable to the evoked N1 responses. Gamma-band responses occurred regardless of patients’ performance on behavioral tests of auditory processing, medication changes, seizure focus, or duration of test–retest interval. Test–retest reproducibility was greatest for the timing of peak power changes in the high-gamma range (65–150 Hz). Reliability of low-gamma responses and evoked N1 responses improved at higher signal-to-noise levels.ConclusionsEarly cortical auditory gamma-band responses are robust, spatially concordant, and reproducible over time.SignificanceThese test–retest ECoG results confirm the reliability of auditory gamma-band responses, supporting their utility as objective measures of cortical processing in clinical and research studies.  相似文献   

8.
《Brain stimulation》2021,14(5):1184-1196
BackgroundParalysis and neuropathy, affecting millions of people worldwide, can be accompanied by significant loss of somatosensation. With tactile sensation being central to achieving dexterous movement, brain-computer interface (BCI) researchers have used intracortical and cortical surface electrical stimulation to restore somatotopically-relevant sensation to the hand. However, these approaches are restricted to stimulating the gyral areas of the brain. Since representation of distal regions of the hand extends into the sulcal regions of human primary somatosensory cortex (S1), it has been challenging to evoke sensory percepts localized to the fingertips.Objective/hypothesisTargeted stimulation of sulcal regions of S1, using stereoelectroencephalography (SEEG) depth electrodes, can evoke focal sensory percepts in the fingertips.MethodsTwo participants with intractable epilepsy received cortical stimulation both at the gyri via high-density electrocorticography (HD-ECoG) grids and in the sulci via SEEG depth electrode leads. We characterized the evoked sensory percepts localized to the hand.ResultsWe show that highly focal percepts can be evoked in the fingertips of the hand through sulcal stimulation. fMRI, myelin content, and cortical thickness maps from the Human Connectome Project elucidated specific cortical areas and sub-regions within S1 that evoked these focal percepts. Within-participant comparisons showed that percepts evoked by sulcal stimulation via SEEG electrodes were significantly more focal (80% less area; p = 0.02) and localized to the fingertips more often, than by gyral stimulation via HD-ECoG electrodes. Finally, sulcal locations with consistent modulation of high-frequency neural activity during mechanical tactile stimulation of the fingertips showed the same somatotopic correspondence as cortical stimulation.ConclusionsOur findings indicate minimally invasive sulcal stimulation via SEEG electrodes could be a clinically viable approach to restoring sensation.  相似文献   

9.
《Clinical neurophysiology》2022,52(4):323-332
ObjectivesTo assess hippocampal function during stereoelectroencephalography (SEEG) investigations through the study of the medial temporal lobe event-related potential (ERP) MTL-P300.MethodsWe recorded the MTL-P300 during a visual oddball task, using hippocampal electrodes implanted for SEEG in 71 patients, in a preoperative epilepsy investigation. The presence of an MTL-P300 and its amplitude were correlated with hippocampal involvement during seizures and memory function.ResultsAnalysis using ROC curves revealed that an MTL-P300 amplitude below -46 µV, has a specificity of 93.3% in detecting the epileptogenic zone, and absence of the MTL-P300 in the left hippocampus of patients with typical language organization was associated with marked alteration of verbal memory scores. There was a significant correlation between performance in non-verbal memory tests and the amplitude of the MTL-P300 in the right hippocampus of patients with left hemispheric seizures (immediate visual recall: r = 0.67, p = 0.005; delayed visual recall: r = 0.56, p = 0.025). Using a linear regression, we confirmed that the absence of the MTL-P300 in the left hippocampus, the involvement of the left hippocampus during seizures, and the duration of epilepsy were predictors of verbal memory deficits.ConclusionAnalysis of the MTL-P300 during SEEG recording provides relevant information for the analysis of hippocampal functionality and can help to localize the epileptogenic zone.  相似文献   

10.
《Revue neurologique》2022,178(9):886-895
IntroductionDeep brain stimulation (DBS) of the anterior nucleus of the thalamus (ANT) is proposed in patients with severe intractable epilepsy. When used, the transventricular approach increases the risk of bleeding due the anatomy around the entry point in the thalamus. To avoid such a complication, we used a transventricular microendoscopic technique.MethodsWe performed a retrospective study of nine adult patients who were surgically treated for refractory epilepsy between 2010 and 2019 by DBS of the anterior thalamic nucleus.ResultsEndoscopy provides a direct visual control of the entry point of the lead in the thalamus through the ventricle by avoiding ependymal vessels. No hemorrhage was recorded and accuracy was systematically checked by intraoperative stereotactic MRI. We reported a responder rate improvement in 88.9% of patients at 1 year and in 87.5% at 2 years. We showed a significant decrease in global seizure count per month one year after DBS (68.1%; P = 0.013) leading to an overall improvement in quality of life. No major adverse effect was recorded during the follow-up. ANT DBS showed a prominent significant effect with a decrease of the number of generalized seizures.ConclusionWe aimed at a better ANT/lead collimation using a vertical transventricular approach under microendoscopic monitoring. This technique permitted to demonstrate the safety and the accuracy of the procedure.  相似文献   

11.
《Brain stimulation》2014,7(4):613-617
BackgroundTrigeminal nerve stimulation (TNS) has recently emerged as a new therapeutic option for patients with drug-resistant epilepsy but its potential mechanisms of action are not known. Since other antiepileptic treatments have been shown to alter cortical excitability, thereby reducing the liability to seizures, it has been suggested that cranial nerve stimulation such as TNS may act in the same way.ObjectiveTo study whether TNS has the potential to alter cortical excitability in healthy subjects.MethodsAn adaptive paired-pulse transcranial magnetic stimulation protocol stimulating the dominant hand motor area was used to measure resting motor threshold (rMT), short-interval intracortical inhibition (SICI), intracortical facilitation (ICF) and long-interval intracortical inhibition (LICI) before, during, and after 40 min of 120 Hz bilateral external continuous trigeminal nerve stimulation. Neuronavigation was used for guidance.ResultsTNS was well tolerated by all subjects. No significant changes were seen in the parameters studied.ConclusionUnlike for example anti-epileptic drugs and the ketogenic diet, trigeminal nerve stimulation does not seem to alter cortical excitability in healthy subjects. This is the first study on cortical excitability in relation to continuous trigeminal nerve stimulation. It still remains to be proven that TNS has the prerequisites to effectively counteract epileptic events in humans.  相似文献   

12.
《Clinical neurophysiology》2010,121(2):248-254
ObjectiveTo examine the neuromodulatory effect of whole-hand mesh-glove (MG) stimulation on motor cortical pathways, we explored motor cortical excitability before and after suprathreshold whole-hand MG stimulation using transcranial magnetic stimulation (TMS).MethodsTwenty-eight healthy volunteers (14 controls) were studied at baseline, immediately post and 1 h post-MG stimulation for 30 min. Motor thresholds (MTs), motor evoked potentials (MEPs) recruitment curve, short intracortical inhibition (SICI) and intracortical facilitation (ICF) after paired magnetic stimuli were evaluated.ResultsAfter MG stimulation the MTs were significantly reduced and slope of MEP recruitment curve significantly increased; furthermore, the stimulation led to a sustained decrease of SICI and increase of ICF in the contralateral motor cortex. These effects lasted for at least 60 min and were stronger 1 h post-stimulation compared with testing immediately after stimulation. A sham group did not show any differences before and after MG stimulation.ConclusionsWe provide a first demonstration that MG whole-hand stimulation induces increases in motor cortical excitability lasting at least 1 h. Both the strength of the corticospinal projections and the inhibitory and facilitatory intracortical mechanisms are involved. Synaptic modifications such as long-term potentiation mechanisms may underlie this stimulation-induced cortical plasticity changes.SignificancePresent results prove the MG stimulation to be a promising tool in neurorehabilitation.  相似文献   

13.
14.
《Clinical neurophysiology》2010,121(9):1551-1554
ObjectiveRecent developments in transcranial alternating current stimulation (tACS) provide a powerful approach to establish the functional roles of neuronal oscillatory activities in the human brain. Here, we investigated whether tACS can reach and modulate the excitability of the visual cortex in a frequency-dependent manner.MethodsWe measured the cortical excitability of the visual cortex using single pulse transcranial magnetic stimulation (TMS) while delivering tACS to the occipital region at different frequencies (5, 10, 20 and 40 Hz).ResultsWe found that tACS at 20 Hz decreased TMS–phosphene threshold (i.e., increased the excitability of the visual cortex) during the stimulation, whereas other frequencies did not affect TMS–phosphene thresholds.ConclusionsOur findings demonstrate direct interactions of tACS with the visual cortex in a frequency-dependent manner.SignificanceOur present work provides further demonstration of the potential of tACS as a method to selectively modulate the excitability of the visual cortex.  相似文献   

15.
ObjectivesType 1 schizencephaly (SZ) is a cerebral malformation characterised by a cleft lined and surrounded by a polymicrogyric cortex, extending from the pial region to the peri-ventricular heterotopia. Our purpose was to combine and compare dipole source imaging technique and Stereo-EEG (SEEG) technique in determining the irritative and epileptogenic zones in a case of type 1 schizencephaly.MethodsHigh-resolution (64-channel) video-EEG with electrical source imaging and SEEG recordings were performed during a pre-surgical evaluation for medically intractable epilepsy.ResultsAnatomo-electro-clinical correlations based on SEEG and source localisation identified two irritative and epileptogenic zones partially overlapping the polymicrogyric cortex surrounding the SZ: an anterior medio-lateral network primarily involving dysplasic limbic structures and a lateral network involving the anterior and middle part of the cleft and polymicrogyric cortex. The most posterior part (at the temporo-parieto-occipital junction) displayed a normal background activity.ConclusionsBoth epileptogenic and electrophysiologically normal cortices coexisted within the same widespread malformation: only the anterior part belonged to the anterior medio-lateral epileptogenic network defined by the SEEG.SignificanceIn cases of widespread cortical malformation such as SZ, source localization techniques can help to define the irritative zone and relevant targets for SEEG.  相似文献   

16.
《Clinical neurophysiology》2020,131(2):529-541
ObjectiveSleep is an active process with an important role in memory. Epilepsy patients often display a disturbed sleep architecture, with consequences on cognition. We aimed to investigate the effect of sleep on cortical networks’ organization.MethodsWe analyzed cortico-cortical evoked responses elicited by single pulse electrical stimulation (SPES) using intracranial depth electrodes in 25 patients with drug-resistant focal epilepsy explored using stereo-EEG. We applied the SPES protocol during wakefulness and NREM – N2 sleep. We analyzed 31,710 significant responses elicited by 799 stimulations covering most brain structures, epileptogenic or non-epileptogenic. We analyzed effective connectivity between structures using a graph-theory approach.ResultsSleep increases excitability in the brain, regardless of epileptogenicity. Local and distant connections are differently modulated by sleep, depending on the tissue epileptogenicity.In non-epileptogenic areas, frontal lobe connectivity is enhanced during sleep. There is increased connectivity between the hippocampus and temporal neocortex, while perisylvian structures are disconnected from the temporal lobe. In epileptogenic areas, we found a clear interhemispheric difference, with decreased connectivity in the right hemisphere during sleep.ConclusionsSleep modulates brain excitability and reconfigures functional brain networks, depending on tissue epileptogenicity.SignificanceWe found specific patterns of information flow during sleep in physiologic and pathologic structures, with possible implications for cognition.  相似文献   

17.
The cerebral cortex is tightly and reciprocally linked to the cerebellum and the ascending dentato-thalalmo-cortical pathway influences widespread cortical regions. Using a rodent model of middle cerebral artery stroke, we showed previously that chronic, 20 Hz stimulation of the contralateral lateral cerebellar nucleus (LCN) improved motor recovery, while 50 Hz stimulation did not. Using motor evoked potentials (MEP) elicited by intracortical microstimulation, we now show the effect of LCN stimulation on motor cortex excitability as a function of pulse frequency in propofol-anesthetized rats. MEPs were recorded serially, at 15-s intervals, with cerebellar stimulation delivered in 10-min blocks at rates of 20, 30, 40, 50 or 100 Hz. Stimulation at 20, 30, 40 or 50 Hz enhanced the average MEP response across the block, with the maximal overall increase observed during 30 Hz stimulation. However, the effect varied as a function of both repeated trials within the block and LCN stimulation frequency, such that 40 Hz and 50 Hz stimulation showed a reduced effect over time. Stimulation at 100 Hz produced a transient increase in MEP amplitude in some animals; however the overall effect across the block was a trend towards reduced cortical excitability. These results suggest that direct stimulation of the LCN can yield frequency-dependent changes in cortical excitability and may provide a therapeutic approach to modulating cortical activity for the treatment of strokes or other focal cortical lesions, movement disorders and epilepsy.  相似文献   

18.
《Clinical neurophysiology》2020,131(12):2851-2860
ObjectiveA novel analytic approach for task-related high-gamma modulation (HGM) in stereo-electroencephalography (SEEG) was developed and evaluated for language mapping.MethodsSEEG signals, acquired from drug-resistant epilepsy patients during a visual naming task, were analyzed to find clusters of 50–150 Hz power modulations in time–frequency domain. Classifier models to identify electrode contacts within the reference neuroanatomy and electrical stimulation mapping (ESM) speech/language sites were developed and validated.ResultsIn 21 patients (9 females), aged 4.8–21.2 years, SEEG HGM model predicted electrode locations within Neurosynth language parcels with high diagnostic odds ratio (DOR 10.9, p < 0.0001), high specificity (0.85), and fair sensitivity (0.66). Another SEEG HGM model classified ESM speech/language sites with significant DOR (5.0, p < 0.0001), high specificity (0.74), but insufficient sensitivity. Time to largest power change reliably localized electrodes within Neurosynth language parcels, while, time to center-of-mass power change identified ESM sites.ConclusionsSEEG HGM mapping can accurately localize neuroanatomic and ESM language sites.SignificancePredictive modelling incorporating time, frequency, and magnitude of power change is a useful methodology for task-related HGM, which offers insights into discrepancies between HGM language maps and neuroanatomy or ESM.  相似文献   

19.
《Brain & development》2023,45(1):82-86
BackgroundMeningoencephalocele (ME) of the temporal lobe through a bone defect in the middle cranial fossa is a rare known cause of refractory temporal lobe epilepsy (TLE). ME-induced drug-resistant TLE has been described in adults; however, its incidence in children is very rare.Case reportA 7-year-old girl presented at our hospital with brief episodes of impaired consciousness and enuresis. Initial brain MRI results were interpreted as normal. Her seizures could not be controlled even with multiple anti-seizure medications. She was diagnosed with drug-resistant TLE, which presented with prolonged impaired awareness seizures for 30–60 s and secondary bilateral tonic seizures. At 9 years of age, brain MRI revealed a left temporal anteroinferior ME with a congenital bone defect in the left middle cranial fossa. She was referred for presurgical epilepsy evaluation. Long-term video electroencephalography (EEG) failed to reveal regional abnormality in the left temporal lobe; invasive evaluation using stereoelectroencephalography (SEEG) was thus indicated.Ictal onset SEEG was identified in the temporal pole near the ME which was rapidly propagated to the mesial temporal structures and other cortical regions. The left temporal pole including the ME was micro-surgically disconnected while preserving the hippocampus and amygdala. The patient’s seizures have been completely controlled for 1 year and 6 months post-operatively.ConclusionSEEG revealed rapid propagation of ictal activity in this patient’s case, confirming that the ME was epileptogenic. Since the majority of patients with refractory epilepsy caused by ME have favorable postoperative seizure outcomes, it is important to carefully check for ME in drug-resistant TLE patients with apparently normal MRI.  相似文献   

20.
BackgroundWe assessed central and peripheral visual field processing in children with epilepsy who were exposed to vigabatrin during infancy.MethodsSteady-state visual evoked potentials and pattern electroretinograms to field-specific radial checkerboards flickering at two cycle frequencies (7.5 and 6 Hz for central and peripheral stimulations, respectively) were recorded from Oz and at the eye in seven school-age children (10.1 ± 3.5 years) exposed to vigabatrin early in life, compared with children early exposed to other antiepileptic drugs (n = 9) and healthy children (n = 8). The stimulation was made of two concentric circles (0 to 5 and 30 to 60 degrees of angle) and presented at four contrast levels (96%, 64%, 32%, and 16%).ResultsOcular responses were similar in all groups for central but not for the peripheral stimulations, which were significantly lower in the vigabatrin-exposed group at high contrast level. This peripheral retinal response was negatively correlated to vigabatrin exposure duration. Cortical responses to central stimulations, including contrast response functions in the children with epilepsy in both groups, were lower than those in normally developing children.ConclusionsAlteration of ocular processing was found only in the vigabatrin-exposed children. Central cortical processing, however, was impaired in both epileptic groups, with more pronounced effects in vigabatrin-exposed children. Our study suggests that asymptomatic long-term visual toxicity may still be present at school age, even several years after discontinuation of drug therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号