首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Brain stimulation》2020,13(5):1436-1445
BackgroundNovel patterns of electrical stimulation of the brain and spinal cord hold tremendous promise to improve neuromodulation therapies for diverse disorders, including tremor and pain. To date, there are limited numbers of experimental studies in human subjects to help explain how stimulation patterns impact the clinical response, especially with deep brain stimulation.We propose using novel stimulation patterns during electrical stimulation of somatosensory thalamus in awake deep brain stimulation surgeries and hypothesize that stimulation patterns will influence the sensory percept without moving the electrode.MethodsIn this study of 15 fully awake patients, the threshold of perception as well as perceptual characteristics were compared for tonic (trains of regularly-repeated pulses) and bursting stimulation patterns.ResultsIn a majority of subjects, tonic and burst percepts were located in separate, non-overlapping body regions (i.e., face vs. hand) without moving the stimulating electrode (p < 0.001; binomial test). The qualitative features of burst percepts also differed from those of tonic-evoked percepts as burst patterns were less likely to evoke percepts described as tingling (p = 0.013; Fisher’s exact test).ConclusionsBecause somatosensory thalamus is somatotopically organized, percept location can be related to anatomic thalamocortical pathways. Thus, stimulation pattern may provide a mechanism to select for different thalamocortical pathways. This added control could lead to improvements in neuromodulation - such as improved efficacy and side effect attenuation - and may also improve localization for sensory prostheses.  相似文献   

2.
《Clinical neurophysiology》2020,131(10):2460-2468
ObjectiveTo establish a method for magnetospinography (MSG) measurement after ulnar nerve stimulation and to clarify its characteristics.MethodsUsing a 132-channel magnetoneurography system with a superconducting quantum interference device, cervical MSG measurements were obtained for 10 healthy volunteers after stimulation of the ulnar nerve at the elbow and the wrist, and neural current distribution was calculated and superimposed on the cervical X-ray images.ResultsNeuromagnetic signals were obtained in all participants after applying the stimulus artifact removal algorithm. The measured magnetic field intensity after elbow stimulation was about twice that after wrist stimulation. Calculated neural currents flowed into the intervertebral foramina at C6/7 to T1/2 and propagated cranially along the spinal canal. The conduction velocity from the peak latency of inward currents at C5-C7 was 73.4 ± 19.6 m/s.ConclusionsWe successfully obtained MSG measurements after ulnar nerve stimulation. The neural currents flowed into the spinal canal from more caudal segments after ulnar nerve stimulation compared with median nerve stimulation, and these MSG measurements were effective in examining the spinal tracts at C5/6/7.SignificanceThis is the first report on the use of MSG to visualize electrical activity in the cervical spinal cord and nerve root after ulnar nerve stimulation.  相似文献   

3.
《Brain stimulation》2022,15(5):1051-1062
BackgroundTemporal patterns of stimulation represent a novel dimension for improving the efficacy of spinal cord stimulation to treat chronic neuropathic pain.ObjectiveWe hypothesized that nonregular temporal patterns of stimulation designed using a computational model would be superior to conventional stimulation at constant frequencies or completely random patterns of stimulation.MethodsUsing a computational model of the dorsal horn network and an optimization algorithm based on biological evolution, we designed an optimized pattern of spinal cord stimulation with comparable efficacy and increased efficiency relative to constant frequency (CF) stimulation. We evaluated the effect of different temporal patterns on individual neurons recorded in the dorsal horn of urethane-anesthetized rats.ResultsThe optimized pattern and 50 Hz CF stimulation produced greater inhibition of spontaneously firing neurons recorded in vivo than random 50 Hz stimulation or a pattern designed intentionally with poor fitness. Spinal Cord Stimulation (SCS) led to significant changes in the firing patterns of recorded units, and stimulation patterns that generated significant inhibition also tended to reduce entropy and regularize the firing patterns of units, suggesting that patterns of dorsal horn neuron activity may be important for pain perception in addition to the firing rate.ConclusionsThese results demonstrate that the computational model can be used as a tool for optimizing stimulation parameters and suggest that optimized temporal patterns may increase the efficacy of spinal cord stimulation.  相似文献   

4.
《Clinical neurophysiology》2021,132(10):2431-2439
ObjectiveThe purpose of this investigation was to better understand the effects of concussions on the ability to selectively up or down-regulate incoming somatosensory information based on relevance.MethodsMedian nerve somatosensory-evoked potentials (SEPs) were elicited from electrical stimulation and recorded from scalp electrodes while participants completed tasks that altered the relevance of specific somatosensory information being conveyed along the stimulated nerve.ResultsWithin the control group, SEP amplitudes for task-relevant somatosensory information were significantly greater than for non-relevant somatosensory information at the earliest cortical processing potentials (N20-P27). Alternatively, the concussion history group showed similar SEP amplitudes for all conditions at early processing potentials, however a pattern similar to controls emerged later in the processing stream (P100) where both movement-related gating and facilitation of task-relevant information were present.ConclusionsPreviously concussed participants demonstrated impairments in the ability to up-regulate relevant somatosensory information at early processing stages. These effects appear to be chronic, as this pattern was observed on average several years after participants’ most recent concussion.SignificanceGiven the role of the prefrontal cortex in relevancy-based facilitation during movement-related gating, these findings lend support to the notion that this brain area may be particularly vulnerable to concussive forces.  相似文献   

5.
《Clinical neurophysiology》2021,132(12):3166-3176
ObjectiveThe aim of this study was to assess safety issues of self-controlled repetitive trans-vertebral magnetic stimulation (rTVMS) in humans.MethodsWe investigated effects of self-controlled rTVMS (≤20 Hz, ≤90% intensity) on vital signs and subjective sensations in 1690 trials of 30 healthy volunteers and 12 patients with spinal cord disorders.ResultsHealthy volunteers and the patients received 4595 ± 2345, and 4450 ± 2304 pulses in one day, respectively. No serious adverse events were observed in any participants, and only minor events were seen as follows. While blood pressure was unaffected in the patients, the diastolic blood pressure increased slightly after rTVMS in healthy volunteers. The peripheral capillary oxygen saturation increased after rTVMS in healthy volunteers. “Pain” or “Discomfort” was reported in approximately 10% of trials in both participants groups. Degree of the evoked sensation positively correlated with stimulus intensity and was affected by the site of stimulation.ConclusionSelf-controlled rTVMS (≤20 Hz and ≤90% intensity) did not induce any serious adverse effects in healthy volunteers and patients with spinal cord disorders.SignificanceOur results indicate that rTVMS can be used safely in physiological investigations in healthy volunteers and also as treatment for neurological disorders.  相似文献   

6.
《Clinical neurophysiology》2020,131(5):1075-1086
ObjectiveMost of knowledge on muscle radicular innervation was from explorations in root/spinal cord pathologies. Direct and individual access to each of the lumbar-sacral -ventral and dorsal- nerve roots during dorsal rhizotomy for spastic diplegia allows precise study of the corresponding muscle innervation. Authors report the lumbo-sacral segmental myotomal organization obtained from recordings of muscle responses to root stimulation in a 20-children prospective series.MethodsSeven key-muscles in each lower limb and anal sphincter were Electromyography (EMG)-recorded and clinically observed by physiotherapist during L2-to-S2 dorsal rhizotomy. Ventral roots (VR), for topographical mapping, and dorsal roots (DR), for segmental excitability testing, were stimulated, just above threshold for eliciting muscular response.ResultsIn 70% of the muscles studied, VR innervation was pluri-radicular, from 2-to-4 roots, with 1 or 2 roots being dominant at each level. Overlapping was important. Muscle responses to DR stimulation were 1.75 times more extended compared to VR stimulation. Inter-individual variability was important.ConclusionsAccuracy of root identification and stimulation with the used method brings some more precise information to radicular functional anatomy.SignificanceThose neurophysiological findings plead for performing Intra-Operative Neuromonitoring when dealing with surgery in the lumbar-sacral roots.  相似文献   

7.
《Brain stimulation》2020,13(1):20-34
BackgroundPotentiation of synaptic activity in spinal networks is reflected in the magnitude of modulation of motor responses evoked by spinal and cortical input. After spinal cord injury, motor evoked responses can be facilitated by pairing cortical and peripheral nerve stimuli.ObjectiveTo facilitate synaptic potentiation of cortico-spinal input with epidural electrical stimulation, we designed a novel neuromodulation method called dynamic stimulation (DS), using patterns derived from hind limb EMG signal during stepping.MethodsDS was applied dorsally to the lumbar enlargement through a high-density epidural array composed of independent platinum-based micro-electrodes.ResultsIn fully anesthetized intact adult rats, at the interface array/spinal cord, the temporal and spatial features of DS neuromodulation affected the entire lumbosacral network, particularly the most rostral and caudal segments covered by the array. DS induced a transient (at least 1 min) increase in spinal cord excitability and, compared to tonic stimulation, generated a more robust potentiation of the motor output evoked by single pulses applied to the spinal cord. When sub-threshold pulses were selectively applied to a cortical motor area, EMG responses from the contralateral leg were facilitated by the delivery of DS to the lumbosacral cord. Finally, based on motor-evoked responses, DS was linked to a greater amplitude of motor output shortly after a calibrated spinal cord contusion.ConclusionCompared to traditional tonic waveforms, DS amplifies both spinal and cortico-spinal input aimed at spinal networks, thus significantly increasing the potential and accelerating the rate of functional recovery after a severe spinal lesion.  相似文献   

8.
《Clinical neurophysiology》2021,132(7):1572-1583
ObjectiveWe assessed in extremely preterm born (EPB) children whether secondary somatosensory cortex (SII) responses recorded with magnetoencephalography (MEG) at term-equivalent age (TEA) correlate with neurodevelopmental outcome at age 6 years. Secondly, we assessed whether SII responses differ between 6-year-old EPB and term-born (TB) children.Methods39 EPB children underwent MEG with tactile stimulation at TEA. At age 6 years, 32 EPB and 26 TB children underwent MEG including a sensorimotor task requiring attention and motor inhibition. SII responses to tactile stimulation were modeled with equivalent current dipoles. Neurological outcome, motor competence, and general cognitive ability were prospectively evaluated at age 6 years.ResultsUnilaterally absent SII response at TEA was associated with abnormal motor competence in 6-year-old EPB children (p = 0.03). At age 6 years, SII responses were bilaterally detectable in most EPB (88%) and TB (92%) children (group comparison, p = 0.69). Motor inhibition was associated with decreased SII peak latencies in TB children, but EPB children lacked this effect (p = 0.02).ConclusionsUnilateral absence of an SII response at TEA predicted poorer motor outcome in EPB children.SignificanceNeurophysiological methods may provide new means for outcome prognostication in EPB children.  相似文献   

9.
BackgroundAcupuncture has been used to treat a wide variety of diseases, disorders, and conditions for more than 2500 years. While the anatomical structures of acupuncture points (or acupoints) are largely unknown, our previous studies have suggested that many acupoints can be identified as cutaneous neurogenic inflammatory spots (neurogenic spots or Neuro-Sps), arising from the release of neuropeptides from activated small diameter sensory afferents at topographically distinct body surfaces due to the convergence of visceral and somatic afferents. In turn, the neuropeptides released during neurogenic inflammation may play important roles in the effects of acupuncture as well as the formation of active acupoints. Thus, the present study has focused on the role of substance P (SP) in acupuncture signal transduction and effects.MethodsNeuro-Sps were detected by using in vivo fluorescence imaging after intravenous injection of Evans blue dye (EBD) and compared with traditional acupoints. Stimulatory effects of the Neuro-Sps were examined in a rat model of immobilization-induced hypertension (IMH). The roles of increased SP in Neuro-Sps were also investigated by using immunohistochemistry, in vivo single-fiber peripheral nerve recordings, and in vivo midbrain extracellular recordings.ResultsNeurogenic inflammation quickly appeared at acupoints on the wrist and was fully developed within 15 min in IMH model. The Neuro-Sps showed an increased release of SP from afferent nerve terminals. Mechanical stimulation of these Neuro-Sps increased cell excitability in the midbrain (rostral ventrolateral medulla) and alleviated the development of hypertension, which was blocked by the local injection of the SP receptor antagonist CP-99994 into Neuro-Sps prior to acupuncture and mimicked by the local injection of capsaicin. Single fiber recordings of peripheral nerves showed that increased SP into the Neuro-Sps elevated the sensitivity of A- and C-fibers in response to acupuncture stimulation. In addition, the discharge rates of spinal wide dynamic response (WDR) neurons significantly increased following SP or acupuncture treatment in Neuro-Sps in normal rats, but decreased following the injection of CP-99994 into Neuro-Sps in IMH rats.ConclusionsOur findings suggest that SP released during neurogenic inflammation enhances the responses of sensory afferents to the needling of acupoints and triggers acupuncture signaling to generate acupuncture effects.  相似文献   

10.
《Clinical neurophysiology》2021,132(12):3104-3115
ObjectiveWe aimed to establish an objective neurophysiological test protocol that can be used to assess the somatosensory nervous system.MethodsIn order to assess most fiber subtypes of the somatosensory nervous system, repetitive stimuli of seven different modalities (touch, vibration, pinprick, cold, contact heat, laser, and warmth) were synchronized with the electroencephalogram (EEG) and applied on the cheek and dorsum of the hand and dorsum of the foot in 21 healthy subjects and three polyneuropathy (PNP) patients. Latencies and amplitudes of the modalities were assessed and compared. Patients received quantitative sensory testing (QST) as reference.ResultsWe found reproducible evoked potentials recordings for touch, vibration, pinprick, contact-heat, and laser stimuli. The recording of warm-evoked potentials was challenging in young healthy subjects and not applicable in patients. Latencies were shortest within Aβ-fiber-mediated signals and longest within C-fibers. The test protocol detected function loss within the Aβ-fiber and Aδ-fiber-range in PNP patients. This function loss corresponded with QST findings.ConclusionIn this pilot study, we developed a neurophysiological test protocol that can specifically assess most of the somatosensory modalities. Despite technical challenges, initial patient data appear promising regarding a possible future clinical application.SignificanceEstablished and custom-made stimulators were combined to assess different fiber subtypes of the somatosensory nervous system using modality-specific evoked potentials.  相似文献   

11.
Trauma to the spinal cord rarely results in complete division of the cord with surviving nerves sometimes remaining silent or failing to function normally. The term motor or sensory discomplete has been used to describe this important but unclassified subgroup of complete SCI. Importantly, silent motor or sensory pathways may contribute to aversive symptoms (spasticity, pain) or improved treatment success. To demonstrate more objectively the presence of subclinical preserved somatosensory pathways in clinically complete SCI, a cross‐sectional study using functional MRI (fMRI) was undertaken. The presence of brain activation following innocuous brushing of an insensate region below‐injury (great toe) was analyzed in 23 people (19 males (83%), mean ± SD age 43 ± 13 years) with clinically complete (AIS A) SCI with (n = 13) and without (n = 10) below‐level neuropathic pain and 21 people without SCI or pain (15 males (71%); mean ± SD age 41 ± 14 years). Location appropriate, significant fMRI brain activation was detected in 48% (n = 11/23) of subjects with clinically complete SCI from below‐injury stimulation. No association was found between the presence of subclinical sensory pathways transmitting innocuous mechanical stimuli (dorsal column medical lemniscal) and below‐level neuropathic pain (χ2 = 0.034, P = 0.9). The high prevalence of sensory discomplete injuries (~50% complete SCI) strengthens the case to explore inclusion of this category into the international SCI taxonomy (ISNCSCI). This would ensure more widespread inclusion of discomplete SCI in ongoing pain and motor recovery research. Neurophysiological tests such as fMRI may play a role in this process. Hum Brain Mapp 39:588–598, 2018. © 2017 Wiley Periodicals, Inc.  相似文献   

12.
ObjectiveThe current study investigated the behavioral, cognitive, and electrophysiological impact of mild (only a few hours) and acute (one night) sleep loss via simultaneously recorded behavioural and physiological measures of vigilance.MethodsParticipants (N = 23) came into the lab for two testing days where their brain activity and vigilance were recorded and assessed. The night before the testing session, participants either slept from 12am to 9am (Normally Rested), or from 1am to 6am (Sleep Restriction).ResultsVigilance was reduced and sleepiness was increased in the Sleep Restricted vs. Normally Rested condition, and this was exacerbated over the course of performing the vigilance task. As well, sleep restriction resulted in more intense alpha bursts. Lastly, EEG spectral power differed in Sleep Restricted vs. Normally Rested conditions as sleep onset progressed, particularly for frequencies reflecting arousal (e.g., delta, alpha, beta).ConclusionsThe findings of this study suggest that only one night of mild sleep loss significantly increases sleepiness and, importantly, reduces vigilance. In addition, this sleep loss has a clear impact on the physiology of the brain in ways that reflect reduced arousal.SignificanceUnderstanding the neural correlates and cognitive processes associated with loss of sleep may lead to important advancements in identifying and preventing deleterious or potentially dangerous, sleep-related lapses in vigilance.  相似文献   

13.
《Clinical neurophysiology》2021,132(2):487-497
ObjectiveThe classical homunculus of the human primary somatosensory cortex (S1) established by Penfield has mainly portrayed the functional organization of convexial cortex, namely Brodmann area (BA) 1. However, little is known about the functions in fissural cortex including BA2 and BA3. We aim at drawing a refined and detailed somatosensory homunculus of the entire S1.MethodsWe recruited 20 patients with drug-resistant focal epilepsy who underwent stereo-electroencephalography for preoperative assessments. Direct electrical stimulation was performed for functional mapping. Montreal Neurological Institute coordinates of the stimulation sites lying in S1 were acquired.ResultsStimulation of 177 sites in S1 yielded 149 positive sites (84%), most of which were located in the sulcal cortex. The spatial distribution of different body-part representations across the S1 surface revealed that the gross medial-to-lateral sequence of body representations within the entire S1 was consistent with the classical “homunculus”. And we identified several unreported body-part representations from the sulcal cortex, such as forehead, deep elbow and wrist joints, and some dorsal body regions.ConclusionsOur results reveal general somatotopical characteristics of the entire S1 cortex and differences with the previous works of Penfield.SignificanceThe classical S1 homunculus was extended by providing further refinement and additional detail.  相似文献   

14.
《Clinical neurophysiology》2021,132(10):2357-2364
ObjectivesTo investigate the subcortical somatosensory evoked potentials (SEPs) to electrical stimulation of either muscle or cutaneous afferents.MethodsSEPs were recorded in 6 patients suffering from Parkinson’s disease (PD) who underwent electrode implantation in the pedunculopontine (PPTg) nucleus area. We compared SEPs recorded from the scalp and from the intracranial electrode contacts to electrical stimuli applied to: 1) median nerve at the wrist, 2) abductor pollicis brevis motor point, and 3) distal phalanx of the thumb. Also the high-frequency oscillations (HFOs) were analysed.ResultsAfter median nerve and pure cutaneous (distant phalanx of the thumb) stimulation, a P1-N1 complex was recorded by the intracranial lead, while the scalp electrodes recorded the short-latency far-field responses (P14 and N18). On the contrary, motor point stimulation did not evoke any low-frequency component in the PPTg traces, nor the N18 potential on the scalp. HFOs were recorded to stimulation of all modalities by the PPTg electrode contacts.ConclusionsStimulus processing within the cuneate nucleus depends on modality, since only the cutaneous input activates the complex intranuclear network possibly generating the scalp N18 potential.SignificanceOur results shed light on the subcortical processing of the somatosensory input of different modalities.  相似文献   

15.
《Clinical neurophysiology》2021,132(1):126-136
ObjectivesLittle evidence is available on the role of transcranial direct current stimulation (tDCS) in patients affected by chronic migraine (CM) and medication overuse headache (MOH). We aim to investigate the effects of tDCS in patients with CM and MOH as well as its role on brain activity.MethodsTwenty patients with CM and MOH were hospitalized for a 7-day detoxification treatment. Upon admission, patients were randomly assigned to anodal tDCS or sham stimulation delivered over the primary motor cortex contralateral to the prevalent migraine pain side every day for 5 days. Clinical data were recorded at baseline (T0), after 1 month (T2) and 6 months (T3). EEG recording was performed at T0, at the end of the tDCS/Sham treatment, and at T2.ResultsAt T2 and T3, we found a significant reduction in monthly migraine days (p = 0.001), which were more pronounced in the tDCS group when compared to the sham group (p = 0.016).At T2, we found a significant increase of alpha rhythm in occipital leads, which was significantly higher in tDCS group when compared to sham group.ConclusionstDCS showed adjuvant effects to detoxification in the management of patients with CM and MOH. The EEG recording showed a significant potentiation of alpha rhythm, which may represent a correlate of the underlying changes in cortico-thalamic connections.SignificanceThis study suggests a possible role for tDCS in the treatment of CM and MOH. The observed clinical improvement is coupled with a potentiation of EEG alpha rhythm.  相似文献   

16.
Background and purposeTo determine the diagnostic value of bright spotty lesions (BSLs) for aquaporin-4 antibody-positive neuromyelitis optica spectrum disorder (NMOSDAQP4+), the predictive value of axial-BSLs for AQP4-IgG seropositivity, and the radio-clinical differences in NMOSDAQP4+ patients with and without axial-BSLs.Materials and methodsRetrospective study that included patients aged  16 years, with a first acute spinal cord syndrome between 2005 and 2018 and abnormal spinal cord MRI with axial and sagittal T2 sequences. Patients with MRI findings consistent with compressive myelopathy were excluded. All spinal cord MRI were retrospectively evaluated for the presence of BSLs by 2 radiologists blinded to the diagnosis of acute myelopathy.ResultsA total of 82 patients were included; 15 aquaporin-4 antibody-positive neuromyelitis optica spectrum disorder patients (NMOSDAQP4+), and 67 other patients, considered as the other causes of myelopathy (OM) group. The specificity of axial-BSLs for NMOSDAQP4+ patients was 94.0% (95% CI [85.6 to 97.7]). The sensitivity was 40.0% (95% CI [19.8 to 64.3]). In the multivariable analysis, the only MRI characteristic associated with AQP4-IgG positivity was the presence of axial-BSLs (OR: 9.2, 95% CI [1.2 to 72.9]; P = 0.022). In NMOSDAQP4+ patients, the median of cord expansion ratio was higher with axial-BSL (1.2, IQR [1.1–1.3]) than without axial-BSL (1.1, IQR [1.0–1.2]; P = 0.046).ConclusionAfter a first acute spinal cord syndrome, the presence of axial-BSLs on spinal cord MRI seems very specific for NMOSDAQP4+ and seems to be a predictor radiological marker of AQP4-IgG positivity.  相似文献   

17.
《Clinical neurophysiology》2019,130(8):1299-1310
ObjectiveTo study using magnetoencephalography (MEG) the spatio-temporal dynamics of neocortical responses involved in sensory processing and early change detection in Friedreich ataxia (FRDA).MethodsTactile (TERs) and auditory (AERs) evoked responses, and early neocortical change detection responses indexed by the mismatch negativity (MMN) were recorded using tactile and auditory oddballs in sixteen FRDA patients and matched healthy subjects. Correlations between the maximal amplitude of each response, genotype and clinical parameters were investigated.ResultsEvoked responses were detectable in all FRDA patients but one. In patients, TERs were delayed and reduced in amplitude, while AERs were only delayed. Only tactile MMN responses at the contralateral secondary somatosensory cortex were altered in FRDA patients. Maximal amplitudes of TERs, AERs and tactile MMN correlated with genotype, but did not correlate with clinical parameters.ConclusionsIn FRDA, the amplitude of tactile MMN responses at SII cortex are reduced and correlate with the genotype, while auditory MMN responses are not altered.SignificanceSomatosensory pathways and tactile early change detection are selectively impaired in FRDA.  相似文献   

18.
《Clinical neurophysiology》2020,131(4):958-966
ObjectiveTo characterise the regional cortical patterns underlying clinical symptomatology in amyotrophic lateral sclerosis (ALS).Methods138 patients prospectively underwent transcranial magnetic stimulation studies from hand and leg cortical regions of each hemisphere, obtaining motor evoked potentials from all four limbs. Patients were categorised by clinical phenotype and underwent clinical and peripheral evaluation of disease.ResultsCortical dysfunction was evident across the motor cortices, with reduction in short-interval intracortical inhibition (SICI) suggesting the presence of widespread cortical hyperexcitability, most prominently from clinically affected regions (hand p < 0.0001; leg p < 0.01). In early disease, cortical abnormalities were asymmetric between hemispheres, focally corresponding to clinical site-of-onset (p < 0.05). Degrees of cortical dysfunction varied between phenotypes, with the bulbar-onset cohort demonstrating greatest reduction in SICI (p = 0.03).ConclusionsThe pattern of cortical dysfunction appears linked to clinical evolution in ALS, with early focal asymmetry preceding widespread changes in later disease. Cortical differences across phenotypes may influence clinical variability.SignificanceThis is the first study to extensively map cortical abnormalities from multiple motor regions across hemispheres. The early cortical signature mirrors symptom laterality, supporting a discrete region of disease onset. Phenotypes appear to exist within a pathophysiological continuum, but cortical heterogeneity may mediate observed differences in clinical outcome.  相似文献   

19.
ObjectiveTo establish a method to measure cauda equina action fields (CEAFs) and visualize the electrical activities of the cauda equina in a broadly aged group of healthy adults.MethodsUsing a 124-channel magnetospinography (MSG) system with superconducting interference devices, the CEAFs of 43 healthy volunteers (22–64 years of age) were measured after stimulation of the peroneal nerve at the knee. Reconstructed currents were obtained from the CEAFs and superimposed on the X-ray image. Conduction velocities were also calculated from the waveform of the reconstructed currents.ResultsThe reconstructed currents were successfully visualized. They flowed into the L5/S1 foramen about 8.25–8.95 ms after the stimulation and propagated cranially along the spinal canal. In 32 subjects (74%), the conduction velocities of the reconstructed currents in the cauda equina could be calculated from the peak latency at the L2–L5 level.ConclusionsMSG visualized the electrical activity of the cauda equina after peroneal nerve stimulation in healthy adults. In addition, the conduction velocities of the reconstructed currents in the cauda equina could be calculated, despite previously being difficult to measure.SignificanceMSG has the potential to be a novel and noninvasive functional examination for lumbar spinal disease.  相似文献   

20.
《Clinical neurophysiology》2020,131(4):951-957
ObjectiveTo establish a noninvasive method to measure the neuromagnetic fields of the median nerve at the carpal tunnel after electrical digital nerve stimulation and evaluate peripheral nerve function.MethodsUsing a vector-type biomagnetometer system with a superconducting quantum interference device, neuromagnetic fields at the carpal tunnel were recorded after electrical stimulation of the index or middle digital nerve in five healthy volunteers. A novel technique for removing stimulus-induced artifacts was applied, and current distributions were calculated using a spatial filter algorithm and superimposed on X-ray.ResultsA neuromagnetic field propagating from the palm to the carpal tunnel was observed in all participants. Current distributions estimated from the magnetic fields had five components: leading and trailing components parallel to the conduction pathway, outward current preceding the leading component, inward currents between the leading and trailing components, and outward current following the trailing component. The conduction velocity and peak latency of the inward current agreed well with those of sensory nerve action potentials.ConclusionRemoving stimulus-induced artifacts enabled magnetoneurography to noninvasively visualize with high spatial resolution the electrophysiological neural activity from the palm to the carpal tunnel.SignificanceThis is the first report of using magnetoneurography to visualize electrophysiological nerve activity at the palm and carpal tunnel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号