首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.

Introduction

Sepsis is characterized by systemic immune activation and neutrophil-mediated endothelial barrier integrity compromise, contributing to end-organ dysfunction. Studies evaluating endothelial barrier dysfunction induced by neutrophils from septic patients are lacking, despite its clinical significance. We hypothesized that septic neutrophils would cause characteristic patterns of endothelial barrier dysfunction, distinct from experimental stimulation of normal neutrophils, and that treatment with the immunomodulatory drug β-glucan would attenuate this effect.

Methods

Blood was obtained from critically ill septic patients. Patients were either general surgery patients (Primary Sepsis (PS)) or those with sepsis following trauma (Secondary Sepsis (SS)). Those with acute respiratory distress syndrome (ARDS) were identified. Healthy volunteers served as controls. Neutrophils were purified and aliquots were untreated, or treated with fMLP or β-glucan. Endothelial cells were grown to confluence and activated with tissue necrosis factor (TNF)-α . Electric Cell-substrate Impedance Sensing (ECIS) was used to determine monolayer resistance after neutrophils were added. Groups were analyzed by two-way analysis of variance (ANOVA).

Results

Neutrophils from all septic patients, as well as fMLP-normal neutrophils, reduced endothelial barrier integrity to a greater extent than untreated normal neutrophils (normalized resistance of cells from septic patients at 30 mins = 0.90 ± 0.04; at 60 mins = 0.73 ± 0.6 and at 180 mins = 0.56 ± 0.05; p < 0.05 vs normal). Compared to untreated PS neutrophils, fMLP-treated PS neutrophils caused further loss of barrier function at all time points; no additive effect was noted in stimulation of SS neutrophils beyond 30 min. Neutrophils from ARDS patients caused greater loss of barrier integrity than those from non-ARDS patients, despite similarities in age, sex, septic source, and neutrophil count. Neutrophils obtained after resolution of sepsis caused less barrier dysfunction at all time points. β-glucan treatment of septic patients’ neutrophils attenuated barrier compromise, rendering the effect similar to that induced by neutrophils obtained once sepsis had resolved.

Conclusions

Neutrophils from septic patients exert dramatic compromise of endothelial barrier integrity. This pattern is mimicked by experimental activation of healthy neutrophils. The effect of septic neutrophils on the endothelium depends upon the initial inflammatory event, correlates with organ dysfunction and resolution of sepsis, and is ameliorated by β-glucan.  相似文献   

2.

Introduction

The study was designed to assess the impact of fluid loading on lung aeration, oxygenation and hemodynamics in patients with septic shock and acute respiratory distress syndrome (ARDS).

Methods

During a 1-year period, a prospective observational study was performed in 32 patients with septic shock and ARDS. Cardiorespiratory parameters were measured using Swan Ganz (n = 29) or PiCCO catheters (n = 3). Lung aeration and regional pulmonary blood flows were measured using bedside transthoracic ultrasound. Measurements were performed before (T0), at the end of volume expansion (T1) and 40 minutes later (T2), consisting of 1-L of saline over 30 minutes during the first 48 h following onset of septic shock and ARDS.

Results

Lung ultrasound score increased by 23% at T2, from 13 at baseline to 16 (P < 0.001). Cardiac index and cardiac filling pressures increased significantly at T1 (P < 0.001) and returned to control values at T2. The increase in lung ultrasound score was statistically correlated with fluid loading-induced increase in cardiac index and was not associated with increase in pulmonary shunt or regional pulmonary blood flow. At T1, PaO2/FiO2 significantly increased (P < 0.005) from 144 (123 to 198) to 165 (128 to 226) and returned to control values at T2, whereas lung ultrasound score continued to increase.

Conclusions

Early fluid loading transitorily improves hemodynamics and oxygenation and worsens lung aeration. Aeration changes can be detected at the bedside by transthoracic lung ultrasound, which may serve as a safeguard against excessive fluid loading.  相似文献   

3.

Introduction

Nuclear factor (NF)-κB is central to the pathogenesis of inflammation in acute lung injury, but also to inflammation resolution and repair. We wished to determine whether overexpression of the NF-κB inhibitor IκBα could modulate the severity of acute and prolonged pneumonia-induced lung injury in a series of prospective randomized animal studies.

Methods

Adult male Sprague-Dawley rats were randomized to undergo intratracheal instillation of (a) 5 × 109 adenoassociated virus (AAV) vectors encoding the IκBα transgene (5 × 109 AAV-IκBα); (b) 1 × 1010 AAV-IκBα; (c) 5 × 1010 AAV-IκBα; or (d) vehicle alone. After intratracheal inoculation with Escherichia coli, the severity of the lung injury was measured in one series over a 4-hour period (acute pneumonia), and in a second series after 72 hours (prolonged pneumonia). Additional experiments examined the effects of IκBα and null-gene overexpression on E. coli-induced and sham pneumonia.

Results

In acute pneumonia, IκBα dose-dependently decreased lung injury, improving arterial oxygenation and lung static compliance, reducing alveolar protein leak and histologic injury, and decreasing alveolar IL-1β concentrations. Benefit was maximal at the intermediate (1 × 1010) IκBα vector dose; however, efficacy was diminished at the higher (5 × 1010) IκBα vector dose. In contrast, IκBα worsened prolonged pneumonia-induced lung injury, increased lung bacterial load, decreased lung compliance, and delayed resolution of the acute inflammatory response.

Conclusions

Inhibition of pulmonary NF-κB activity reduces early pneumonia-induced injury, but worsens injury and bacterial load during prolonged pneumonia.  相似文献   

4.

Introduction

Secretory phospholipase A2 is supposed to play a role in acute lung injury but no data are available for pediatric acute respiratory distress syndrome (ARDS). It is not clear which enzyme subtypes are secreted and what the relationships are between enzyme activity, biophysical and biochemical parameters, and clinical outcomes. We aimed to measure the enzyme and identify its subtypes and to study its biochemical and biophysical effect. The secondary aim was to correlate enzyme activity with clinical outcome.

Methods

Bronchoalveolar lavage was performed in 24 infants with ARDS and 14 controls with no lung disease. Samples were assayed for secretory phospholipase A2 and molecules related to its activity and expression. Western blotting and captive bubble surfactometry were also performed. Clinical data were real time downloaded.

Results

Tumor necrosis factor-α (814 (506-2,499) vs. 287 (111-1,315) pg/mL; P = 0.04), enzyme activity (430 (253-600) vs. 149 (61-387) IU/mL; P = 0.01), free fatty acids (4.3 (2.8-8.6) vs. 2 (0.8-4.6) mM; P = 0.026), and minimum surface tension (25.6 ± 6.1 vs. 18 ± 1.8 mN/m; P = 0.006) were higher in ARDS than in controls. Phospholipids are lower in ARDS than in controls (76.5 (54-100) vs. 1,094 (536-2,907) μg/mL; P = 0.0001). Three enzyme subtypes were identified (-IIA, -V, -X), although in lower quantities in controls; another subtype (-IB) was mainly detected in ARDS. Significant correlations exist between enzyme activity, free fatty acids (ρ = 0.823; P < 0.001), and surface tension (ρ = 0.55; P < 0.028). Correlations also exist with intensive care stay (ρ = 0.54; P = 0.001), PRISM-III24 (ρ = 0.79; P< 0.001), duration of ventilation (ρ = 0.53; P = 0.002), and oxygen therapy (ρ = 0.54; P = 0.001).

Conclusions

Secretory phospholipase A2 activity is raised in pediatric ARDS and constituted of four subtypes. Enzyme correlates with some inflammatory mediators, surface tension, and major clinical outcomes. Secretory phospholipase A2 may be a clinically relevant target in pediatric ARDS.  相似文献   

5.

Introduction

Acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) is characterized by features other than increased pulmonary vascular permeability. Pulmonary vascular permeability combined with increased extravascular lung water content has been considered a quantitative diagnostic criterion of ALI/ARDS. This prospective, multi-institutional, observational study aimed to clarify the clinical pathophysiological features of ALI/ARDS and establish its quantitative diagnostic criteria.

Methods

The extravascular lung water index (EVLWI) and the pulmonary vascular permeability index (PVPI) were measured using the transpulmonary thermodilution method in 266 patients with PaO2/FiO2 ratio ≤ 300 mmHg and bilateral infiltration on chest radiography, in 23 ICUs of academic tertiary referral hospitals. Pulmonary edema was defined as EVLWI ≥ 10 ml/kg. Three experts retrospectively determined the pathophysiological features of respiratory insufficiency by considering the patients'' history, clinical presentation, chest computed tomography and radiography, echocardiography, EVLWI and brain natriuretic peptide level, and the time course of all preceding findings under systemic and respiratory therapy.

Results

Patients were divided into the following three categories on the basis of the pathophysiological diagnostic differentiation of respiratory insufficiency: ALI/ARDS, cardiogenic edema, and pleural effusion with atelectasis, which were noted in 207 patients, 26 patients, and 33 patients, respectively. EVLWI was greater in ALI/ARDS and cardiogenic edema patients than in patients with pleural effusion with atelectasis (18.5 ± 6.8, 14.4 ± 4.0, and 8.3 ± 2.1, respectively; P < 0.01). PVPI was higher in ALI/ARDS patients than in cardiogenic edema or pleural effusion with atelectasis patients (3.2 ± 1.4, 2.0 ± 0.8, and 1.6 ± 0.5; P < 0.01). In ALI/ARDS patients, EVLWI increased with increasing pulmonary vascular permeability (r = 0.729, P < 0.01) and was weakly correlated with intrathoracic blood volume (r = 0.236, P < 0.01). EVLWI was weakly correlated with the PaO2/FiO2 ratio in the ALI/ARDS and cardiogenic edema patients. A PVPI value of 2.6 to 2.85 provided a definitive diagnosis of ALI/ARDS (specificity, 0.90 to 0.95), and a value < 1.7 ruled out an ALI/ARDS diagnosis (specificity, 0.95).

Conclusion

PVPI may be a useful quantitative diagnostic tool for ARDS in patients with hypoxemic respiratory failure and radiographic infiltrates.

Trial registration

UMIN-CTR ID UMIN000003627  相似文献   

6.

OBJECTIVE

Relative contributions of reversible β-cell dysfunction and true decrease in β-cell mass in type 2 diabetes remain unclear. Definitive rodent lineage-tracing studies have identified β-cell dedifferentiation and subsequent reprogramming to α-cell fate as a novel mechanism underlying β-cell failure. The aim was to determine whether phenotypes of β-cell dedifferentiation and plasticity are present in human diabetes.

RESEARCH DESIGN AND METHODS

Immunofluorescence colocalization studies using classical endocrine and mesenchymal phenotypic markers were undertaken using pancreatic sections and isolated islets from three individuals with diabetes and five nondiabetic control subjects.

RESULTS

Intraislet cytoplasmic coexpression of insulin and vimentin, insulin and glucagon, and vimentin and glucagon were demonstrated in all cases. These phenotypes were not present in nondiabetic control subjects.

CONCLUSIONS

Coexpression of mesenchymal and α-cell phenotypic markers in human diabetic islet β-cells has been confirmed, providing circumstantial evidence for β-cell dedifferentiation and possible reprogramming to α-cells in clinical diabetes.The relative contribution of reversible β-cell dysfunction and a true decrease in β-cell mass during the onset of and progression of type 2 diabetes have been hotly debated (1,2). Modest decreases in numbers of β-cells per islet and increases in β-cell apoptosis have been reported (3), but whether these are sufficient to account for the reduction in insulin secretory capacity remains unclear (4). Underpinned by recent rodent studies (5), a new hypothesis has been proposed whereby β-cell failure and increased α-cell function occur through dedifferentiation and reprogramming (6). We report, for the first time, expression of mesenchymal and α-cell phenotypic markers in human β-cells within intact islets of three individuals with diabetes.  相似文献   

7.

Introduction

A major pathophysiologic mechanism in sepsis is impaired host immunity which results in failure to eradicate invading pathogens and increased susceptibility to secondary infections. Although many immunosuppressive mechanisms exist, increased expression of the inhibitory receptor programmed cell death 1 (PD-1) and its ligand (PD-L1) are thought to play key roles. The newly recognized phenomenon of T cell exhaustion is mediated in part by PD-1 effects on T cells. This study tested the ability of anti-PD-1 and anti-PD-L1 antibodies to prevent apoptosis and improve lymphocyte function in septic patients.

Methods

Blood was obtained from 43 septic and 15 non-septic critically-ill patients. Effects of anti-PD-1, anti-PD-L1, or isotype-control antibody on lymphocyte apoptosis and interferon gamma (IFN-γ) and interleukin-2 (IL-2) production were quantitated by flow cytometry.

Results

Lymphocytes from septic patients produced decreased IFN-γ and IL-2 and had increased CD8 T cell expression of PD-1 and decreased PD-L1 expression compared to non-septic patients (P<0.05). Monocytes from septic patients had increased PD-L1 and decreased HLA-DR expression compared to non-septic patients (P<0.01). CD8 T cell expression of PD-1 increased over time in ICU as PD-L1, IFN-γ, and IL2 decreased. In addition, donors with the highest CD8 PD-1 expression together with the lowest CD8 PD-L1 expression also had lower levels of HLA-DR expression in monocytes, and an increased rate of secondary infections, suggestive of a more immune exhausted phenotype. Treatment of cells from septic patients with anti-PD-1 or anti-PD-L1 antibody decreased apoptosis and increased IFN-γ and IL-2 production in septic patients; (P<0.01). The percentage of CD4 T cells that were PD-1 positive correlated with the degree of cellular apoptosis (P<0.01).

Conclusions

In vitro blockade of the PD-1:PD-L1 pathway decreases apoptosis and improves immune cell function in septic patients. The current results together with multiple positive studies of anti-PD-1 and anti-PD-L1 in animal models of bacterial and fungal infections and the relative safety profile of anti-PD-1/anti-PD-L1 in human oncology trials to date strongly support the initiation of clinical trials testing these antibodies in sepsis, a disorder with a high mortality.  相似文献   

8.

Introduction

The aim of this study was to investigate the effects of levosimendan on rodent septic shock induced by cecal ligation and puncture (CLP).

Methods

Three hours after peritonitis-induced sepsis, male Wistar rats were randomly assigned to receive an intravenous infusion of levosimendan (1.2 μg/kg/min for 10 min and then 0.3 μg/kg/min for 6 h) or an equivalent volume of saline and vehicle (5% dextrose) solution.

Results

The levosimendan-treated CLP animals had significantly higher arterial pressure and lower biochemical indices of liver and kidney dysfunction compared to the CLP animals (P < 0.05). Plasma interleukin-1β, nitric oxide and organ superoxide levels in the levosimendan-treated CLP group were less than those in CLP rats treated with vehicle (P < 0.05). In addition, the inducible nitric oxide synthase (iNOS) in lung and caspase-3 expressions in spleen were significantly lower in the levosimendan-treated CLP group (P < 0.05). The administration of CLP rats with levosimendan was associated with significantly higher survival (61.9% vs. 40% at 18 h after CLP, P < 0.05). At postmortem examination, the histological changes and neutrophil filtration index in liver and lung were significantly attenuated in the levosimendan-treated CLP group (vs. CLP group, P < 0.05).

Conclusions

In this clinically relevant model of septic shock induced by fecal peritonitis, the administration of levosimendan had beneficial effects on haemodynamic variables, liver and kidney dysfunction, and metabolic acidosis. (1) Lower levels of interleukin-1β, nitric oxide and superoxide, (2) attenuation of iNOS and caspase-3 expressions, and (3) decreases of neutrophil infiltration by levosimendan in peritonitis-induced sepsis animals suggest that anti-inflammation and anti-apoptosis effects of levosimendan contribute to prolonged survival.  相似文献   

9.

Citation

Annane D, Sebille V, Bellissant E: Effect of low doses of corticosteroids in septic shock patients with or without early acute respiratory distress syndrome. Crit Care Med 2006, 34:22–30 [1].

Background

Experimental evidence suggests that corticosteroids may be beneficial in early acute respiratory distress syndrome (ARDS).

Methods

Objective

To investigate the efficacy of low doses of corticosteroids in septic shock patients with or without early ARDS by post hoc analysis of a previously completed clinical trial.

Design

Retrospective analysis of a placebo-controlled, randomized, double-blind trial of low doses of corticosteroids in septic shock.

Setting

Nineteen intensive care units in France.

Subjects

Among the 300 septic shock patients enrolled, we selected those meeting standard criteria for ARDS at inclusion.

Intervention

Seven-day treatment with 50 mg of hydrocortisone every 6 hrs and 50 μg of 9-alpha-fludrocortisone once a day.

Measurements and main results

There were 177 patients with ARDS (placebo, n = 92; corticosteroids, n = 85) including 129 (placebo, n = 67; corticosteroids, n = 62) nonresponders and 48 (placebo, n = 25; corticosteroids, n = 23) responders. In nonresponders, there were 50 deaths (75%) in the placebo group and 33 deaths (53%) in the steroid group (hazard ratio 0.57, 95% confidence interval 0.36–0.89, p = .013; relative risk 0.71, 95% confidence interval 0.54–0.94, p = .011). The number of days alive and off the ventilator was 2.6 +/- 6.6 in the placebo group and 5.7 +/- 8.6 in the steroid group (p = .006). There was no significant difference between groups in responders. There was no significant difference between groups in the two subsets of patients without ARDS. Adverse events rates were similar in the two groups.

Conclusion

This post hoc analysis shows that a 7-day treatment with low doses of corticosteroids was associated with better outcomes in septic shock-associated early ARDS nonresponders, but not in responders and not in septic shock patients without ARDS.  相似文献   

10.

Introduction

Neutrophil recovery has been implicated in deterioration of oxygenation and exacerbation of preexisting acute lung injury (ALI). The aim of this study was to investigate whether imatinib or nilotinib was effective on lipopolysaccharide (LPS)-induced ALI during neutropenia recovery in mice.

Methods

Mice were rendered neutropenic with cyclophosphamide prior to the intratracheal instillation of LPS. Imatinib or nilotinib was administrated by oral gavage during neutropenia recovery. In order to study the effects of drugs, mice were killed on day 5 and blood, bronchoalveolar lavage (BAL) fluid and lung tissue samples were obtained. The lung wet/dry weight ratio and protein levels in the BAL fluid or lung tissue were determined.

Results

Treatment with imatinib or nilotinib significantly attenuated the LPS-induced pulmonary edema, and this result was supported by the histopathological examination. The concentrations of tumor necrosis factor-α, interleukin (IL)-1β, IL-6 and myeloperoxidase in BAL fluid were significantly inhibited by imatinib or nilotinib in mice of ALI during neutropenia recovery. The mRNA expressions of platelet-derived growth factor receptor-β and c-KIT in imatinib or nilotinib group were significantly lower than LPS group.

Conclusions

Our data indicated that imatinib or nilotinib effectively attenuated LPS-induced ALI during neutropenia recovery. These results provide evidence for the therapeutic potential of imatinib and nilotinib in ALI during neutropenia recovery.  相似文献   

11.

Introduction

Altered pharmacokinetics (PK) in critically ill patients can result in insufficient serum β-lactam concentrations when standard dosages are administered. Previous studies on β-lactam PK have generally excluded the most severely ill patients, or were conducted during the steady-state period of treatment. The aim of our study was to determine whether the first dose of piperacillin-tazobactam, ceftazidime, cefepime, and meropenem would result in adequate serum drug concentrations in patients with severe sepsis and septic shock.

Methods

Open, prospective, multicenter study in four Belgian intensive care units. All consecutive patients with a diagnosis of severe sepsis or septic shock, in whom treatment with the study drugs was indicated, were included. Serum concentrations of the antibiotics were determined by high-pressure liquid chromatography (HPLC) before and 1, 1.5, 4.5 and 6 or 8 hours after administration.

Results

80 patients were treated with piperacillin-tazobactam (n = 27), ceftazidime (n = 18), cefepime (n = 19) or meropenem (n = 16). Serum concentrations remained above 4 times the minimal inhibitory concentration (T > 4 × MIC), corresponding to the clinical breakpoint for Pseudomonas aeruginosa defined by the European Committee on Antimicrobial Susceptibility Testing (EUCAST), for 57% of the dosage interval for meropenem (target MIC = 8 μg/mL), 45% for ceftazidime (MIC = 32 μg/mL), 34% for cefepime (MIC = 32 μg/mL), and 33% for piperacillin-tazobactam (MIC = 64 μg/mL). The number of patients who attained the target PK profile was 12/16 for meropenem (75%), 5/18 for ceftazidime (28%), 3/19 (16%) for cefepime, and 12/27 (44%) for piperacillin-tazobactam.

Conclusions

Serum concentrations of the antibiotic after the first dose were acceptable only for meropenem. Standard dosage regimens for piperacillin-tazobactam, ceftazidime and cefepime may, therefore, be insufficient to empirically cover less susceptible pathogens in the early phase of severe sepsis and septic shock.  相似文献   

12.

Introduction

Delirium is a common occurrence in critically ill patients and is associated with an increase in morbidity and mortality. Septic patients with delirium may differ from a general critically ill population. The aim of this investigation was to study the relationship between systemic inflammation and the development of delirium in septic and non-septic critically ill patients.

Methods

We performed a prospective cohort study in a 20-bed mixed intensive care unit (ICU) including 78 (delirium = 31; non-delirium = 47) consecutive patients admitted for more than 24 hours. At enrollment, patients were allocated to septic or non-septic groups according to internationally agreed criteria. Delirium was diagnosed using the Confusion Assessment Method for the Intensive Care Unit (CAM-ICU) during the first 72 hours of ICU admission. Blood samples were collected within 12 hours of enrollment for determination of tumor necrosis factor (TNF)-α, soluble TNF Receptor (STNFR)-1 and -2, interleukin (IL)-1β, IL-6, IL-10 and adiponectin.

Results

Out of all analyzed biomarkers, only STNFR1 (P = 0.003), STNFR2 (P = 0.005), adiponectin (P = 0.005) and IL-1β (P < 0.001) levels were higher in delirium patients. Adjusting for sepsis and sedation, these biomarkers were also independently associated with delirium occurrence. However, none of them were significant influenced by sepsis.

Conclusions

STNFR1, STNFR2, adiponectin and IL-1β were associated with delirium. Sepsis did not modify the relationship between the biomarkers and delirium occurrence.  相似文献   

13.

Expanded abstract

Citation

Rice TW, Wheeler AP, Thompson BT, deBoisblanc BP, Steingrub J, Rock, P. Enteral Omega-3 Fatty Acid, γ-Linolenic Acid, and Antioxidant Supplementation in Acute Lung Injury. JAMA. 2011; 306(14):1574-1581. PubMed PMID: 21976613.

Background

The omega-3 (n-3) fatty acids docosahexaenoic acid and eicosapentaenoic acid, along with γ-linolenic acid and antioxidants, may modulate systemic inflammatory response and improve oxygenation and outcomes in patients with acute lung injury.

Methods

Objective: To determine if dietary supplementation of these substances to patients with acute lung injury would increase ventilator-free days to study day 28.Design: The OMEGA study, a randomized, double-blind, placebo-controlled, multicenter trial conducted from January 2, 2008, through February 21, 2009. All participants had complete follow-up.Setting: This trial occurred at 44 hospitals in the National Heart, Lung, and Blood Institute ARDS Clinical Trials Network.Subjects: Participants were 272 adults within 48 hours of developing acute lung injury requiring mechanical ventilation whose physicians intended to start enteral nutrition.Intervention: Twice-daily enteral supplementation of n-3 fatty acids, γ -linolenic acid, and antioxidants compared with an isocaloric control. Enteral nutrition, directed by a protocol, was delivered separately from the study supplement.Outcomes: Ventilator-free days to study day 28.

Results

The study was stopped early for futility after 143 and 129 patients were enrolled in the n-3 and control groups. Despite an 8-fold increase in plasma eicosapentaenoic acid levels, patients receiving the n-3 supplement had fewer ventilator-free days (14.0 vs 17.2; P=.02) (difference, −3.2 [95% CI, −5.8 to −0.7]) and intensive care unit-free days (14.0 vs 16.7; P=.04). Patients in the n-3 group also had fewer nonpulmonary organ failure-free days (12.3 vs 15.5; P=.02). Sixty-day hospital mortality was 26.6% in the n 3 group vs 16.3% in the control group (P=.054), and adjusted 60-day mortality was 25.1% and 17.6% in the n-3 and control groups, respectively (P=.11). Use of the n-3 supplement resulted in more days with diarrhea (29% vs 21%; P=.001).

Conclusions

Twice-daily enteral supplementation of n-3 fatty acids, γ-linolenic acid, and antioxidants did not improve the primary end point of ventilator-free days or other clinical outcomes in patients with acute lung injury and may be harmful.  相似文献   

14.
Resveratrol (Res), a naturally occurring polyphenolic compound, has been reported to exert many biological effects like anti-inflammatory and anti-oxidant effects. In this study, we investigated the role of Res on IL-1β-induced osteoarthritis (OA) chondrocytes and its possible mechanism. Results demonstrated that Res suppressed IL-1β-induced IL-1, IL-6 and TNF-α production in a dose-dependent manner. Res also decreased MMP-1, MMP-3 and MMP-13 production in IL-1β-induced OA chondrocytes. These results suggested that Res suppressed IL-1β-induced inflammation and matrix-metalloproteases (MMP) expression in OA chondrocytes. In addition, Res was found to reverse the decreased autophagy level through increasing the expression of Beclin1, LC3 II/I ratio and LC3+ puncta in IL-1β-induced OA chondrocytes. Inhibition of autophagy by 3-methyladenine (3-MA) abolished the inhibitory effect of Res on inflammation and MMP expression in IL-1β-induced OA chondrocytes. Moreover, the Wnt/β-catenin signaling pathway was activated in IL-1β-induced OA chondrocytes. However, Res was found to suppress this activated Wnt/β-catenin signaling pathway. Activation of the Wnt/β-catenin signaling pathway counteracted the promoted effect on autophagy and inhibitory effect on inflammation and MMP expression of Res in IL-1β-induced OA chondrocytes. Taken together, our data demonstrated that Res attenuated inflammation and reduced MMP expression through inducing autophagy via inhibiting the Wnt/β-catenin signaling pathway in IL-1β-induced OA chondrocytes. Res may be used as a potential therapeutic agent for OA treatment.

Resveratrol (Res), a naturally occurring polyphenolic compound, has been reported to exert many biological effects like anti-inflammatory and anti-oxidant effects.  相似文献   

15.

OBJECTIVE

To provide a review of α1-antitrypsin deficiency (AATD), α1-antitrypsin (AAT) augmentation, and the recommendations for timely recognition and treatment.

SOURCES OF INFORMATION

Published guidelines and the medical literature about AATD and AAT augmentation were reviewed. The information presented is based on available published literature obtained by searching PubMed, the Cochrane Library databases, and the reference lists of relevant articles. Searches were limited to English-language articles published between 1990 and 2009.

MAIN MESSAGE

α1-Antitrypsin deficiency, a genetic disorder characterized by low serum levels of AAT, predisposes affected patients to development of early-onset pulmonary disease (most commonly emphysema and chronic obstructive pulmonary disease) and occasionally even life-threatening liver disease. Despite being one of the most common inherited conditions (affecting about 1 in 2000 to 5000 people), AATD is underrecognized. This is unfortunate; although there is no cure for AATD, prompt diagnosis can help impede loss of lung function. Specific treatment of this deficiency with augmentation therapy is effective.

CONCLUSION

α1-Antitrypsin deficiency is a common genetic condition that can be involved in premature lung and liver disease. Consider the diagnosis to allow earlier institution of AAT augmentation therapy to slow the progression of premature lung disease in affected patients.  相似文献   

16.

Background

Previous investigations have suggested beneficial effects of fresh versus stored red blood cell transfusion in critically ill patients. The present study investigates the effects of red blood cell storage time on the clinical course and hemodynamic and laboratory parameters in patients with septic shock.

Patients and Methods

18 patients with septic shock received 2 erythrocyte units stored for ? 7 days (n = 8) or > 7 days (n = 10). The sequential organ failure assessment (SOFA) score was calculated for 7 days. Hemodynamic parameters (cardiac index, extravascular lung water) were determined using transpulmonary thermodilution. Laboratory parameters (lactate, base excess, C-reactive protein, procalcitonin, IL-1Β, IL-6, TNF-α, sVCAM-1, sICAM-1) were monitored before and 1, 3, 6, 12, 24, and 48 h after transfusion. The Mann-Whitney-U test and Neumann test were used for group comparison and trend assessment, respectively.

Results

We failed to observe significant differences with respect to SOFA scores between patients receiving fresh or stored erythrocytes. However, a significant trend towards an improvement in the SOFA score was found in the group receiving fresh erythrocytes (p < 0.01). No significant differences in hemodynamic or laboratory parameters were found between both groups. Conclusion: While the present findings do not provide clear-cut evidence supporting beneficial effects of fresh red blood cells in septic shock, they warrant larger randomized studies to confirm or refute such effects.  相似文献   

17.

Introduction

Endothelial cell injury is an important component of acute lung injury. Platelet-endothelial cell adhesion molecule-1 (PECAM1) is a transmembrane protein that connects endothelial cells to one another and can be detected as a soluble, truncated protein (sPECAM1) in serum. We hypothesized that injurious mechanical ventilation (MV) leads to shedding of PECAM1 from lung endothelial cells resulting in increasing sPECAM1 levels in the systemic circulation.

Methods

We studied 36 Sprague–Dawley rats in two prospective, randomized, controlled studies (healthy and septic) using established animal models of ventilator-induced lung injury. Animals (n = 6 in each group) were randomized to spontaneous breathing or two MV strategies: low tidal volume (VT) (6 ml/kg) and high-VT (20 ml/kg) on 2 cmH2O of positive end-expiratory pressure (PEEP). In low-VT septic animals, 10 cmH2O of PEEP was applied. We performed pulmonary histological and physiological evaluation and measured lung PECAM1 protein content and serum sPECAM1 levels after four hours ventilation period.

Results

High-VT MV caused severe lung injury in healthy and septic animals, and decreased lung PECAM1 protein content (P < 0.001). Animals on high-VT had a four- to six-fold increase of mean sPECAM1 serum levels than the unventilated counterpart (35.4 ± 10.4 versus 5.6 ± 1.7 ng/ml in healthy rats; 156.8 ± 47.6 versus 35.6 ± 12.6 ng/ml in septic rats) (P < 0.0001). Low-VT MV prevented these changes. Levels of sPECAM1 in healthy animals on high-VT MV paralleled the sPECAM1 levels of non-ventilated septic animals.

Conclusions

Our findings suggest that circulating sPECAM1 may represent a promising biomarker for the detection and monitoring of ventilator-induced lung injury.  相似文献   

18.

Introduction

Previous studies have found higher circulating levels of tissue inhibitor of matrix metalloproteinase (TIMP)-1 in nonsurviving septic patients than in surviving septic patients, and an association between the 372 T/C genetic polymorphism of TIMP-1 and the risk of developing certain diseases. However, the relationship between genetic polymorphisms of TIMP-1, circulating TIMP-1 levels and survival in patients with severe sepsis has not been examined, and this was the objective of the study.

Methods

This multicentre, prospective, observational study was carried out in six Spanish ICUs. We determined the 372 T/C genetic polymorphism of TIMP-1 (rs4898), serum levels of TIMP-1, matrix metalloproteinase (MMP)-9, MMP-10, TNFα, IL-10 and plasma plasminogen activator inhibitor-1 (PAI-1). Survival at 30 days from ICU admission was the endpoint assessed. The association between continuous variables was carried out using Spearman''s rank correlation coefficient or Spearman''s rho coefficient. Multivariate logistic regression analysis was applied to determine the association between the 372 T/C genetic polymorphism and survival 30 days from ICU admission.

Results

Of 275 patients with severe sepsis, 80 had genotype CC, 55 had genotype CT and 140 had genotype TT of the 372 T/C genetic polymorphism of TIMP-1. Patients with the T allele showed higher serum levels of TIMP-1 than patients without the T allele (P = 0.004). Multiple logistic regression analysis showed that the T allele was associated with higher mortality at 30 days (odds ratio = 2.08; 95% confidence interval = 1.06 to 4.09; P = 0.03). Survival analysis showed that patients with the T allele presented lower 30-day survival than patients without the T allele (χ2 = 5.77; P = 0.016). We found an association between TIMP-1 levels and levels of MMP-9 (ρ = -0.19; P = 0.002), MMP-10 (ρ = 0.55; P <0.001), TNFα (ρ = 0.56; P <0.001), IL-10 (ρ = 0.48; P <0.001) and PAI-1 (ρ = 0.49; P <0.001).

Conclusion

The novel findings of our study are that septic patients with the T allele in the 372 T/C genetic polymorphism of TIMP-1 showed higher serum TIMP-1 levels and lower survival rate. The determination of the 372 T/C genetic polymorphism of TIMP-1 thus has prognostic implications and could help in the selection of patients who may benefit from modulation of the MMP/TIMP balance.  相似文献   

19.

Introduction

The Berlin definition divides acute respiratory distress syndrome (ARDS) into three severity categories. The relationship between these categories and pulmonary microvascular permeability as well as extravascular lung water content, which is the hallmark of lung pathophysiology, remains to be elucidated. The aim of this study was to evaluate the relationship between extravascular lung water, pulmonary vascular permeability, and the severity categories as defined by the Berlin definition, and to confirm the associated predictive validity for severity.

Methods

The extravascular lung water index (EVLWi) and pulmonary vascular permeability index (PVPI) were measured using a transpulmonary thermodilution method for three consecutive days in 195 patients with an EVLWi of ≥10 mL/kg and who fulfilled the Berlin definition of ARDS. Collectively, these patients were seen at 23 ICUs. Using the Berlin definition, patients were classified into three categories: mild, moderate, and severe.

Results

Compared to patients with mild ARDS, patients with moderate and severe ARDS had higher acute physiology and chronic health evaluation II and sequential organ failure assessment scores on the day of enrollment. Patients with severe ARDS had higher EVLWi (mild, 16.1; moderate, 17.2; severe, 19.1; P <0.05) and PVPI (2.7; 3.0; 3.2; P <0.05). When categories were defined by the minimum PaO2/FIO2 ratio observed during the study period, the 28-day mortality rate increased with severity categories: moderate, odds ratio: 3.125 relative to mild; and severe, odds ratio: 4.167 relative to mild. On independent evaluation of 495 measurements from 195 patients over three days, negative and moderate correlations were observed between EVLWi and the PaO2/FIO2 ratio (r = -0.355, P<0.001) as well as between PVPI and the PaO2/FIO2 ratio (r = -0.345, P <0.001). ARDS severity was associated with an increase in EVLWi with the categories (mild, 14.7; moderate, 16.2; severe, 20.0; P <0.001) in all data sets. The value of PVPI followed the same pattern (2.6; 2.7; 3.5; P <0.001).

Conclusions

Severity categories of ARDS described by the Berlin definition have good predictive validity and may be associated with increased extravascular lung water and pulmonary vascular permeability.

Trial registration

UMIN-CTR ID UMIN000003627  相似文献   

20.

OBJECTIVE

Leptin administration is known to directly modulate pancreatic β-cell function in leptin-deficient rodent models. However, human studies examining the effects of leptin administration on β-cell function are lacking. In this study, we examined the effects (16–20 weeks) of leptin replacement on β-cell function in patients with lipodystrophy.

RESEARCH DESIGN AND METHODS

In a prospective, open-label, currently ongoing study, we studied the effects of leptin replacement on β-cell function in 13 patients with congenital or acquired lipodystrophy. Insulin secretory rate (ISR) was calculated by C-peptide deconvolution from plasma glucose and C-peptide levels measured during oral glucose tolerance tests (OGTTs) performed at baseline and after 16–20 weeks of leptin replacement. β-Cell glucose sensitivity and rate sensitivity were assessed by mathematical modeling of OGTT.

RESULTS

There was a significant decrease in triglycerides, free fatty acids, and glycosylated hemoglobin levels (A1C) after leptin therapy. Patients with lipodystrophy have high fasting and glucose-stimulated ISR. However, leptin therapy had no significant effect on fasting ISR, total insulin secretion during OGTT, β-cell glucose sensitivity, rate sensitivity, or insulin clearance.

CONCLUSIONS

In contrast to the suppressive effects of leptin on β-cell function in rodents, 16–20-week treatment with leptin in lipodystrophy patients did not significantly affect insulin secretion or β-cell function in leptin-deficient individuals with lipodystrophy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号