首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Clinical neurophysiology》2019,130(8):1351-1357
ObjectiveFinding a non-invasive biomarker for Globus Pallidus interna Deep Brain Stimulation (GPi-DBS) efficacy. Dystonia heterogeneity leads to a wide variety of clinical response to GPi-DBS, making it hard to predict GPi-DBS efficacy for individual patients.MethodsEEG-EMG recordings of twelve dystonia patients who received bilateral GPi-DBS took place pre- and 1 year post-surgery ON and OFF stimulation, during a rest, pinch, and flexion task. Dystonia severity was assessed using the BFMDRS and TWSTRS (pre- and post-surgery ON stimulation). Intermuscular coherence (IMC) and motorcortex corticomuscular coherence (CMC) were calculated. Low frequency (4–12 Hz) and beta band (13–30 Hz) peak coherences were studied.ResultsDystonia severity improved after 1 year GPi-DBS therapy (BFMDRS: 30%, median 7.8 (IQR 3–10), TWSTRS: 22%, median 6.8 (IQR 4–9)). 86% of IMC were above the 95% confidence limit. The highest IMC peak decreased significantly with GPi-DBS in the low frequency and beta band. Low frequency and beta band IMC correlated partly with dystonia severity and severity improvement. CMC generally were below the 95% confidence limit.ConclusionsPeak low frequency IMC functioned as biomarker for GPi-DBS efficacy, and partly correlated with dystonia severity.SignificanceIMC can function as biomarker. Confirmation in a larger study is needed for use in clinical practice.  相似文献   

2.
《Brain stimulation》2022,15(1):46-52
BackgroundSimultaneously modulating individual neural oscillation and cortical excitability may be important for enhancing communication between the primary motor cortex and spinal motor neurons, which plays a key role in motor control. However, it is unknown whether individualized beta-band oscillatory transcranial direct current stimulation (otDCS) enhances corticospinal oscillation and excitability.ObjectiveThis study investigated the effects of individualized beta-band otDCS on corticomuscular coherence (CMC) and corticospinal excitability in healthy individuals.MethodsIn total, 29 healthy volunteers participated in separate experiments. They received the following stimuli for 10 min on different days: 1) 2-mA otDCS with individualized beta-band frequencies, 2) 2-mA transcranial alternating current stimulation (tACS) with individualized beta-band frequencies, and 3) 2-mA transcranial direct current stimulation (tDCS). The changes in CMC between the vertex and tibialis anterior (TA) muscle and TA muscle motor-evoked potentials (MEPs) were assessed before and after (immediately, 10 min, and 20 min after) stimulation on different days. Additionally, 20-Hz otDCS for 10 min was applied to investigate the effects of a fixed beta-band frequency on CMC.ResultsotDCS significantly increased CMC and MEPs immediately after stimulation, whereas tACS and tDCS had no effects. There was a significant negative correlation between normalized CMC changes in response to 20-Hz otDCS and the numerical difference between the 20-Hz and individualized CMC peak frequency before the stimulation.ConclusionsThese findings suggest that simultaneous modulation of neural oscillation and cortical excitability is critical for enhancing corticospinal communication. Individualized otDCS holds potential as a useful method in the field of neurorehabilitation.  相似文献   

3.
This study’s aim was to investigate prevalence of four non-motor symptoms in patients with cervical dystonia and healthy controls to explore whether the presence of multiple non-motor features is associated with cervical dystonia diagnosis. Fifteen patients with cervical dystonia and 15 healthy controls underwent non-invasive testing of spatial discrimination threshold, temporal discrimination threshold, vibration-induced illusion of movement, and kinesthesia. All spatial discrimination threshold, temporal discrimination threshold, and vibration-induced illusion of movement measures were converted to standardized Z scores with scores >2.0 considered abnormal. Any incorrect kinesthesia response was considered abnormal. Prevalence of each abnormal non-motor feature was compared between groups using a chi-squared test. A higher proportion of patients with cervical dystonia had abnormal spatial discrimination threshold (p = 0.01) and abnormal kinesthesia (p = 0.03) scores compared to healthy control subjects. There were no significant differences between the proportion of patients with cervical dystonia versus healthy controls for abnormal temporal discrimination threshold (p = 0.07) or abnormal vibration-induced illusion of movement (p = 0.14). Forty-seven percent of patients with cervical dystonia (7/15) demonstrated one abnormal non-motor feature, 20% (3/15) displayed two abnormal features, and 13% (2/15) displayed three abnormal features. Kinesthesia was the only non-motor feature identified as abnormal in the control group (20%, 3/15). All four tests demonstrated high specificity (80–100%) and low-moderate sensitivity (13–60%). These findings suggest that non-motor feature testing, specifically for spatial discrimination threshold and kinesthesia, could be a highly specific diagnostic tool to inform cervical dystonia diagnosis. Further investigation is needed to confirm these findings.  相似文献   

4.
《Clinical neurophysiology》2021,132(1):106-113
ObjectivePoliomyelitis results in changes to the anterior horn cell. The full extent of cortical network changes in the motor physiology of polio survivors has not been established. Our aim was to investigate how focal degeneration of the lower motor neurons (LMN) in infancy/childhood affects motor network connectivity in adult survivors of polio.MethodsSurface electroencephalography (EEG) and electromyography (EMG) were recorded during an isometric pincer grip task in 25 patients and 11 healthy controls. Spectral signal analysis of cortico-muscular (EEG-EMG) coherence (CMC) was used to identify the cortical regions that are functionally synchronous and connected to the periphery during the pincer grip task.ResultsA pattern of CMC was noted in polio survivors that was not present in healthy individuals. Significant CMC in low gamma frequency bands (30–47 Hz) was observed in frontal and parietal regions.ConclusionThese findings imply a differential engagement of cortical networks in polio survivors that extends beyond the motor cortex and suggest a disease-related functional reorganisation of the cortical motor network.SignificanceThis research has implications for other similar LMN conditions, including spinal muscular atrophy (SMA). CMC has potential in future clinical trials as a biomarker of altered function in motor networks in post-polio syndrome, SMA, and other related conditions.  相似文献   

5.
《Clinical neurophysiology》2021,132(10):2447-2455
ObjectiveThe aim was to find a sensitive method to highlight the remodeling of the brain’s bioelectric activity in post-stroke repair.MethodsFifteen mild upper limb paretic stroke patients and age-matched healthy controls were included. Repeated trials of finger tapping around the 10th and 100th days after stroke onset were recorded with a 128-channel EEG. Power spectra and Inter Trial Coherence (ITC) calculations were synchronized to tappings. ITC was correlated with motor performance.ResultsITC, in low frequency bands, designates the motor related bioelectric activity in channel space in both healthy subjects and patients. Ten days after stroke onset, delta-theta ITC was severely reduced compared to baseline, while three months later ITC reorganized partially over the ipsilesional central-parietal areas reflecting the improvement of motor networks. Decreased ITC in the central-parietal area remained significant compared to controls. Delta band ITC over the dorsolateral-prefrontal cortex correlates with the performance on Nine Hole Peg Test. At post-recovery, non-paretic hand tappings show significantly decreased delta-theta ITC over the supplementary motor area, which reflects network remodeling.ConclusionsInter Trial Coherence is a useful measure of brain reorganization during stroke recovery.SignificanceDelta- theta ITC is a sensitive indicator of impaired motor execution.  相似文献   

6.
《Clinical neurophysiology》2021,132(9):2110-2122
ObjectiveDuring early childhood, the development of communication skills, such as language and speech perception, relies in part on auditory system maturation. Because auditory behavioral tests engage cognition, mapping auditory maturation in the absence of cognitive influence remains a challenge. Furthermore, longitudinal investigations that capture auditory maturation within and between individuals in this age group are scarce. The goal of this study is to longitudinally measure auditory system maturation in early childhood using an objective approach.MethodsWe collected frequency-following responses (FFR) to speech in 175 children, ages 3–8 years, annually for up to five years. The FFR is an objective measure of sound encoding that predominantly reflects auditory midbrain activity. Eliciting FFRs to speech provides rich details of various aspects of sound processing, namely, neural timing, spectral coding, and response stability. We used growth curve modeling to answer three questions: 1) does sound encoding change across childhood? 2) are there individual differences in sound encoding? and 3) are there individual differences in the development of sound encoding?ResultsSubcortical auditory maturation develops linearly from 3-8 years. With age, FFRs became faster, more robust, and more consistent. Individual differences were evident in each aspect of sound processing, while individual differences in rates of change were observed for spectral coding alone.ConclusionsBy using an objective measure and a longitudinal approach, these results suggest subcortical auditory development continues throughout childhood, and that different facets of auditory processing follow distinct developmental trajectories.SignificanceThe present findings improve our understanding of auditory system development in typically-developing children, opening the door for future investigations of disordered sound processing in clinical populations.  相似文献   

7.
《Clinical neurophysiology》2019,130(11):2169-2181
ObjectiveMental activation has been reported to modify the occurrence of epileptiform activity. We studied its effect on afterdischarges.MethodIn 15 patients with implanted electrodes we presented cognitive tasks when afterdischarges occurred. We developed a wavelet cross-coherence function to analyze the electrocorticography before and after the tasks and compared findings when cognitive tasks did or did not result in afterdischarge termination. Six patients returned for functional MRI (fMRI) testing, using similar tasks.ResultsCognitive tasks often could terminate afterdischarges when direct abortive stimulation could not. Wavelet cross-coherence analysis showed that, when afterdischarges stopped, there was decreased coherence throughout the brain in the 7.13–22.53 Hz frequency ranges (p values 0.008–0.034). This occurred a) regardless of whether an area activated on fMRI and b) regardless of whether there were afterdischarges in the area.ConclusionsIt is known that cognitive tasks can alter localized or network synchronization. Our results show that they can change activity throughout the brain. These changes in turn can terminate localized epileptiform activity.SignificanceCognitive tasks result in diffuse brain changes that can modify focal brain activity. Combined with a seizure detection device, cognitive activation might provide a non-invasive method of terminating or modifying seizures.  相似文献   

8.
《Clinical neurophysiology》2020,131(9):2298-2306
ObjectiveTo determine the inter-rater agreement (IRA) of a standardized nomenclature for EEG spectrogram patterns, and to estimate the probability distribution of ictal-interictal continuum (IIC) patterns vs. other EEG patterns within each category in this nomenclature.MethodsWe defined seven spectrogram categories: “Solid Flames”, “Irregular Flames”, “Broadband-monotonous”, “Narrowband-monotonous”, “Stripes”, “Low power”, and “Artifact”. Ten electroencephalographers scored 115 spectrograms and the corresponding raw EEG samples. Gwet's agreement coefficient was used to calculate IRA.ResultsSolid Flames represented seizures or IIC patterns 69.4% of the time. Irregular Flames represented seizures or IIC patterns 38.7% of the time. Broadband-monotonous primarily corresponded with seizures or IIC (54.3%) and Narrowband-monotonous with focal or generalized slowing (43.8%). Stripes were associated with burst-suppression (37.2%) and generalized suppression (34.4%). Low Power category was associated with generalized suppression (94%). There was “near perfect” agreement for Solid Flames (κ = 94.36), Low power (κ = 92.61), and Artifact (κ = 93.72). There was “substantial agreement” for all other categories (κ = 74.65–79.49).ConclusionsThis EEG spectrogram nomenclature has high IRA among electroencephalographers.SignificanceThe nomenclature can be a useful tool for EEG screening. Future studies are needed to determine if using this nomenclature shortens time to IIC identification, and how best to use it in practice to reduce time to intervention.  相似文献   

9.
《Clinical neurophysiology》2021,132(11):2851-2860
ObjectiveTo analyze the association between electroencephalographic (EEG) patterns and overall, short- and long-term mortality in patients with hypoxic encephalopathy (HE).MethodsRetrospective, mono-center analysis of 199 patients using univariate log-rank tests (LR) and multivariate cox regression (MCR).ResultsShort-term mortality, defined as death within 30-days post-discharge was 54.8%. Long-term mortality rates were 69.8%, 71.9%, and 72.9%, at 12-, 24-, and 36-months post-HE, respectively. LR revealed a significant association between EEG suppression (SUP) and short-term mortality, and identified low voltage EEG (LV), burst suppression (BSP), periodic discharges (PD) and post-hypoxic status epilepticus (PSE) as well as missing (aBA) or non-reactive background activity (nrBA) as predictors for overall, short- and long-term mortality. MCR indicated SUP, LV, BSP, PD, aBA and nrBA as significantly associated with overall and short-term mortality to varying extents. LV and BSP were significant predictors for long-term mortality in short-term survivors. Rhythmic delta activity, stimulus induced rhythmic, periodic or ictal discharges and sharp waves were not significantly associated with a higher mortality.ConclusionThe presence of several specific EEG patterns can help to predict overall, short- and long-term mortality in HE patients.SignificanceThe present findings may help to improve the challenging prognosis estimation in HE patients.  相似文献   

10.
《Brain stimulation》2022,15(5):1269-1278
BackgroundDeep brain stimulation of the internal globus pallidus (GPi DBS) is an invasive therapeutic modality intended to retune abnormal central nervous system patterns and relieve the patient of dystonic or other motor symptoms.ObjectivesThe aim of the presented research was to determine the neuroanatomical signature of GPi DBS modulation and its association with the clinical outcome.MethodsThis open-label fixed-order study with cross-sectional validation against healthy controls analysed the resting-state functional MRI activity changes induced by GPi DBS in 18 dystonia patients of heterogeneous aetiology, focusing on both global (full brain) and local connectivity (local signal homogeneity).ResultsCompared to the switched-off state, the activation of GPi DBS led to the restoration of global subcortical connectivity patterns (in both putamina, diencephalon and brainstem) towards those of healthy controls, with positive direct correlation over large-scale cortico-basal ganglia-thalamo-cortical and cerebellar networks with the clinical improvement. Nonetheless, on average, GPi DBS also seemed to bring local connectivity both in the cortical and subcortical regions farther away from the state detected in healthy controls. Interestingly, its correlation with clinical outcome showed that in better DBS responders, local connectivity defied this effect and approached healthy controls.ConclusionsAll in all, the extent of restoration of both these main metrics of interest towards the levels found in healthy controls clearly correlated with the clinical improvement, indicating that the restoration of network state towards more physiological condition may be a precondition for successful GPi DBS outcome in dystonia.  相似文献   

11.
《Clinical neurophysiology》2020,131(8):1947-1955
ObjectiveLocalization of epileptogenic brain regions is a crucial aim of pre-surgical evaluation of patients with drug-resistant epilepsy. Several methods have been proposed to identify the seizure onset zone, particularly based on the detection of fast activity. Most of these methods are inefficient to detect slower patterns of onset that account for 20–30% of commonly observed Stereo-Electro-Encephalography (SEEG) patterns. We seek to evaluate the performance of a new quantified measure called the Connectivity Epileptogenicity Index (cEI) in various types of seizure onset patterns.MethodsWe studied SEEG recorded seizures from 51 patients, suffering from focal drug-resistant epilepsy. The cEI combines a directed connectivity measure (“out-degrees”) and the original epileptogenicity index (EI). Quantified results (Out-degrees, cEI and EI) were compared to visually defined seizure onset zone (vSOZ). We computed recall (sensitivity) and precision (proportion of correct detections within all detections) with vSOZ as a reference. The quality of the detector was quantified by the area under the precision-recall curve.ResultsBest results (in terms of match with vSOZ) were obtained for cEI. For seizures with fast onset patterns, cEI and EI gave comparable results. For seizures with slow onset patterns, cEI gave a better estimation of the vSOZ than EI.ConclusionsWe observed that cEI discloses better performance than EI when seizures starts with slower patterns and equal to EI in seizures with fast onset patterns.SignificanceThe cEI is a promising new tool for epileptologists, that helps characterizing the seizure onset zone in sEEG, in a robust way despite variations in seizure onset patterns.  相似文献   

12.
《Clinical neurophysiology》2021,132(9):2222-2231
ObjectiveChildhood absence epilepsy (CAE) is a disease with distinct seizure semiology and electroencephalographic (EEG) features. Differentiating ictal and subclinical generalized spikes and waves discharges (GSWDs) in the EEG is challenging, since they appear to be identical upon visual inspection. Here, spectral and functional connectivity (FC) analyses were applied to routine EEG data of CAE patients, to differentiate ictal and subclinical GSWDs.MethodsTwelve CAE patients with both ictal and subclinical GSWDs were retrospectively selected for this study. The selected EEG epochs were subjected to frequency analysis in the range of 1–30 Hz. Further, FC analysis based on the imaginary part of coherency was used to determine sensor level networks.ResultsDelta, alpha and beta band frequencies during ictal GSWDs showed significantly higher power compared to subclinical GSWDs. FC showed significant network differences for all frequency bands, demonstrating weaker connectivity between channels during ictal GSWDs.ConclusionUsing spectral and FC analyses significant differences between ictal and subclinical GSWDs in CAE patients were detected, suggesting that these features could be used for machine learning classification purposes to improve EEG monitoring.SignificanceIdentifying differences between ictal and subclinical GSWDs using routine EEG, may improve understanding of this syndrome and the management of patients with CAE.  相似文献   

13.
ObjectivesA growing body of evidence links age related brain pathologies to systemic vascular processes. We aimed to study the prevalence and interrelations between magnetic resonance imaging (MRI) markers of cerebral small vessel disease and patterns of brain atrophy, and their association to carotid duplex ultrasound flow parameters.Materials and methodsWe investigated a population based randomised cohort of older adults (n=391) aged 70-87, part of the Swedish Good Aging in Skåne Study. Peak systolic and end diastolic velocities of the carotid arteries were measured by ultrasound, and resistivity- and pulsatility indexes were calculated. Subjects with increased peak systolic velocity indicating carotid stenosis were excluded from analysis. Nine MRI findings were rated by visual scales: white matter changes, pontine white matter changes, microbleeds, lacunar infarctions, medial temporal lobe atrophy, global cortical atrophy, parietal atrophy, precuneus atrophy and central atrophy.ResultsMRI pathologies were found in 80% of subjects. Mean end diastolic velocity in common carotid arteries was inversely associated with white matter hyperintensities (OR=0.92; p=0.004), parietal lobe atrophy (OR=0.94; p=0.039), global cortical atrophy (OR=0.90; p=0.013), precuneus atrophy (OR=0.94; p=0.022), “number of CSV pathologies” (β=-0.07; p<0.001) and “MRI-burden score” (β=-0.11; p<0.001), after adjustment for age and sex. The latter three were also associated with pulsatility and resistivity indexes.ConclusionsLow carotid end diastolic velocity, as well as increased carotid resistivity and pulsatility, were associated with signs of cerebral small vessel disease and patterns of brain atrophy, indicating a vascular component in the process of brain aging.  相似文献   

14.
《Clinical neurophysiology》2020,131(11):2736-2765
The analysis of spontaneous EEG activity and evoked potentials is a cornerstone of the instrumental evaluation of patients with disorders of consciousness (DoC). The past few years have witnessed an unprecedented surge in EEG-related research applied to the prediction and detection of recovery of consciousness after severe brain injury, opening up the prospect that new concepts and tools may be available at the bedside. This paper provides a comprehensive, critical overview of both consolidated and investigational electrophysiological techniques for the prognostic and diagnostic assessment of DoC. We describe conventional clinical EEG approaches, then focus on evoked and event-related potentials, and finally we analyze the potential of novel research findings. In doing so, we (i) draw a distinction between acute, prolonged and chronic phases of DoC, (ii) attempt to relate both clinical and research findings to the underlying neuronal processes and (iii) discuss technical and conceptual caveats. The primary aim of this narrative review is to bridge the gap between standard and emerging electrophysiological measures for the detection and prediction of recovery of consciousness. The ultimate scope is to provide a reference and common ground for academic researchers active in the field of neurophysiology and clinicians engaged in intensive care unit and rehabilitation.  相似文献   

15.
ObjectivesThere is limited information about the long-term consequences of childhood- and adolescent-onset narcolepsy on educational and social factors. Here, we estimate the long-term socioeconomic consequences and health care costs of narcolepsy.MethodsThe prospective cohort study included Danish individuals with narcolepsy onset in childhood or adolescence, diagnosed between 1994 and 2015. Health care costs and socioeconomic data were obtained from nationwide administrative and health registers. One hundred seventy-one patients were compared with 680 controls (mean index age, 15.2 years; SD, 3.4 years) matched for age, gender, and other sociodemographic characteristics.ResultsComparing the narcolepsy patient and control groups at age 20 years we found: (1) no differences in parental educational level; (2) patients had a significantly lower educational level than controls; (3) patients had significantly lower grade-point averages; (4) patients had a lower employment rate and lower-income, even when transfer payments were considered; and (5) patients' initial health care costs were higher. Patients had a higher mortality rate than controls, although the difference was not statistically significant.ConclusionNarcolepsy is associated with a significant influence on educational level, grading, social outcome, and welfare consequences. The development of narcolepsy is independent of parental social level.  相似文献   

16.
BackgroundAlthough tumor necrosis factor (TNF) inhibitors are used to treat chronic inflammatory diseases, there is little information about how long-term inhibition of TNF affects the homeostatic functions that TNF maintains in the intact CNS.Materials and methodsTo assess whether developmental TNF deficiency causes alterations in the naïve CNS, we estimated the number of proliferating cells, microglia, and neurons in the developing neocortex of E13.5, P7 and adult TNF knock out (TNF−/−) mice and wildtype (WT) littermates. We also measured changes in gene and protein expression and monoamine levels in adult WT and TNF−/− mice. To evaluate long-term effects of TNF inhibitors, we treated healthy adult C57BL/6 mice with either saline, the selective soluble TNF inhibitor XPro1595, or the nonselective TNF inhibitor etanercept. We estimated changes in cell number and protein expression after two months of treatment. We assessed the effects of TNF deficiency on cognition by testing adult WT and TNF−/− mice and mice treated with saline, XPro1595, or etanercept with specific behavioral tasks.ResultsTNF deficiency decreased the number of proliferating cells and microglia and increased the number of neurons. At the same time, TNF deficiency decreased the expression of WNT signaling-related proteins, specifically Collagen Triple Helix Repeat Containing 1 (CTHRC1) and Frizzled receptor 6 (FZD6). In contrast to XPro1595, long-term inhibition of TNF with etanercept in adult C57BL/6 mice decreased the number of BrdU+ cells in the granule cell layer of the dentate gyrus. Etanercept, but not XPro1595, also impaired spatial learning and memory in the Barnes maze memory test.ConclusionTNF deficiency impacts the organization of neurogenic zones and alters the cell composition in brain. Long-term inhibition of TNF with the nonselective TNF inhibitor etanercept, but not the soluble TNF inhibitor XPro1595, decreases neurogenesis in the adult mouse hippocampus and impairs learning and memory after two months of treatment.  相似文献   

17.
《Clinical neurophysiology》2021,132(2):554-567
ObjectiveTo explore the multiple specific biomarkers and cognitive compensatory mechanisms of mild traumatic brain injury (mTBI) patients at recovery stage.MethodsThe experiment was performed in two sections. In Section I, using event-related potential, event-related oscillation and spatial phase-synchronization, we explored neural dynamics in 24 volunteered healthy controls (HC) and 38 patients at least 6 months post-mTBI (19 with epidural hematoma, EDH; 19 with subdural hematoma, SDH) during a Go/NoGo task. In Section II, according to the neuropsychological scales, patients were divided into sub-groups to assess these electroencephalography (EEG) indicators in identifying different rehabilitation outcomes of mTBI.ResultsIn Section I, mean amplitudes of NoGo-P3 and P3d were decreased in mTBI patients relative to HC, and NoGo-theta power in the non-injured hemisphere was decreased in SDH patients only. In Section II, patients with chronic neuropsychological defects exhibited more serious impairments of intra-hemispheric connectivity, whereas inter-hemispheric centro-parietal and frontal connectivity were enhanced in response to lesions.ConclusionsEEG distinguished mTBI patients from healthy controls, and estimated different rehabilitation outcomes of mTBI. The centro-parietal and frontal connectivity are the main compensatory mechanism for the recovery of mTBI patients.SignificanceEEG measurements and network connectivity can track recovery process and mechanism of mTBI.  相似文献   

18.
《Clinical neurophysiology》2019,130(2):251-258
ObjectiveAim of the study was to explore the inter-ictal, resting-state EEG network in patients with focal epilepsy (FE) and to specify clinical factors that influence network activity.MethodsFunctional EEG connectivity (EEGfC) differences were computed between 232 FE patients (FE group) and 77 healthy controls. EEGfC was computed among 23 cortical regions within each hemisphere, for 25 very narrow bands from 1 to 25 Hz. We computed independent effects for six clinical factors on EEGfC in the FE group, by ANOVA and post-hoc t-statistics, corrected for multiple comparisons by false discovery rate method.ResultsRobust, statistically significant EEGfC differences emerged between the FE and the healthy control groups. Etiology, seizure type, duration of the illness and antiepileptic treatment were independent factors that influenced EEGfC. Statistically significant results occurred selectively in one or a few very narrow bands and outlined networks. Most abnormal EEGfC findings occurred at frequencies that mediate integrative and motor activities.ConclusionsFE patients have abnormal resting-state EEGfC network activity. Clinical factors significantly modify EEGfC.SignificanceDelineation of the FE network and modifying factors can open the way for targeted investigations and introduction of EEGfC into epilepsy research and practice.  相似文献   

19.
《Clinical neurophysiology》2019,130(10):1859-1868
ObjectivePreterm infants are at risk for altered brain maturation resulting in neurodevelopmental impairments. Topographical analysis of high-density electroencephalogram during sleep matches underlying brain maturation. Using such an EEG mapping approach could identify preterm infants at risk early in life.Methods20 preterm (gestational age < 32 weeks) and 20 term-born infants (gestational age > 37 weeks) were recorded by 18-channel daytime sleep-EEG at term age (GA 40 weeks for preterm and 2–3 days after birth for term infants) and 3 months (corrected age for preterm infants).ResultsPreterm infant’s power spectrum at term age is immature, leveling off with term infants at 3 months of age. Topographical distribution of maximal power density however, reveals qualitative differences between the groups until 3 months of age. Preterm infants exhibit more temporal than central activation at term age and more occipital than central activation at 3 months of age. Moreover, being less mature at term age predicts being less mature at 3 months of age.ConclusionTopographical analysis of sleep EEG reveals changes in brain maturation between term and preterm infants early in life.SignificanceIn future, automated analysis tools using topographical power distribution could help identify preterm infants at risk early in life.  相似文献   

20.
《Clinical neurophysiology》2021,132(2):498-504
Changes in physiological functions after spaceflight and simulated spaceflight involve several mechanisms. Microgravity is one of them and it can be partially reproduced with models, such as head down bed rest (HDBR). Yet, only a few studies have investigated in detail the complexity of neurophysiological systems and their integration to maintain homeostasis. Central nervous system changes have been studied both in their structural and functional component with advanced techniques, such as functional magnetic resonance (fMRI), showing the main involvement of the cerebellum, cortical sensorimotor, and somatosensory areas, as well as vestibular-related pathways. Analysis of electroencephalography (EEG) led to contrasting results, mainly due to the different factors affecting brain activity. The study of corticospinal excitability may enable a deeper understanding of countermeasures' effect, since greater excitability has been shown being correlated with better preservation of functions. Less is known about somatosensory evoked potentials and peripheral nerve function, yet they may be involved in a homeostatic mechanism fundamental to thermoregulation. Extending the knowledge of such alterations during simulated microgravity may be useful not only for space exploration, but for its application in clinical conditions and for life on Earth, as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号